Quiz 3 Review
Part 1



Part 1 of Quiz 3 Review

Lectures #18-22

A little more MBRL

|deas for Intelligent Exploration
Offline RL
Sim2Real Transfer

= Part 2 next week will cover the rest of the scope



Some more MBRL



Variational Autoencoders (VAE)

neural network

neural network
decoder

encoder

=

Can also condition
the decoder on
other variables
(conditional VAE)

Smile: H—/LH
1 o 1

Skin tone: «—A—»
1 0 1

Gender: H—A%—b

Check out encotes o ‘
- Slides for loss derivation ‘ on “J
- “Tutorial on Variational I | G
Autoencoders” AL

Latent attributes


https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908

Dreamer

(a) Learn dynamics from experience (b) Learn behavior in imagination (c) Act in the environment

Algorithm 1: Dreamer

Initialize dataset D with .S random seed episodes. Model components
Initialize neural network parameters 6, ¢, 1) randomly. Representation pg(s¢ | St-1, at-1,0t)
whi:‘e not Zonverged do Lca Transition ao(se | Se.1,ae1)
Learn a model of o updgie siepe = 1.0 60 Reward gs(re | 51)
B // Dynamics learning Action qs(ar | st
the environment grawB datadselquences {(at,o(t,rtl)}f:lf‘ ~ D. ) Value vy (st)
H ompute model states sy ~ pg(St | S¢—1,0¢—-1,0¢).
(pred ict next State) L | Update 6 using representation learning. Hyper parameters
. . Seed episodes S
// Behavior learning .
; ; ; t+H Collect interval C
Imagine trajectories {(s,,a,)};; from each s. .
. : Batch size B
Train on Predict rewards E (go (- | s,)) and values vy (s.).
> : ; : Sequence length L
. . Compute value estimates V »(s,) via Equation 6. TR iy =
|mag|ned Update ¢ « ¢ + oV, Et;;tf Va(ss). maglfxatlon orizon
. . I trH 1 o Learning rate o
trajectories! Update ¢ ¢ % — aVy 375 §|vs(sr)-Vaso) ™

// Environment interaction
01 ¢ env.reset ()

Act in the environment for time step t = 1..T do
Compute s; ~ pg(s¢ | S¢—1, at—1, 0¢) from history.
to get more - Compute a; ~ g4 (a; | s¢) with the action model.
. Add explorati i ion.
observations for step 1 e

Add experience to dataset D < D U {(o¢, at, 7)., }.




Discrete variables better capture multi-modal distributions

DREAMER v2

Categorical Latent Dynamics Gaussian Latent Dynamics
”
M M d]:l]lﬂ:ﬂ:lﬂ . i <
Model Ideal
Model Ideal |:| | ’ . Prediction Prediction \ ‘
Prediction Prediction . Possible Next

Images

=

Possible Next
Images



Intelligent Exploration



Curiosity-driven exploration

eEnsembles of Q functions: modeling uncertainty of Q values

e State counting: the lower the count of the state the higher the
exploration bonus

eModel prediction error: the higher the prediction error the higher
the curiosity

eReachability: the least reachable a state from a set of already
reached states in my memory, the higher the exploration bonus

eNon-parametric memory of states and their transitions
(reachability) of one to the other. Explore by maximizing coverage.



Exploration via modeling uncertainty of Q function .,
distribution
1. Bayesian neural networks. Estimate posteriors for the neurzil/ itself (difficult)
weights, as opposed to point estimates. We just saw that..
2. Neural network ensembles. Train multiple Q-function
approximations each on using different subset of the data. A
reasonable approximation to 1.
3. Neural network ensembles with shared backbone. Only the heads
are trained with different subset of the data. A reasonable
approximation to 2 with less computation.

Head
= m

=

4. Ensembling by dropout. Randomly mask-out (zero out)neural
network weights, to create different neural nets, both at train and test
time. reasonable approximation to 2.



