
Quiz 1 Recitation



Topics (Lectures 1-8):
1. Introduction to Reinforcement and Representation Learning
2. Multi-Arm Bandits
3. MDPs, Value and Policy Iteration
4. Monte Carlo Learning, Temporal Difference Learning, Monte Carlo 

Tree Search
5. Function Approximation, Deep Q learning
6. Policy gradients, REINFORCE, Actor-Critic methods

***Note this is not an exhaustive list. Anything covered in lectures in 
fair game. 



Bandits

● You have one state with k actions
● Each action gets you a reward
● Want to maximize reward in least amount of time

○ How to sample actions to do this efficiently?

Greedy action:



Epsilon-greedy bandits



Upper confidence bound

● the square-root term is a measure of the uncertainty or variance in the estimate of a’s 
value

● As Nt(a) increases the uncertainty term decreases. 
● On the other hand, each time an action other than a is selected, t increases but Nt(a) 

does not, causing the uncertainty to increase
● The use of the natural logarithm means that the increases get smaller over time, but 

are unbounded



Optimistic Initial Values

● Set initial Q values much higher than the reward
● Encourage some exploration initially
● Whichever actions are initially selected, the reward is less than the starting 

estimates; the learner switches to other actions, being “disappointed” with the 
rewards it is receiving. The result is that all actions are tried several times before 
the value estimates converge. The system does a fair amount of exploration 
even if greedy actions are selected all the time.



Gradient Bandit Algorithms



MDPs

State-value function:

Action-value function:

policy: * denotes optimal



Policy evaluation

● Find value function for a given policy
● Converges to unique true value function in limit
● In practice, use iterative policy evaluation (below) - stop when 

max delta below a threshold
● Can update value function “in place” or use two copies



Bellman Backup & Contraction Mapping Theorem

● value function v_pi is the unique 
solution to its Bellman equation.

● Bellman backup operator is 
gamma-contraction



Policy improvement

● Given value function for current policy, do one-step look-ahead 
and check if it is better to change policy to new action in each 
state

● Strictly improving except when policy is already optimal



Policy iteration



Value iteration

● Combine policy evaluation and policy iteration in each 
state sweep

● Effectively combines one sweep of policy evaluation and 
one sweep of policy improvement.

● Often much faster convergence than policy iteration



Monte Carlo
● We do not assume complete knowledge of the environment. 
● Monte Carlo methods require only experience—sample sequences of states, actions, and rewards 

from actual or simulated interaction with an environment.
● Average returns observed after visits to a state
● Does not depend on estimates of other states (no bootstrapping)
● Get rid of exploring starts: 

○ on-policy (e.g. epsilon greedy), 
○ off policy (i.e. importance sampling)



Temporal Difference 

● We do not assume complete knowledge of the environment. 
● TD methods require only experience—sample sequences of states, actions, and rewards from 

actual or simulated interaction with an environment.
● Bootstrap from estimates of other states
● Monte Carlo need to wait until end of episode, while TD(0) methods only need to wait one step
● On-policy (i.e. SARSA), off-policy (i.e. Q-learning)



Monte Carlo vs Temporal Difference 



Policy-Gradient Methods

- Value-based methods: learn a value function (an optimal value function leads to an optimal 
policy)

- Goal: minimize the loss between the predicted and target value
- Policy is implicit as it is generated directly from the value function (e.g. eps-greedy from Q-function)
- Examples: Monte Carlo, DQN, SARSA

- Policy-based methods: learn to approximate optimal policy directly (without learning a value 
function)

- Parameterize the policy, e.g. using a neural network
- Policy outputs a probability distribution over actions (stochastic policy)
- Goal: maximize the performance of the parameterized policy using gradient ascent
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REINFORCE: Algorithm

REINFORCE, or Monte Carlo policy-gradient, uses an estimated return from an entire 
episode to update the policy parameter θ.

In a loop,

1. Use the policy πθ to collect episode τ
2. Use the episode to estimate the gradient g = ∇θJ(θ)

3. Update the weights of the policy: θ ← θ + αg
18



REINFORCE - Baseline: Algorithm
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Advantage Actor Critic: Algorithm
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Policy-based methods, pros and cons

Pros

- We can estimate the policy directly without storing additional data
- Policy-gradient methods can learn a stochastic policy

- We don’t need to implement an exploration/exploitation trade-off by hand
- More effective in high-dimensional action spaces and continuous action spaces
- Better convergence properties

Cons

- Converges to a local maximum sometimes
- Slower, step-by-step: it can take longer to train (inefficient)
- Gradient estimate is very noisy: there is a possibility that the collected trajectory may not be 

representative of the policy
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Monte Carlo Tree Search

state

action

Until termination

Update 
values



Deep Q-Network



Big Picture Table

Method On/Off Policy? Bootstraps?

Monte Carlo Methods On* N

SARSA On* Y

Expected SARSA Either Y

Q-Learning Off Y

REINFORCE On* N

Actor Critic, A2C On* Y

* can be made off policy with importance sampling


