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General Tips

- Read the paper

- You don’t have to remember a lot from the paper, just remember which sections discuss what
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Appendix A Comparison to AlphaZero

MuZero is designed for a more general setting than AlphaGo Zero [40] and AlphaZero [39).

In AlphaGo Zero and AlphaZero the planning process makes use of two separate components: a simulator
implements the rules of the game, which are used to update the state of the game while traversing the search
tree; and a neural network jointly predicts the corresponding policy and value of a board position produced by the
simulator (see Figure 1 A).

Specifically, AlphaGo Zero and AlphaZero use knowledge of the rules of the game in three places: (1) state
transitions in the search tree, (2) actions available at cach node of the search tree, (3) episode termination within
the search tree. In MuZero, all of these have been replaced with the use of a single implicit model learned by a
neural network (sce Figure 1 B):

Problem 1.4: Conceptual Questions (10 pts)

1. Describe the main differences between AlphaZero and MuZero. Give an example for a
problem where you would prefer MuZero over AlphaZero.

2. In the MuZero paper the authors describe an additional technique called Reanalyze.
Describe what Reanalyze does and how it can improve sample efficiency. How would
you implement this in the given code?

1) State transitions. AlphaZero had access to a perfect simulator of the true dynamics process. In contrast,

MuZero employs a learned dynamics model within its search. Under this model, each node in the tree is
. . . . o represented by a corresponding hidden state; by providing a hidden state s, and an action a to the model
3. MuZero has no constraints to learn a consistent hidden state representation. Specifi- the search algorithm can transition to a new node sx = g(sk—1,ax).
cally consider a state o, and a state o..;. When embedded with the initial inference,
this gives hidden states s, and s,.;,. When we apply our dynamics to s,, we should
expect that the result 5.+1 aligns with sc;1. How might we enforce this constraint
during training?

Actions available. AlphaZero used the set of legal actions obtained from the simulator to mask the prior
produced by the network everywhere in the search tree. MuZero only masks legal actions at the root of the
search tree where the environment can be queried, but does not perform any masking within the search tree.
‘This is possible because the network rapidly learns not to predict actions that never occur in the trajectories
itis trained on.

Terminal nodes. AlphaZero stopped the search at tree nodes representing terminal states and used the ter-
minal value provided by the simulator instead of the value produced by the network. MuZero does not give
special treatment to terminal nodes and always uses the value predicted by the network. Inside the tree, the
search can proceed past a terminal node - in this case the network is expected to always predict the same
value. This is achieved by treating terminal states as absorbing states during training.

In addition, MuZero is designed to operate in the general learning setting: single-agent domains

with discounted intermediate rewards of arbitrary magnitude. In contrast, AlphaGo Zero and AlphaZero were
designed to operate in two-player games with undiscounted terminal rewards of £1.
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minal value provided by the simulator instead of the value produced by the network. MuZero does not give
special treatment to terminal nodes and always uses the value predicted by the network. Inside the tree, the
search can proceed past a terminal node - in this case the network is expected to always predict the same
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designed to operate in two-player games with undiscounted terminal rewards of £1.

- If you are running out of revision time, don’t skip the paper, watch the video
or read the website/blog associated with the paper (linked to this slide)
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Visual Imitation Learning



No RL, No Simulation: Learning to Navigate without
Navigating (Hahn et al.)

Imagine going to a friend’s house and they
ask you to get water from the kitchen.

This is the first time you are visiting, so you
don’t know where it is. Looking at the house,
we can see that there are 3 possible paths
that may take you to the kitchen.

Humans use semantic priors and
understanding of commonalities in
environments to navigate in unseen
environments.

Source: https://meerahahn.github.io/nrns/
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No RL, No Simulation: Learning to Navigate without

Navigating (Hahn et al.)

Goal Image

Source: https://meerahahn.qgithub.io/nrns/

Embodied agents have difficulty performing the same task, as
the goal location is unknown and the agent needs to make
intelligent and efficient exploration decisions to find and reach
the goal.

Agents need to learn the semantic priors of the environment,
which require large scale and diverse datasets.

Bottlenecks

1.
2.

3.

Scalability: RL is sample inefficient

When goals are unknown, exploration is needed and
samples needed increases

Diversity: Simulators are limited by the number of
environments

Environments are expensive to create
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No RL, No Simulation: Learning to Navigate without
Navigating (Hahn et al.)