Exploration via modeling uncertainty of Q function

With ensembles we achieve similar things as with Bayesian nets:

The entropy of predictions of the network (obtained by sampling

different heads) is high in the no data regime. Thus, Q function values will
have high entropy there and encourage exploration.

When Q values have , i exploit, i do not explore.



State counting

State Counting with DeepHashing

» We count states (images) but not in pixel space, but in latent
compressed space.

« Compress s into a latent code, then count occurrences of the code.

» How do we get the image encoding? E.g, using autoencoders.

96 x 10 x 10
96 x 24 x 24

» Note: There is no guarantee such reconstruction loss will capture
the important things that make two states to be similar or not policy

wise..

1 xX52x52 64x52x52

Map a state to a hash code, then count up
states visited with that hash code.
Encourage visiting states with low count

hash codes

R'(s,a,s") = r(s,a,s") + B'(P(s))

extrinsic intrinsic

Exploration A Study of Count-Based Exploration for Deep Reinforcement Learning,Tang et al.



Prediction error

Learning Visual Dynamics

Exploration reward bonus 3'(s, a, s") = ||T(E(s; ¢), a; 0) — E(s"; )|

_ wo » I Limitation of Prediction Error as Bonus

T(E(s: ¢):0)

‘ e Agent will be rewarded even though the model cannot improve.
a @y

min. | TCE(s ¢).:0) = B Il + IInv(ECs: ). EGs: ) w) e The agent is attracted forever in the most noisy states, with

unpredictable outcomes.
B ) g e If we give the agent a TV and a remote, it becomes a couch potato!

e Let’s couple forward and inverse models (to avoid the trivial
solution)
« ...then we will only predict things that the agent can control

Curiosity driven exploration with self-supervised prediction, Pathak

Curiosity driven exploration with self-supervised prediction, Pathak et al.
Large-scale study of Curiosity-Driven Learning, Burda et al.



Reachabillity - episodic curiosity through reachability

-9
\ ®
N .\\ r.
non-parametric memory structure 2oy -
SRR
Far from memory —

| Reachable from memory takes > k steps to reach
in < k steps (not novel) (novel)

comparator network { /
trained with temporal :
contrastive learning { =

Comparator

\ / network RS T a,
Embedding / S
network 4 L ’
0y

Reachability network

5,”,,,(0.0*. 07) = ||E(o, ) — E(o™, || + max(0,y — ||E(o, ¢) — E(o~, )|

At each time step the agent compares the current observation with the ones in
memory. If it is novel (takes more steps to reach than a threshold) then agent
get rewarded, and the novel observation is added into memory.

e We will be using augmented rewards as before
R'(s,a,s") = r(s,a,s’) + B'(s, M) ,where M is a non-parametric

extrinsic intrinsic
memory structure populated with embeddings of past image observations.

¢ Curiosity reward will use a comparator neural net, that takes as input two
images and predicts whether they are close (few actions apart) or far

e We will plug those rewards into PPO, a model-free RL method

1

1
Current
embedding § ‘
A [}
! °
|
‘ — ° °
| S f ™Y Reward
o bonus
Ci t
Pt Embedding 7 \ ®
rvation
network S
5 Comparator Reachability Reward
network buffer bonus
estimation
Memorfbuffer e

Append to memory if large curiosity reward



Go-Explore: a New Approach for Hard-Exploration Problems

1. Intrinsic reward (green) is distributed 2. An IM algorithm might start by exploring

Fa i | ures Of |ntr| n SiC mot|vatio n Stem from tWO issues: throughout the environment (purple) a nearby area with intrinsic reward

Detachment is the idea that an agent driven by || El Ll IE I@

intrinsic motivation could become detached from the

fro n‘tiers Of hig h in‘trinsic reward (I R) . 3. By chance, it may explore 4. Exploration fails to rediscover

another equally profitable area promising areas it has detached from

o] Bl

a. Once IR is obtained, the agent will not
remember how to get back to that location

(catastrophic forgetting)

b.  The Go-Explore algorithm addresses detachment
by explicitly storing an archive of promising
states visited so that they can then be revisited
and explored from later.

