
10-703 Recitation 4

Topics (Lectures 1-8):
1. Introduction to Reinforcement and Representation Learning
2. Multi-Arm Bandits
3. MDPs, Value and Policy Iteration
4. Monte Carlo Learning, Temporal Difference Learning, Monte Carlo

Tree Search
5. Function Approximation, Deep Q learning
6. Policy gradients, REINFORCE, Actor-Critic methods

***Note this is not an exhaustive list. Anything covered in lectures in
fair game.

What to expect?

● Open note
○ Can only use downloaded content
○ No internet use

● Types of questions:
○ True/False (with and without explanation)
○ Select all that apply (if explain - explain each choice why

you did or did not select it)
○ Short answer
○ **If there is a box to explain, always explain your answer.

Otherwise you will not get full credit.

Bandits

● You have one state with k actions
● Each action gets you a reward
● Want to maximize reward in least amount of time

○ How to sample actions to do this efficiently?

Greedy action:

Epsilon-greedy bandits

Upper confidence bound

● the square-root term is a measure of the uncertainty or variance in the estimate of a’s
value

● As Nt(a) increases the uncertainty term decreases.
● On the other hand, each time an action other than a is selected, t increases but Nt(a)

does not, causing the uncertainty to increase
● The use of the natural logarithm means that the increases get smaller over time, but

are unbounded

Optimistic Initial Values

● Set initial Q values much higher than the reward
● Encourage some exploration initially
● Whichever actions are initially selected, the reward is less than the starting

estimates; the learner switches to other actions, being “disappointed” with the
rewards it is receiving. The result is that all actions are tried several times before
the value estimates converge. The system does a fair amount of exploration
even if greedy actions are selected all the time.

Gradient Bandit Algorithms

MDPs

State-value function:

Action-value function:

policy:

* denotes optimal

Policy evaluation

● Find value function for a given policy
● Converges to unique true value function in limit
● In practice, use iterative policy evaluation (below) - stop when

max delta below a threshold
● Can update value function “in place” or use two copies

Bellman Backup & Contraction Mapping Theorem

● value function v_pi is the unique
solution to its Bellman equation.

● Bellman backup operator is
gamma-contraction

Policy improvement

● Given value function for current policy, do one-step look-ahead
and check if it is better to change policy to new action in each
state

● Strictly improving except when policy is already optimal

Policy iteration

Value iteration

● Combine policy evaluation and policy iteration in each
state sweep

● Effectively combines one sweep of policy evaluation and
one sweep of policy improvement.

● Often much faster convergence than policy iteration

Monte Carlo
● We do not assume complete knowledge of the environment.
● Monte Carlo methods require only experience—sample sequences of states, actions, and rewards

from actual or simulated interaction with an environment.
● Average returns observed after visits to a state
● Does not depend on estimates of other states (no bootstrapping)
● Get rid of exploring starts:

○ on-policy (e.g. epsilon greedy),
○ off policy (i.e. importance sampling)

Temporal Difference

● We do not assume complete knowledge of the environment.
● TD methods require only experience—sample sequences of states, actions, and rewards from

actual or simulated interaction with an environment.
● Bootstrap from estimates of other states
● Monte Carlo need to wait until end of episode, while TD(0) methods only need to wait one step
● On-policy (i.e. SARSA), off-policy (i.e. Q-learning)

Monte Carlo vs Temporal Difference

Policy-Gradient Methods

- Value-based methods: learn a value function (an optimal value function leads to an optimal
policy)

- Goal: minimize the loss between the predicted and target value
- Policy is implicit as it is generated directly from the value function (e.g. eps-greedy from Q-function)
- Examples: Monte Carlo, DQN, SARSA

- Policy-based methods: learn to approximate optimal policy directly (without learning a value
function)

- Parameterize the policy, e.g. using a neural network
- Policy outputs a probability distribution over actions (stochastic policy)
- Goal: maximize the performance of the parameterized policy using gradient ascent

18

REINFORCE: Algorithm

REINFORCE, or Monte Carlo policy-gradient, uses an estimated return from an entire
episode to update the policy parameter θ.

In a loop,

1. Use the policy πθ to collect episode τ
2. Use the episode to estimate the gradient g = ∇θJ(θ)

3. Update the weights of the policy: θ ← θ + αg
19

REINFORCE: Problem

1. Let’s suppose we have a 3 armed bandit environment where the mean rewards for
the arms are 10, 5, and 2.5 (with normally distributed noise with 0 mean and 1
variance).

20

REINFORCE: Problem

1. Let’s suppose we have a 3 armed bandit environment where the mean rewards for
the arms are 10, 5, and 2.5 (with normally distributed noise with 0 mean and 1
variance).

2. What would REINFORCE do?

21

REINFORCE: Problem

1. Let’s suppose we have a 3 armed bandit environment where the mean rewards for
the arms are 10, 5, and 2.5 (with normally distributed noise with 0 mean and 1
variance).