Solution proposed: learn a navigation method directly from passive data trajectories of indoor environments, for
the task of image goal navigation

RL simulation is not needed to do navigation, as it is a structured problem

- No need to do a credit assignment (use distance; predict distance to goal in the exploration frontier)
- No need to learn a policy (use greedy; selects direction which minimizes predicted distance to goal location)
- No need for interaction data (use depth to avoid local obstacles)

1. Predict Non-Collision Future Nodes
2. Predict Goal-Distance from Future Nodes
3. Be Greedy!

Node Image

Source: https://meerahahn.qgithub.io/nrns/
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No RL, No Simulation: Learning to Navigate without
Navigating (Hahn et al.)

Task: Image Goal Navigation

An agent is placed in a novel environment with no map of the environment
Agent is given an image from goal location with limited field of view, no coordinates
The agent is tasked to navigating within 1m of the location where the image is taken within a set
number of steps
Agent builds and maintains a topological map of the area
Contains explored and unexplored nodes (explored nodes: exploration frontier)
Uses the topological graph to decide where to go next to find the goal image
Selects the unexplored node that minimizes the agent’s distance to goal image
Agent learns a GNN over the topological map which uses the visual features of each node to predict the distance to the
goal image
Agent use a heuristic depth-based policy to choose low level actions; uses the same policy to
expand graph with the exploration frontier
Then the agent predicts whether it should stop exploring, and predicts the goal location (use a CNN
+ MLP)

Source: https://meerahahn.qgithub.io/nrns/
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No RL, No Simulation: Learning to Navigate without
Navigating (Hahn et al.)

Task: Image Goal Navigation

An agent is placed in a novel environment with no map of the environment

Agent is given an image from goal location with limited field of view, no coordinates

The agent is tasked to navigating within 1m of the location where the image is taken within a set
number of steps

Agent builds and maintains a topological map of the area
Contains explored and unexplored nodes (explored nodes: exploration frontier)

Uses the topological graph to decide where to go next to find the goal image
Selects the unexplored node that minimizes the agent’s distance to goal image
Agent learns a GNN over the topological map which uses the visual features of each node to predict the distance to the
goal image (distance prediction)

Agent use a heuristic depth-based policy to choose low level actions (local policy); uses the same
policy to expand graph with the exploration frontier (graph expansion)

Then the agent predicts whether it should stop exploring, and predicts the goal location (use a CNN
+ MLP) (target prediction)

Source: https://meerahahn.qgithub.io/nrns/
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No RL, No Simulation: Learning to Navigate without
Navigating (Hahn et al.)

Overview
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No RL, No Simulation: Learning to Navigate without
Navigating (Hahn et al.)

Methodology

- Learn directly from rGBD videos of indoor trajectories to learn the distance prediction and

target prediction function
- Use the habitat simulator to generate passive RGBD videos of trajectories
- Generate ~1K videos per training environment
- Transfer the videos to trajectory graphs using affinity clustering over the pose and visual
features of the stepwise trajectory (without use of actions)

- Use the explorable area function to add unexplored nodes to video graph
- Select multiple subgraphs for training the distance prediction function
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RGRD Video (MP3D)
Source: https://meerahahn.qgithub.io/nrns/
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Playing hard exploration games by watching YouTube
(Aytar et al.)

Motivation: one successful method of guiding exploration in these domains is to imitate
trajectories provided by a human demonstrator, however these demonstrations are
collected under artificial conditions (access to agent’s exact environment setup and
demonstrator’s action and reward trajectories)

Approach:

1. Learn to map unaligned videos from multiple sources to a common representation
using self-supervised objectives constructed over both time and modality (vision and
sound)

2. Embed a single YouTube video in this representation to construct a reward function
that encourages an agent to convincingly exceed human-level performance on
difficult exploration games such as Montezuma’s revenge, pitfall!, and private eye
for the first time, even if the agent is not presented with any environment rewards



Playing hard exploration games by watching YouTube
(Aytar et al.)

Problem: “hard exploration”, i.e. sparse environmental rewards, 100s of environment steps to
even reach the first reward in Montezuma’s Revenge

Possible solutions

- Intrinsic motivation: create an auxiliary reward to encourage trying new trajectories (this

doesn’t solve the problem of unknown-unknowns)
- Imitation learning: observe some demonstrations of others playing the game, then imitate
their trajectories
- Source: YouTube videos; humans can learn by watching somebody do something, regardless of

significant differences in timing, lighting, background, sounds, etc.
- Challenges: different colors, aspect ratios, location within the frame and artifacts such as the avatar,

etc. (domain gap)
- ltis a problem since most methods expect clean demonstrations, as well as complete

action-reward sequences from them

Source: https://students.mimuw.edu.pl/~jj385649/um-sem/Playing%20hard%20exploration%20games %20by%20watching%20YouTube.pdf
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Playing hard exploration games by watching YouTube
(Aytar et al.)