Derailment can occur when an agent has discovered a promising state and it would be beneficial to return
to that state and explore from it.
a. IR causes agents to not want to return to those states to explore from there

b.  To address derailment, an insight in Go-Explore is that effective exploration can be decomposed into first returning to a promising
state (without intentionally adding any exploration) before then exploring further.



Go-explore

Phase 1: explore until solved Phase 2: robustify

(if necessary)
Select stgte Goto state Explore
from state

Figure 2: A high-level overview of the Go-Explore algorithm.

Run imitation learning

Update

archive on best trajectory

1. PhaseT
a. (deterministic) Go to state in archive, then explore randomly, update archive with
shortest path to that state -> replace existing if path got higher score or shorter path
with same score
b. Sparsify states by downsampling image and use this for determining “same states”
2. Phase?2
a. Run L on best trajectories from phase 1 to make policy more “robust”



Learning Montezuma’s Revenge from a Single
Demonstration

- RL is very sample inefficient especially
in sparse reward settings (may never
reach the reward)

- IL also requires many demos to do well

- This paper: learn from single demo in
sparse reward setting by backtracking a
small amount from the reward. Do this
iteratively until at starting state.




Offline RL



Offline RL Setting

a.k.a batch RL (fixed batch of data to train policy with)

(a) online reinforcement learning  (b) off-policy reinforcement learning (c) offline reinforcement learning

{(si, i}, mi)}r !
I

rollout data {(si, ai,s,7i)} rollout data {(Si,a;. s, ;)

}
er

datacollected oNCe e= == == == = I
with any policy training phase



Offline RL Setting - naive off-policy methods do not work

= Off-Policy DDPG = Behavioral -~ True Value Off_pollcy DDPG doesnt |earn good
3500 3500 3500 behaviors
€ 3000 3000 3000
e
- 2500 f ™\ 2500 2500 .
b A WO\, o0 A MAYNA 2000 The Difference?
%‘5‘” / . = / o 1. Agent orange: Interacted with the environment.
“>) 1000 | 1000 / 1000 « Standard RL loop.
< 500 / 500 w’ 500 * Collect data, store data in buffer, train, repeat.
0 0 0
00 02 04 06 08 1.0 00 02 04 06 08 10 0.0 0.1 0.2 03
Time steps (1e6) Time steps (1e6) Time steps (1e6) 2. Agent blue: Never interacted with the environment.
g - » . * Trained with data collected by agent orange concurrently.
(a) Final buffer (b) Concurrent (¢) Imitation
performance performance perf()l'mance Why model-free RL does not work with fixed experience
buffers?
! ! Extrapolation error:
«—
Q (S’ a) r + )/Q S ) a ) The Q-function trained from a fixed experience buffer has no way of
I I I knowing whether the actions not contained in the buffer are better or
worse.

GIVEN GENERATED



One Solution: Batch Constrained Q-learning (BCQ)

BCQ learns a policy with a similar state-action visitation to the datain the batch

Q(s,a) « (l—a)Q(s,a)+a(7‘+va,s.t}(§&a§)€3Q(S’,a’))-

Train a generative model to provide action samples that match the action
samples in the batch:

TI"(S) = argmax Q0(31 a; . £¢(3? a;, (I)))s
al'+’£m(s.-anq")

{a; ~ GUENY,.