2. What would REINFORCE do?

22

REINFORCE: Problem

1. Let’s suppose we have a 3 armed bandit environment where the mean rewards for
the arms are 10, 5, and 2.5 (with normally distributed noise with 0 mean and 1
variance).

2. What would REINFORCE do?

23

REINFORCE: Problem

1. Let’s suppose we have a 3 armed bandit environment where the mean rewards for
the arms are 10, 5, and 2.5 (with normally distributed noise with 0 mean and 1
variance).

2. What would REINFORCE do?

24

But all the rewards are positive...

REINFORCE: Problem

1. Let’s suppose we have a 3 armed bandit environment where the mean rewards for
the arms are 10, 5, and 2.5 (with normally distributed noise with 0 mean and 1
variance).

2. What would REINFORCE do?

25

How do we improve this?

REINFORCE: Problem

1. Let’s suppose we have a 3 armed bandit environment where the mean rewards for
the arms are 10, 5, and 2.5 (with normally distributed noise with 0 mean and 1
variance).

2. What would REINFORCE do?

26

Subtract the mean!

-(10+5+2.5)/3

REINFORCE: Problem

1. Let’s suppose we have a 3 armed bandit environment where the mean rewards for
the arms are 10, 5, and 2.5 (with normally distributed noise with 0 mean and 1
variance).

2. What would REINFORCE do?

27

How do we generalize this?

-5.83

REINFORCE: Problem

1. Let’s suppose we have a 3 armed bandit environment where the mean rewards for
the arms are 10, 5, and 2.5 (with normally distributed noise with 0 mean and 1
variance).

2. What would REINFORCE do?

28

Subtract a baseline!

-b(s_{t})

REINFORCE - Baseline: Algorithm

1. What did we make? (Hint: Read the slide title)

29

REINFORCE - Baseline: Algorithm

1. What did we make?

30

REINFORCE - Baseline: Problem

1. Let’s suppose we have an environment where we only get rewards at the end of
the game (i.e. tic tac toe, chess, shogi, go, etc.)

31

REINFORCE - Baseline: Problem

1. Let’s suppose we have an environment where we only get rewards at the end of
the game (i.e. tic tac toe, chess, shogi, go, etc.)

32

REINFORCE - Baseline: Problem

1. Let’s suppose we have an environment where we only get rewards at the end of
the game (i.e. tic tac toe, chess, shogi, go, etc.)

2. Did my move at the beginning of the game actually have a significant influence
on the outcome of the game?

33

00 0 1

REINFORCE - Baseline: Problem

1. Let’s suppose we have an environment where we only get rewards at the end of
the game (i.e. tic tac toe, chess, shogi, go, etc.)

2. Did my move at the beginning of the game actually have a significant influence
on the outcome of the game?

3. How did we solve this problem with Value Based methods?

34

00 0 1

REINFORCE - Baseline: Problem

1. Let’s suppose we have an environment where we only get rewards at the end of
the game (i.e. tic tac toe, chess, shogi, go, etc.)

2. Did my move at the beginning of the game actually have a significant influence
on the outcome of the game?

3. How did we solve this problem with Value Based methods?

35

00 0 1

Bootstrapping!

REINFORCE - Baseline: Problem

1. Let’s change the advantage function

36

REINFORCE - Baseline: Problem

1. Let’s change the advantage function

37

We had this:

REINFORCE - Baseline: Problem

1. Let’s change the advantage function

38

Now we have this:

Value function V, learning rate α

Value function V(s) += α(r + γV(s’))

REINFORCE - Baseline: Problem

1. Let’s change the advantage function

39

A bit neater now:

Advantage Actor Critic (A2C):

1. What did we make this time?

40

Advantage Actor Critic (A2C): Differences

1. What did we make this time?
2. Let’s distill the changes we made

41

A(s,a) = G_{t} - b(s_{t})

A(s,a) = G_{t} - b(s_{t})

REINFORCE REINFORCE - Baseline

REINFORCE - Baseline A2C

Actor Critic vs Advantage Actor Critic

1. Actor Critic
a. We don’t directly use the discounted cumulative rewards to calculate the

policy update
2. Advantage Actor Critic

a. We use the advantage function (or an approximation) to calculate the policy
update

42

Policy-based methods, pros and cons

Pros

- We can estimate the policy directly without storing additional data
- Policy-gradient methods can learn a stochastic policy

- We don’t need to implement an exploration/exploitation trade-off by hand
- More effective in high-dimensional action spaces and continuous action spaces 🤔
- Better convergence properties 🤔

Cons

- Converges to a local maximum sometimes
- Slower, step-by-step: it can take longer to train (inefficient)
- Gradient estimate is very noisy: there is a possibility that the collected trajectory may not be

representative of the policy

43

Monte Carlo Tree Search

state

action

Until termination

Update
values

Monte Carlo Tree Search: Benefits

When to use MCTS over learning algorithms?