Approach Deep reinforcement learning methods traditionally struggle with tasks where en-
vironment rewards are particularly sparse. One successful method of guiding
exploration in these domains is to imitate trajectories provided by a human demon-
strator. However, these demonstrations are typically collected under artificial
conditions, i.e. with access to the agent’s exact environment setup and the demon-
strator’s action and reward trajectories. Here we propose a two-stage method that
overcomes these limitations by relying on noisy, unaligned footage without access
to such data. First, we learn to map unaligned videos from multiple sources to a
common representation using self-supervised objectives constructed over both time
and modality (i.e. vision and sound). Second, we embed a single YouTube video
in this representation to construct a reward function that encourages an agent to
imitate human gameplay. This method of one-shot imitation allows our agent to
convincingly exceed human-level performance on the infamously hard exploration
games MONTEZUMA’S REVENGE, PITFALL! and PRIVATE EYE for the first time,
even if the agent is not presented with any environment rewards.

Source: https://students.mimuw.edu.pl/~jj385649/um-sem/Playing%20hard%20exploration%20games%20by%20watching%20YouTube.pdf
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Playing hard exploration games by watching YouTube
(Aytar et al.)
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(a) An example path (b) Aligned frames (c) Our embedding (d) Pixel embedding

Goal: using three different training videos per game, produce a common representation for them.

They train an embedder to solve an auxiliary task which is self-supervised and encourages a desirable embedding, which is to
predict the temporal distance between two frames from the same demonstration using visual-visual embedding and visual-audio
embedding.

Source: https://students.mimuw.edu.pl/~jj385649/um-sem/Playing%20hard%20exploration%20games%20by%20watching%20YouTube.pdf
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Playing hard exploration games by watching YouTube
(Aytar et al.)
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Temporal distance classification (TDC): look at the embeddings of two frames
from one demonstration, determine the number of steps between them
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Playing hard exploration games by watching YouTube
(Aytar et al.)

Cross-modal classification (CMC): looking at an embedded frame and a sound
snippet, determine the time between them
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(a) Temporal and cross-modal pair selection (b) Embedding networks (c¢) Classification networks
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Playing hard exploration games by watching YouTube

(Aytar et al.)
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(c¢) Classification networks

Train to minimize the weighted sum of cross-entropies.
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Playing hard exploration games by watching YouTube
(Aytar et al.)

Approach Deep reinforcement learning methods traditionally struggle with tasks where en-
vironment rewards are particularly sparse. One successful method of guiding
exploration in these domains is to imitate trajectories provided by a human demon-
strator. However, these demonstrations are typically collected under artificial
conditions, i.e. with access to the agent’s exact environment setup and the demon-
strator’s action and reward trajectories. Here we propose a two-stage method that
overcomes these limitations by relying on noisy, unaligned footage without access
to such data. First, we learn to map unaligned videos from multiple sources to a
common representation using self-supervised objectives constructed over both time
and modality (i.e. vision and sound). Second, we embed a single YouTube video
in this representation to construct a reward function that encourages an agent to
imitate human gameplay. This method of one-shot imitation allows our agent to
convincingly exceed human-level performance on the infamously hard exploration
games MONTEZUMA’S REVENGE, PITFALL! and PRIVATE EYE for the first time,
even if the agent is not presented with any environment rewards.

Source: https://students.mimuw.edu.pl/~jj385649/um-sem/Playing%20hard%20exploration%20games%20by%20watching%20YouTube.pdf
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Playing hard exploration games by watching YouTube
(Aytar et al.)

Dataset for embedder: three training videos per game,
where one pair of training frames is obtained by sampling
one of three videos, sampling a time interval, and randomly

. . A
selecting two frames separated by that interval 174
—
. . future
One-shot imitation active @ rewards
rewards / observation
- Combine a standard RL agent, the trained embedder, g, V’ i
o— = @(V)TTTT
another YouTube video E
- v

- Goal: imitate the video
- Every 16 frames make a checkpoint, add an auxiliary (b) One shot imitation

reward for visiting checkpoints in the right order

Source: https://students.mimuw.edu.pl/~jj385649/um-sem/Playing%20hard%20exploration%20games%20by%20watching%20YouTube.pdf
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SFV Reinforcement Learning of Physical Skills from
Videos (Peng et al.)

Motivation: training simulated characters to imitate mocap data can be highly
effective for producing natural motions, but mocap data can be difficult to acquire
and often requiring heavy instrumentation. Video clips offer a much more
accessible and abundant source of data!

Source: https://www.youtube.com/watch?v=4Qg5I5vhX7Q&t=0s
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SFV Reinforcement Learning of Physical Skills from
Videos (Peng et al.)

