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Topics (Lectures 1-8):
1. Introduction to Reinforcement and Representation Learning
2. Multi-Arm Bandits
3. MDPs, Value and Policy Iteration
4. Monte Carlo Learning, Temporal Difference Learning, Monte Carlo 

Tree Search
5. Function Approximation, Deep Q learning
6. Policy gradients, REINFORCE, Actor-Critic methods

***Note this is not an exhaustive list. Anything covered in lectures in 
fair game. 



What to expect?

● Open note 
○ Can only use downloaded content
○ No internet use

● Types of questions:
○ True/False (with and without explanation)
○ Select all that apply (if explain - explain each choice why 

you did or did not select it)
○ Short answer
○ **If there is a box to explain, always explain your answer. 

Otherwise you will not get full credit. 



Bandits

● You have one state with k actions
● Each action gets you a reward
● Want to maximize reward in least amount of time

○ How to sample actions to do this efficiently?

Greedy action:



Epsilon-greedy bandits



Upper confidence bound

● the square-root term is a measure of the uncertainty or variance in the estimate of a’s 
value

● As Nt(a) increases the uncertainty term decreases. 
● On the other hand, each time an action other than a is selected, t increases but Nt(a) 

does not, causing the uncertainty to increase
● The use of the natural logarithm means that the increases get smaller over time, but 

are unbounded



Optimistic Initial Values

● Set initial Q values much higher than the reward
● Encourage some exploration initially
● Whichever actions are initially selected, the reward is less than the starting 

estimates; the learner switches to other actions, being “disappointed” with the 
rewards it is receiving. The result is that all actions are tried several times before 
the value estimates converge. The system does a fair amount of exploration 
even if greedy actions are selected all the time.



Gradient Bandit Algorithms



MDPs

State-value function:

Action-value function:

policy:

* denotes optimal



Policy evaluation

● Find value function for a given policy
● Converges to unique true value function in limit
● In practice, use iterative policy evaluation (below) - stop when 

max delta below a threshold
● Can update value function “in place” or use two copies



Bellman Backup & Contraction Mapping Theorem

● value function v_pi is the unique 
solution to its Bellman equation.

● Bellman backup operator is 
gamma-contraction



Policy improvement

● Given value function for current policy, do one-step look-ahead 
and check if it is better to change policy to new action in each 
state

● Strictly improving except when policy is already optimal



Policy iteration



Value iteration

● Combine policy evaluation and policy iteration in each 
state sweep

● Effectively combines one sweep of policy evaluation and 
one sweep of policy improvement.

● Often much faster convergence than policy iteration



Monte Carlo
● We do not assume complete knowledge of the environment. 
● Monte Carlo methods require only experience—sample sequences of states, actions, and rewards 

from actual or simulated interaction with an environment.
● Average returns observed after visits to a state
● Does not depend on estimates of other states (no bootstrapping)
● Get rid of exploring starts: 

○ on-policy (e.g. epsilon greedy), 
○ off policy (i.e. importance sampling)



Temporal Difference 

● We do not assume complete knowledge of the environment. 
● TD methods require only experience—sample sequences of states, actions, and rewards from 

actual or simulated interaction with an environment.
● Bootstrap from estimates of other states
● Monte Carlo need to wait until end of episode, while TD(0) methods only need to wait one step
● On-policy (i.e. SARSA), off-policy (i.e. Q-learning)



Monte Carlo vs Temporal Difference 



Policy-Gradient Methods

- Value-based methods: learn a value function (an optimal value function leads to an optimal 
policy)

- Goal: minimize the loss between the predicted and target value
- Policy is implicit as it is generated directly from the value function (e.g. eps-greedy from Q-function)
- Examples: Monte Carlo, DQN, SARSA

- Policy-based methods: learn to approximate optimal policy directly (without learning a value 
function)

- Parameterize the policy, e.g. using a neural network
- Policy outputs a probability distribution over actions (stochastic policy)
- Goal: maximize the performance of the parameterized policy using gradient ascent
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REINFORCE: Algorithm

REINFORCE, or Monte Carlo policy-gradient, uses an estimated return from an entire 
episode to update the policy parameter θ.