- More useful if you have limited amount of time
- Access to internal model
- Size or dynamic nature of the state-action space (in MCTS, the state action

space size doesn’t matter because it only explores the best actions)

Deep Q-Network

Sampling: we perform
actions and store the
observed experience tuples
in a replay memory

Training: select a small
batch of tuples randomly and
learn from this batch using a
gradient descent update step

Deep Q-Network

Because deep Q-learning combines a non-linear Q-value function (Neural
network) with bootstrapping (when we update targets with existing estimates and
not an actual complete return), it might suffer from instability.

To help us stabilize the training, we implement three different solutions:

1. Experience Replay to make more efficient use of experiences.
2. Fixed Q-Target to stabilize the training.
3. Double Deep Q-Learning, to handle the problem of the overestimation of

Q-values.

Deep Q-Learning: Experience Replay
Uses the experiences of the training more efficiently (we
can use a replay buffer that saves experience samples
that we can reuse during sampling)

- Agent can learn from the same experience multiple
times!

Avoid forgetting previous experiences and reduce the
correlation between experiences

- if we give sequential samples of experiences to our
neural network is that it tends to forget the previous
experiences as it gets new experiences

By randomly sampling experiences, we remove
correlation in the observation sequences to avoid actin
values from oscillating or diverging catastrophically.

48

Deep Q-Learning: Fixed Q-Target

- Problem: at every step of training, both our Q-values and target values shift (nonstationary
targets)

- Where the most instability comes from
- Updating the network weights changes the target value, which requires more updates
- Unintended generalization to other states S’ can lead to error propagation

- Solution: use a separate network with fixed parameters to estimate the TD target and
compy the parameters from our Deep Q-Network every c steps

- For c steps, the target network is fixed, after that you update the target network once and continue to update
your value function for another c steps, repeat the process

- Network has more time to fit targets accurately before they change
- Slows down training, but not too many alternatives (recently: functional regularization)

49

Target value Prediction

Deep Q-Learning: Fixed Q-Target

Big Picture Table

Method On/Off Policy? Bootstraps?

Monte Carlo Methods On* N

SARSA On Y

Expected SARSA Off Y

Q-Learning Off Y

REINFORCE On N

Actor Critic, A2C On* Y

* can be made off policy with importance sampling

Practice Questions

Question 1) Bandits

Why does the expected reward curve for UCB look so noisy, especially compared
to epsilon-greedy or Boltzmann?

Solution 1) Bandits

At every timestep, the UCB policy is deterministic and rapidly switches between
actions in order to explore. In contrast, Boltzmann uses a stochastic policy, so its
expected reward changes smoothly as the action distribution changes.

Question 2) Scaling Rewards

Let’s say that we have 2 3-armed bandits:

- Mean rewards (-1, 0, 1) and noisy Gaussian reward with variance 1
- Mean rewards (-10, 0, 10) and noisy Gaussian reward with variance 100

For the same random seed, does epsilon-greedy take the same sequence of
actions? How about Boltzmann exploration?

Solution 2) Scaling Rewards

Epsilon-greedy is scale-invariant; only the maximum Q-value determines the
policy. Therefore, it takes the same sequence of actions on both. However,
Boltzmann exploration depends on the gap between the Q-values, so it is much
more stochastic in the first bandit problem than in the second.

Question 3) Markov Decision Processes

Solution 3) Markov Decision Processes

Question 4) Comparing SARSA and Q-Learning

Given some trajectory:

We can define an update target for Q-values at step 0:

Using V(s), apply bootstrapping for 2-step returns.

Do the same, but in terms of Q(s, a).

Do the same, assuming the policy takes optimal actions with respect to its Q values.

Question 5) Comparing SARSA and Q-Learning

At each timestep of the policy iteration algorithm, the expected reward of the
current policy is guaranteed to improve or remain the same.

Answer 5) Value and Policy Iteration

True, this is the Policy Improvement Theorem.

Question 6) SARSA

Was SARSA designed to learn Q-values using samples from a replay buffer of
transitions collected from old policies? What about expected SARSA?

Answer 6) SARSA

SARSA:

Expected SARSA:

SARSA is on-policy: A’ is supposed to be drawn from the policy. (It can be
extended to use a replay buffer, but this isn’t in the original formulation). In
contrast, expected SARSA is designed to use (s, a, s’, r) from any source to
perform updates.

Question 7) MCTS & DQN

Which of the following statements about MCTS and DQNs is incorrect:

A) MCTS uses a tabular representations of action-values whereas DQNs uses a
functional approximation.

B) Agents using DQNs are faster at choosing actions compared to those using
MCTS.

C) DQNs and MCTS are both on-policy.

D) MCTS have been shown to outperform comparable DQNs on some tasks.

Answer 7) MCTS & DQN

C) DQNs and MCTS are both on-policy.

Questions?