Contribution: a framework that enables s
simulated characters to learn skills directly from =
video, which consists of three stages: '. |:>u ,,% O
1. Pose estimation: given input video, predict = | 0
the pose of the actor in each frame Reference Motion
Character f
S

N Motion
| Imitation > TT
b (RU) /

Source: https://bair.berkeley.edu/blog/2018/10/09/sfv/
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SFV Reinforcement Learning of Physical Skills from
Videos (Peng et al.)

Contribution: a framework that enables o—
simulated characters to learn skills directly from
video, which consists of three stages: e > fase N e
i 2 V/ Estimation - | Reconstruction
1. Pose estimation: given input video, predict ' ' ‘ 0
the pose of the actor in each frame Reference Motion
2. Motion reconstruction: consolidated the :
pose predictions into a reference motion and f
fixes artifacts that might have been Charactse /

introduced by the pose predictions
Motion

Imitation
(RL)

Source: https://bair.berkeley.edu/blog/2018/10/09/sfv/
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SFV Reinforcement Learning of Physical Skills from

Videos (Peng et al.)

Contribution: a framework that enables
simulated characters to learn skills directly from
video, which consists of three stages:

1. Pose estimation: given input video, predict
the pose of the actor in each frame

2. Motion reconstruction: consolidated the
pose predictions into a reference motion and
fixes artifacts that might have been
introduced by the pose predictions

3. Motion imitation: reference motion is
passed here, where a simulated character is
trained to imitate the motion using
reinforcement learning

Source: https://bair.berkeley.edu/blog/2018/10/09/sfv/

Pose
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Motion

'| Reconstruction
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Character

Reference Motion

Motion
Imitation
(RL)
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SFV Reinforcement Learning of Physical Skills from
Videos (Peng et al.)

Pose Estimation

Video: Backflip A 2D Estimator 3D Estimator

- An ensemble of 2D and 3D pose estimators is used to predict the actor’s pose
in each frame

- Training the pose estimators with rotation augmentation substantially
improves accuracy for acrobatic motions

Source: https://www.youtube.com/watch?v=4Qg5I5vhX7Q&t=0s
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SFV Reinforcement Learning of Physical Skills from
Videos (Peng et al.)

Motion Reconstruction
o . J =

Video: Cartwheel A Before Reconstruction After Reconstruction

- Since the poses are independently predicted for each frame, they may not be
temporally consistent

- Reconstruct a temporally smooth pose trajectory that consolidates the 2D and
3D pose predictions

Source: https://www.youtube.com/watch?v=4Qg5I5vhX7Q&t=0s
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SFV Reinforcement Learning of Physical Skills from
Videos (Peng et al.)

Motion Imitation via RL

- Each policy is modeled with a feedforward network and trained with RL to imitate the reference

motion
Reward function encourages the policy to minimize the difference between the pose of the simulated character and the

pose of the reference motion at each frame
- The simulation can cleanup non-physical behaviors in the reference motion (using tracking errors)

- This approach works well, and the characters are able to learn a diverse repertoire of challenging
acrobatic skills, where each skill is learned from a single video demonstration

Cartwheel A Frontflip

Source: https://bair.berkeley.edu/blog/2018/10/09/sfv/


https://bair.berkeley.edu/blog/2018/10/09/sfv/

Video PreTraining (VPT): Learning to Act by Watching
Unlabeled Online Videos (Baker et al.)

Motivation: aims to produce behavioral priors from commonly available but
unlabeled area, in domains where an agent needs to act but reward signal is so
sparse that RL is virtually impossible

- VPT follows powerful GPT playbook: pretrain on large, noisy, internet-scale
datasets, then use the resulting model for downstream task (such as

computer-using agents and video games where there are a lot of videos
online but are unlabeled)

Source: https://slideslive.com/38991776/video-pretraining-vpt-learning-to-act-by-watching-unlabeled-online-videos?ref=speaker-17019
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Video PreTraining (VPT): Learning to Act by Watching
Unlabeled Online Videos (Baker et al.)

What to do with unlabeled demonstrations?

- Action labels associated with each video frame is unavailable

- Use inverse-dynamic models to label: given a sequence of video frames, IDM
predicts actions by looking at past and future frames (BC: looks at past
frames only, infer player intent for future frames)

Video Input

Predict action from
Past and Future

Keypresses
&
Mouse Movements

Source: https://slideslive.com/38991776/video-pretraining-vpt-learning-to-act-by-watching-unlabeled-online-videos?ref=speaker-17019
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Video PreTraining (VPT): Learning to Act by Watching
Unlabeled Online Videos (Baker et al.)