A state conditioned generative model that predicts actions giver
a state that are contained in the batch B



IRIS: Implicit Reinforcement without Interaction at Scale
for Learning Control from Offline Robot Manipulation
Data

Demonstrations oal S on
Mechan

Challenges from Large Scale Demo Datasets: Getar = Tim Gear 155) 6 = {5 Dy(s)l"
- Diversity (each behavior has diverse solutions) . 5= maxv(s,)
- Suboptimality (make mistakes, etc.) ) ——
Decompose into subgoals

- The IRIS algorithm uses a high-level mechanism %

and a low-level controller to make decisions. . N

. . « ACVAE that generates all possible subgoal states reachable within T steps
- The high-level mechanism selects a new goal froms,
. « Atask specific value function that scores subgoals trained with batch-

state that is held constant for the next T constrained Q learning.

timesteps, while the low-level controller is Acting at test time

conditioned on this goal state to try and reach it. | coesia
- cVAE generates set of goal proposals, value

function evaluates them - select goal with
highest value

T-step
Goal-Conditioned
Imitation

Asubgoal is proposed+selected every T timesteps, that the low level policy
ies to achieve. Repeat.



Sim2Real Transfer



Domain Randomization for Transferring Deep Neural
Networks from Simulation to the Real World, Tobin et al

A. Domain randomization

The purpose of domain randomization is to provide
enough simulated variability at training time such that at
test time the model is able to generalize to real-world data.
We randomize the following aspects of the domain for each
sample used during training:

Number and shape of distractor objects on the table
Position and texture of all objects on the table
Textures of the table, floor, skybox, and robot
Position, orientation, and field of view of the camera
Number of lights in the scene

Position, orientation, and specular characteristics of the
lights

Type and amount of random noise added to images



Solving Rubik’s Cube with a Robot Hand

Train in Simulation

ADR: 1. gradually expand training environments
(curriculum), 2. Removes need for manual domain
randomization -> expansion based on performance

Update Sample Evaluate
Distribution Environment Performance
3
Transfer to the Real World
Generate Data Optimize Model

Y
e
b . L




Driving Policy Transfer via Modularity and

Abstraction

Pixels to steering wheel mapping is not SIM2REAL transferable: image textures and car dynamics mismatch

i (1], ®

Control

u

Instead: label maps to waypoint mapping is better SIM2REAL transferable: label maps and waypoints are similar
across SIM and REAL. A low-level controller will take the car from waypoint to waypoint in the real world

Perception module Driving policy

Controller
“ @ﬁ‘ﬁﬂ@ e 0| | @
G- LoD Y —
Image Segmentatnon Waypoints 03“)
i Commandc W

Results: Train/Test

Weather | Weather 2

Town |

Town 2

We train policies via behaviour cloning (standard regression loss) in Town1/ Weather1 dataset, and evaluate them on
all four.



Learn to Walk in Simulation

* Trained only on _ RN ¢
this terrain =" 4 N - ! Mass .7 '
(in simulation) i\ ; ' COM B ] '
‘ - Friction nvironmental ..IL 7|
. ; | : ) Terrain Height Factor Encoder . 1
* Rapidly adapts - ' Motor Strength \ "
t(.) new ve Physics Simulation
situations :

e Important: Reward Function XtrinSiCS

minimizes work and ground
impact (Biomechanics gnd
Energetics)

A0



How can we deploy it?

.
x(t), alt-1)

.
My ol
en 0y
[Environmental Factor _" 7| E=shal e -
Terrain Height Encoder a " p
Motor Strength A ’

U

Friction

During Deployment

ku Unknovv‘n‘ Extrinsics
navailable

Key Insight — Extrinsics from Observation
History

s |
7
Wl | “
4 |z[#»| Base poicy s
[
vy "
A ;
g During Deployment
timate Online

e Discrepancy b/w expected movement and actual
measured movement

e Continuously estimate these extrinsics online

Test Time

v
x(t), alt-1)

Base Policy

During Deployment

Training Summary

—>
Base Policy |---1
d g :

x(t), a(t-1)
——

Mass

COM
Friction
Terrain Height

Encoder

PP

Motor Strength 7
| ]
n

n at

Renress = s

X(t-50), a(t-50) - : — )
: Adaptation | _, z Base Policy |-+ Physics, Simulation
Module

x(t-1), a(t-1)

*Trainable Modules in Red