In a loop,

1. Use the policy πθ to collect episode τ
2. Use the episode to estimate the gradient g = ∇θJ(θ)

3. Update the weights of the policy: θ ← θ + αg
19



REINFORCE: Problem

1. Let’s suppose we have a 3 armed bandit environment where the mean rewards for 
the arms are 10, 5, and 2.5 (with normally distributed noise with 0 mean and 1 
variance).
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But all the rewards are positive...
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How do we improve this?
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Subtract the mean!

-(10+5+2.5)/3
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How do we generalize this?

-5.83



REINFORCE: Problem

1. Let’s suppose we have a 3 armed bandit environment where the mean rewards for 
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Subtract a baseline!

-b(s_{t})



REINFORCE - Baseline: Algorithm

1. What did we make? (Hint: Read the slide title)
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REINFORCE - Baseline: Algorithm

1. What did we make?
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REINFORCE - Baseline: Problem

1. Let’s suppose we have an environment where we only get rewards at the end of 
the game (i.e. tic tac toe, chess, shogi, go, etc.)
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00 0 1

Bootstrapping!



REINFORCE - Baseline: Problem

1. Let’s change the advantage function
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We had this:



REINFORCE - Baseline: Problem

1. Let’s change the advantage function
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Now we have this:

Value function V, learning rate α

Value function V(s) += α(r + γV(s’))



REINFORCE - Baseline: Problem

1. Let’s change the advantage function
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A bit neater now:



Advantage Actor Critic (A2C):

1. What did we make this time?

40



Advantage Actor Critic (A2C): Differences

1. What did we make this time?
2. Let’s distill the changes we made

41

A(s,a) = G_{t} - b(s_{t})

A(s,a) = G_{t} - b(s_{t})

REINFORCE REINFORCE - Baseline

REINFORCE - Baseline A2C



Actor Critic vs Advantage Actor Critic

1. Actor Critic
a. We don’t directly use the discounted cumulative rewards to calculate the 

policy update
2. Advantage Actor Critic

a. We use the advantage function (or an approximation) to calculate the policy 
update

42



Policy-based methods, pros and cons

Pros

- We can estimate the policy directly without storing additional data
- Policy-gradient methods can learn a stochastic policy

- We don’t need to implement an exploration/exploitation trade-off by hand
- More effective in high-dimensional action spaces and continuous action spaces 🤔
- Better convergence properties 🤔

Cons

- Converges to a local maximum sometimes
- Slower, step-by-step: it can take longer to train (inefficient)
- Gradient estimate is very noisy: there is a possibility that the collected trajectory may not be 

representative of the policy

43



Monte Carlo Tree Search

state

action

Until termination

Update 
values



Monte Carlo Tree Search: Benefits

When to use MCTS over learning algorithms?

- More useful if you have limited amount of time
- Access to internal model 
- Size or dynamic nature of the state-action space (in MCTS, the state action 

space size doesn’t matter because it only explores the best actions)



Deep Q-Network

Sampling: we perform 
actions and store the 
observed experience tuples 
in a replay memory

Training: select a small 
batch of tuples randomly and 
learn from this batch using a 
gradient descent update step



Deep Q-Network

Because deep Q-learning combines a non-linear Q-value function (Neural 
network) with bootstrapping (when we update targets with existing estimates and 
not an actual complete return), it might suffer from instability.

To help us stabilize the training, we implement three different solutions:

1. Experience Replay to make more efficient use of experiences.
2. Fixed Q-Target to stabilize the training.
3. Double Deep Q-Learning, to handle the problem of the overestimation of 

Q-values.



Deep Q-Learning: Experience Replay
Uses the experiences of the training more efficiently (we 
can use a replay buffer that saves experience samples 
that we can reuse during sampling)

- Agent can learn from the same experience multiple 
times!