VPT pipeline

- Search internet for minecraft videos, filter for clean video segments for mods,
overlays, and other noise to

- In parallel, hire contractors to play minecraft and record 2000 hours labeled
trajectories, and on these trajectories

- Label clean videos using the IDM and

Collscting Cloan”Data Training the VPT Foundation Model
f‘l?:;?:rr‘aff‘:rv::l:::m =l o 5 Filterfor“clean" skbotes via Behavioral Cloning
via keywords labeled video segments

video video Train causal
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m video _ 28 26

labeled with &
actions

C
collect data
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Source: https://slideslive.com/38991776/video-pretraining-vpt-learning-to-act-by-watching-unlabeled-online-videos?ref=speaker-17019
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Video PreTraining (VPT): Learning to Act by Watching
Unlabeled Online Videos (Baker et al.)

Fine-tuning for specific tasks with reinforcement learning, e.g. collecting a
diamond pickaxe

Human \ 1.8%
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Source: https://slideslive.com/38991776/video-pretraining-vpt-learning-to-act-by-watching-unlabeled-online-videos?ref=speaker-17019
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Language and Robot Control



Learning Transferable Visual Models From Natural Language
Supervision (Radford et al.)

Motivation: GPT-3 shows that models pre-trained on high web-scale collections of text
surpassed high-quality crowd-labeled NLP datasets, so could scalable pre-training
methods which learn directly from web text result in a similar breakthrough in

computer vision?

Approach: learning perception from supervision contained in natural language

Strengths of learning from natural language:

- Easier to scale natural language supervision compared to standard crowdsourced

labeling for image classification
- Doesn't just learn a representation but also connects that representation to

language which enables flexible zero-shot transfer

Source: https://amaarora.qgithub.io/posts/2023-03-06_Understanding_CLIP.html
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Learning Transferable Visual Models From Natural Language
Supervision (Radford et al.)

CLIP architecture

1. Pass images through image I
encoder and texts through text oyl 5 Text
encoder to get image and text Encoder G b o 7
features ;
2. Have two projection layers for the

text and image features to project

them to the embedding dimension
a. Get the joint multimodal embeddings
by doing a dot product

3. Get the cosine similarity between

Y

B |

Y
5

LT, BT 1T, | .. |LTy

the joint embeddings E'rf";j‘)%:r >IN | 1, T, |1, T, BN . |1y
4. Use contrastive loss during training
(we want the cross-entropy loss of :
the items in the diagonal to be high —
> Iy INTy | InT2 [ INT3 | . |INTN

and low elsewhere)

Source: https://amaarora.qgithub.io/posts/2023-03-06_Understanding_CLIP.html
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CLIPort: What and Where Pathways for Robotic
Manipulation (Shridhar et al.)

B = e e £
-yt N By

“align the rope from back “pack the hexagon “put the gray letter Ein the “put the blue blocks “pack all the yellow and blue
nght comer to back left corner” in the brown box” left letter E shape hole” in a green bowd* blocks in the brown box*
-~ ] T
@ | W
“pack the yoshi figure “pack af the blue and black sneaker “put the brown block “push the pile of purple blocks “move the red ring

in the brown box* objects in the brown box* on the blue and red blocks® into the green square® to the maddie of the stand™

e & 9

a

“pick all the cherries “pack the scissors “move the rook “fold the doth “sweep the beans

and put them in the box” in the brown box” one block forward* in haf” into the blue zone"
Figure 1. L Conditioned Manipulation Tasks: CLIPORT is a broad framework applicable to a wide range of language-conditioned

manipulation tasks in tabletop settings. We conduct large-scale experiments in Ravens [2] on 10 simulated tasks (a-j) with 1000s of unique

instances per task. See Appendix A for challenges pertaining to each task. CLIPORT can even learn one multi-task model for all 10 tasks that

achieves better or comparable performance to single-task models. Similarly, we demonstrate our approach on a Franka Panda manipulator with
Source: https://cliport.github.io/ one multi-task model for 9 real-world tasks (k-o; only 5 shown) trained with just 179 image-action pairs.
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CLIPort: What and Where Pathways for Robotic
Manipulation (Shridhar et al.)

Motivation

1. End-to-end networks can learn dexterous skills that require precise spatial reasoning, but
methods fail to generalize to new goals or quickie learn transferable concepts across tasks

2. Great progress in learning generalizable semantic representations for vision and language
by training on large-scale internet data, but they lack spatial understanding

CLIPort is a two-stream architecture with semantic and spatial pathways for vision-based
manipulation; a language-conditioned imitation-learning agent that combines the broad semantic
understanding of CLIP with the spatial precision of TransporterNets.

Outcome: solve variety of language-specified tabletop tasks without any explicit representations
of object poses, instance segmentations (e.g. “fold the cloth in half’, what is fold?)

Source: https:/cliport.github.io/


https://cliport.github.io/

CLIPort: What and Where Pathways for Robotic
Manipulation (Shridhar et al.)

Two-Stream Architecture

{ +++-> FCDownsampling &Tiling - @ Multiply ® 1x1 Conv Fusion ® Add for Pick| 1x1 Conv for Place -+ Softmax for Pick | Cross-Correlation & Softmax for Place |

= T h e U SeS a CLIP ResNet50 (Frozen) skip connections
v ! l
— >

pre-trained CLIP model to encode I I

| ] r==n
0 B B e
i - '_>| ] [} 1
I [ ' ] [ | ) .
[} 1 b= —a
[

Semantic
Ventral

RGB and language-goal input P L T
- CLIP is trained with large amounts of RGB - e
image-caption pairs from the internet: s , Fewerfoe] Affardaries
) ) “pack all the blue and yellow | § I . A HxWx1
acts as a powerful semantic prior for y boesinthebrommbor” ) EESISSSSES 1024
grounding visual concepts such as
colors, shapes, parts, texts, and object £ 3 l
. a o [
categories <

- The spatial stream is a tabula rasa
fully-convolutional network that
encodes RGB-D (depth) input

RGB-D Transporter ResNet (Untrained)
HxWx4

Dense Features
HxWxd

Source: https:/cliport.github.io/
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CLIPort: What and Where Pathways for Robotic
Manipulation (Shridhar et al.)

Transporter Networks (https://transporternets.github.io/)

a b C
A . - ‘
v v

G

Figure 3. In this setting (a) where the task is to pick up the red block with an immobilizing grasp (e.g., suction) and place it into the fixture, the goal of
Transporter Networks is to recover the distribution of successful picks (b), and distribution of successful placements (c¢) conditioned on a sampled pick.
For pick-conditioned placing (c), deep feature template matching occurs with a local crop around the sampled pick as the exemplar. Rotations of the
crop around the pick are used to decode the best placing rotation. Our method preserves rotation and translation equivariance for efficient learning.

Source: https://cliport.github.io/
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CLIPort: What and Where Pathways for Robotic
Manipulation (Shridhar et al.)

Source: https:/cliport.github.io/

The two-stream architecture is used in all three networks of
Transporter Networks to predict and pick and place affordances at
each timestamp.

The TransporterNet first attends to a local region to decide where
to pick, then computes a placement location by finding the best
match for the picked region through cross-correlation of deep
visual features.

- This structure serves as a powerful inductive bias for learning
roto-translationally equivariant representations in tabletop
environments.
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CLIPort: What and Where Pathways for Robotic
Manipulation (Shridhar et al.)

Affordance Predictions

Examples of pick and place affordance predictions from multi-task CLIPort models

“pack all the yellow and blue p tth e green letter R sha p p ck the white ta| p sunfold the cloth” “sweep the beans
blocks into the brown box” ght R shape hole” n the brown box Y into the yellow zone”

= t=1 t=1
BAVAER 8

Source: https:/cliport.github.io/
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Language Models are Few-Shot Learners (Brown et al.)

Architecture: A decoder-only transformer model (similar to its predecessor GPT-2), with alternating dense
and locally banded sparse attention patterns used in the layers of the Transformer (similar to the
SparseTransformer)

Dataset: CommonCrawl (410B)++

- CommonCrawl data is downloaded and filtered based on similarity to a range of high-quality
reference corpora

- Fuzzy deduplication is performed at the document level

- Known high-quality reference corpora are added to the training mix to augment CommonCrawl! and
increase its diversity: WebText2 (19B), Books1 (12B), Books2 (55B), English Wikipedia (3B)

Pretraining task: (G)enerative (PT) is a technique that involves training a language model on a large
corpus of text data in an unsupervised manner (self-supervised), where the primary goal is to generate
text that closely resembles human-written text by predicting the next word in a given sequence.

Source: https://sh-tsang.medium.com/review-gpt-3-language-models-are-few-shot-learners-ff3e63da944d
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Language Models are Few-Shot Learners (Brown et al.

The three settings we explore for in-context learning Traditional fine-tuning (not used for GPT-3)
. .
The GPT-3 model is task tic:
e odel IS tasK-agnostiC.
The model predicts the answer given only a natural language The model is trained via repeated gradient updates using a
description of the task. No gradient updates are performed. large corpus of example tasks. r t k . t h f
Translate English to French: task description sea otter => loutre de mer example #1 p y

(one- or few-shot) or no examples
one-shot BRI e (zero-shot)

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer example
lush giraffe => girafe peluch example #N
cheese => prompt pUsitg e grralaipe uehe P
Few-shot
cheese => prompt

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Source: https://sh-tsang.medium.com/review-gpt-3-language-models-are-few-shot-learners-ff3e63da944d
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Code as Policies: Language Model Programs for
Embodied Control (Liang et al.)