Avoid forgetting previous experiences and reduce the 
correlation between experiences

- if we give sequential samples of experiences to our 
neural network is that it tends to forget the previous 
experiences as it gets new experiences

By randomly sampling experiences, we remove 
correlation in the observation sequences to avoid actin 
values from oscillating or diverging catastrophically.
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Deep Q-Learning: Fixed Q-Target

- Problem: at every step of training, both our Q-values and target values shift (nonstationary 
targets)

- Where the most instability comes from
- Updating the network weights changes the target value, which requires more updates
- Unintended generalization to other states S’ can lead to error propagation

- Solution: use a separate network with fixed parameters to estimate the TD target and 
compy the parameters from our Deep Q-Network every c steps

- For c steps, the target network is fixed, after that you update the target network once and continue to update 
your value function for another c steps, repeat the process

- Network has more time to fit targets accurately before they change
- Slows down training, but not too many alternatives (recently: functional regularization)

49

Target value Prediction



Deep Q-Learning: Fixed Q-Target



Big Picture Table

Method On/Off Policy? Bootstraps?

Monte Carlo Methods On* N

SARSA On Y

Expected SARSA Off Y

Q-Learning Off Y

REINFORCE On N

Actor Critic, A2C On* Y

* can be made off policy with importance sampling



Practice Questions



Question 1) Bandits

Why does the expected reward curve for UCB look so noisy, especially compared 
to epsilon-greedy or Boltzmann?



Solution 1) Bandits 

At every timestep, the UCB policy is deterministic and rapidly switches between 
actions in order to explore. In contrast, Boltzmann uses a stochastic policy, so its 
expected reward changes smoothly as the action distribution changes.



Question 2) Scaling Rewards

Let’s say that we have 2 3-armed bandits: 

- Mean rewards (-1, 0, 1) and noisy Gaussian reward with variance 1
- Mean rewards (-10, 0, 10) and noisy Gaussian reward with variance 100 

For the same random seed, does epsilon-greedy take the same sequence of 
actions? How about Boltzmann exploration?



Solution 2) Scaling Rewards

Epsilon-greedy is scale-invariant; only the maximum Q-value determines the 
policy. Therefore, it takes the same sequence of actions on both. However, 
Boltzmann exploration depends on the gap between the Q-values, so it is much 
more stochastic in the first bandit problem than in the second.



Question 3) Markov Decision Processes



Solution 3) Markov Decision Processes



Question 4) Comparing SARSA and Q-Learning

Given some trajectory:

We can define an update target for Q-values at step 0:

Using V(s), apply bootstrapping for 2-step returns.

Do the same, but in terms of Q(s, a).

Do the same, assuming the policy takes optimal actions with respect to its Q values.



Question 5) Comparing SARSA and Q-Learning

At each timestep of the policy iteration algorithm, the expected reward of the 
current policy is guaranteed to improve or remain the same.



Answer 5) Value and Policy Iteration

True, this is the Policy Improvement Theorem.



Question 6) SARSA

Was SARSA designed to learn Q-values using samples from a replay buffer of 
transitions collected from old policies? What about expected SARSA?



Answer 6) SARSA

SARSA: 

Expected SARSA: 

SARSA is on-policy: A’ is supposed to be drawn from the policy. (It can be 
extended to use a replay buffer, but this isn’t in the original formulation). In 
contrast, expected SARSA is designed to use (s, a, s’, r) from any source to 
perform updates.



Question 7) MCTS & DQN

Which of the following statements about MCTS and DQNs is incorrect: 

A) MCTS uses a tabular representations of action-values whereas DQNs uses a 
functional approximation. 

B) Agents using DQNs are faster at choosing actions compared to those using 
MCTS. 

C) DQNs and MCTS are both on-policy. 

D) MCTS have been shown to outperform comparable DQNs on some tasks.



Answer 7) MCTS & DQN

C) DQNs and MCTS are both on-policy.  



Questions?