How can robots perform a wide-variety of tasks specified by language?

Source: https://code-as-policies.github.io/
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Code as Policies: Language Model Programs for
Embodied Control (Liang et al.)

Motivation: recent works have shown success with using large language models (LLMs)
to plan robot tasks, where the input is a natural language description of the task, and the
output is a natural language description of a sequence of sKkills the robot needs to
execute in order to complete the task

Research question: can robots leverage LLMs beyond high-level planning to also
perform low-level reasoning and control?

Approach: use a code-writing language model that, when prompted with hints (i.e.
import statements that inform which APls are available) and examples
(instruction-to-code pairs that present few-shot ‘demonstrations’ on how instructions
should be converted into code), writes new code for new instructions, i.e. hierarchical
code generation.

Source: https://code-as-policies.qithub.io/ , https://blog.research.google/2022/11/robots-that-write-their-own-code.html
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Code as Policies: Language Model Programs for

Embodied Control (Liang et al.)

@ Stack the blocks on the empty bowl.

Source: https://code-as-policies.github.io/

Language

Proposal: Language Model Programs to Generate

Code as Policies

Benefits

- Expressive inputs and outputs
- Solve tasks with few-shot prompting and

zero-shot training

- Improved generalization to unseen tasks

Perception
Perception Description Task Perception API
l l Description l
Policy Planner l Code
s : Large Large
Task  — [OGX U H Task —| 1 L iy
SN Y Model Model
Action Action Action API
Description
Learn Robot Policies Use LLMs to plan Ours: L::;:tl-::wosdteo write
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Self-Supervised Visual
Learning



A Simple Framework for Contrastive Learning of Visual
Representations (Chen et al.)

Self-supervised learning: model learns to supervise itself; we augment a single datapoint and let the
model learn that these data points contain the same information, thus leading the model to learn a
similar latent representation for the same objects

- This leads to the model learning a similar latent representation (an output vector) for the same objects
- Data augmentation in SimCLR: create pairs of images to learn the similarity from by applying
augmentations or transformations to a single datapoint

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Source: https://towardsdatascience.com/paper-explained-a-simple-framework-for-contrastive-learning-of-visual-representations-6a2a63bfa703
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A Simple Framework for Contrastive Learning of Visual
Representations (Chen et al.)

Learning image similarity with SImCLR

1. After augmenting the image, you have a positive pair (both
augmented images contains the same object)

2. Pass the pair to a CNN to create a feature representation for
each image (ResNet was used)
EICET  CCCEErepresentation (CBCTE — [CCECEC] 3. Output is passed to a projection head for further processing

(MLP with one hidden layer; only used during training and
refining feature representation of input images)
4. Learning goal: maximize agreement between different

augmentations of the same image

a. Contrastive learning: minimize the distance between images that contain
the same object and maximize the distance between images that contain
vastly different objects

b. NT-Xent loss: normalized temperature-scaled cross entropy loss; different
examples are weighted effectively allowing the model to learn much more
effectively from vector representations that are far away from each other
even though their origin is the same image (hard negatives); achieves an
attraction of similar images

Source: https://towardsdatascience.com/paper-explained-a-simple-framework-for-contrastive-learning-of-visual-representations-6a2a63bfa703
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A Simple Framework for Contrastive Learning of Visual
Representations (Chen et al.)

Maximize agreement

Z; zZj
Goal: learn a good latent representation for some gw Ig(.)
i m ag es hi +— Representation —> h;
Process 70) ()
- X and X, are augmented images, if they are the > -
same we want to maximize similarity, if not we want e L
to minimize similarity
Figure 2. A simple fi work fi trastive I i f visual
- Pass them through the f network to get our represeniations, T separste dais angmentation gperators are
|ntermed|ate representatlon and then paSS the sampled from the same family of augmentations (t ~ 7 and

t' ~ T) and applied to each data example to obtain two correlated

results through the g network so we can compare  views. A base encoder network /() and a projection head ()

th are trained to maximize agreement using a contrastive loss. After
em training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.

Source: https://towardsdatascience.com/paper-explained-a-simple-framework-for-contrastive-learning-of-visual-representations-6a2a63bfa703
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A Simple Framework for Contrastive Learning of Visual
Representations (Chen et al.)

Maximize agreement

Why are we projecting for what seems like no %

reason? f‘g @g)

x t"ﬂ

Source: https://towardsdatascience.com/paper-explained-a-simple-framework-for-contrastive-learning-of-visual-representations-6a2a63bfa703
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A Simple Framework for Contrastive Learning of Visual
Representations (Chen et al.)

Maximize agreement

Why are we projecting for what seems like no %
reason? £0)

“We conjecture that the importance of using the
representation before the nonlinear projection is
due to loss of information induced by the

contrastive loss.” What to predict? Random guess Rzprese“;t}i‘;“
) ) ] ] Color. vs grayscale 80 99.3 97.4
“To verify this hypothesis, we conduct experiments G0 e 2 L e
that use either h or g(h) to learn to predict the Orig vwiobelflered 0 %00 50
. . . . ” Table 3. Accuracy of training additional MLPs on different repre-
tra n SfO rm at| on a p pl |ed d urin g th e p I’etra NN g . sentations to predict the transformation applied. Other than crop

and color augmentation, we additionally and independently add
rotation (one of {0°,90°,180°,270°}), Gaussian noise, and So-
bel filtering transformation during the pretraining for the last three
rows. Both h and g(h) are of the same dimensionality, i.e. 2048.

Source: https://towardsdatascience.com/paper-explained-a-simple-framework-for-contrastive-learning-of-visual-representations-6a2a63bfa703
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CURL.: Contrastive Unsupervised Representations for
Reinforcement Learning (Srinivas et al.)

/ O\Ok

Motivation: RL is becoming limited by the amount of data that is present in

simulated words |
Proposed solution: improve the efficiency of RL techniques that operate in Encoder Momentum Encoder
extremely high dimensional spaces, ultimately allowing RL methods to simulate a a=£,) k = fy(0)
more realistic world O =m6, + (1 —m)o,
Methodology k

4

- Collect transitions and store in a replay buffer (e.g. videos used to train RL Reinforcement
. 5 ontrastive LOSS
algorithm to play a game) Learning

- For each transition, do data augmentation to produce a key and query

.\

- Encode key and query through 2 separate encoders which feed it to an // Regoy bl
unsupervised algorithm, while only key encoder feeds them to the RL %
algorithm : :
- Use multitask learning to structure the loss function and learn mapping from ..
high dimensional stack of image frames into a lower-dimensional o g
representation '- i, \ g
A 8 4

Source: https://www.youtube.com/watch?v=-Drowt9r4zY , https://towardsdatascience.com/openai-curl-reinforcement-learning-meets-unsupervised-learning-b038897daa30
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CURL.: Contrastive Unsupervised Representations for
Reinforcement Learning (Srinivas et al.)

o
Same idea as SIMCLR, of using contrastive loss on Oq‘/ \Ok
augmented data. ! |
Encoder Momentum Encoder
But this we use a stack of sequential frames from our { ¢ =35t } { k=100 }
environment and we are learning latent representations " = H0L ~

to increase sample efficiency.

q k
: : . 7N 4
We are also using an exponentially weighted encoder
instead of two of the same encoder, similar to how some e

RL calculates its target.

Source: https://www.youtube.com/watch?v=-Drowt9r4zY
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Simple but Effective: CLIP Embeddings for Embodied Al
(Khandelwal et al.)

Embodied Al: agents are trained to solve tasks in physical and simulated environments

- Learn to interact in their environments given sensor inputs (e.g. walking around a scene
based on what it sees with the camera)

Point Navigation Object Navigation

Environment

I

—_—

Act

Visual encoder MOdE' I

(RNN, ResNet)
—| P41

Source: https://www.youtube.com/watch?v=bnzgmlILePxw
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Simple but Effective: CLIP Embeddings for Embodied Al
(Khandelwal et al.)

Methodology: conduct a series of experiments, train baseline agents using dd-ppl with frozen
ImageNet-pretrained ResNet-50 encoders and compare them against frozen ResNet-50 CLIP
encoders

- Compare the models across four experiments covering three different navigational tasks
and across two simulators (THOR and Habitat)

Environment

e~ . T
Sy Act
% Model |

ht+1

Source: https://www.youtube.com/watch?v=bnzgmlILePxw
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Simple but Effective: CLIP Embeddings for Embodied Al
(Khandelwal et al.)

Why are CLIP representations much better than ImageNet representations?

- Conduct linear probing experiments measuring how well their visual representations encode
the following semantic primitives:

Reachability

Free Space

8 Newspaper, Bread,
4d e ) Newspaper Bread Coffee Credit card, Mug, ...
X Bread not reachable Bread reachable machine

(a) (b) (c)

- CLIP encodes all four of these primitives more effectively!

Source: https://www.youtube.com/watch?v=bnzgmlILePxw
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