Quiz 1 Recitation

Topics (Lectures 1-8):

Introduction to Reinforcement and Representation Learning
Multi-Arm Bandits

MDPs, Value and Policy lteration

Monte Carlo Learning, Temporal Difference Learning, Monte Carlo
Tree Search

Function Approximation, Deep Q learning

Policy gradients, REINFORCE, Actor-Critic methods

BN =

o o

***Note this is not an exhaustive list. Anything covered in lectures in
fair game.

Bandits

e You have one state with k actions

e Each action gets you a reward

e \Want to maximize reward in least amount of time
o How to sample actions to do this efficiently?

. t—1
sum of rewards when a taken prior to ¢ Z R 1 A;=a

Qtla) = 3 :
(a) : Z

number of times a taken prior to ¢

Greedy action: 4, = argmax QQ¢(a).
a

Epsilon-greedy bandits

A simple bandit algorithm

Initialize, for a = 1 to k:

Q(a) + 0
N(a) <0

Loop forever:
argmax, Q(a) with probability 1 —e (breaking ties randomly)
A : : o
a random action with probability &
R + bandit(A)
N(A)«+ N(A)+1
Q(4) « Q(A) + wis [R — Q(4)]

Upper confidence bound

e the square-root term is a measure of the uncertainty or variance in the estimate of a’s
value

e As Nt(a) increases the uncertainty term decreases.

e On the other hand, each time an action other than a is selected, t increases but Nt(a)
does not, causing the uncertainty to increase

e The use of the natural logarithm means that the increases get smaller over time, but
are unbounded

Int
Ay = argmax |Q¢(a) + ¢y | ——
a i\"t((l)

Optimistic Initial Values

e Setinitial Q values much higher than the reward

e Encourage some exploration initially

e \Whichever actions are initially selected, the reward is less than the starting
estimates; the learner switches to other actions, being “disappointed” with the
rewards it is receiving. The result is that all actions are tried several times before
the value estimates converge. The system does a fair amount of exploration
even if greedy actions are selected all the time.

Gradient Bandit Algorithms

g . eH(a) .
PEL A== SE CHi(®) me(a),

Ht+1(At) — Ht(At) o Oz(Rt — Rt) (]. — TI't(At)), and
Ht+1(a,) = Ht((l) = Q(R,t — E’.t)m(a), for all a ?é At,

R; € R is the average of all the rewards

MDPs

A Finite Markov Decision Processis atuple (&8, &, T, r,7)
e & isafinite set of states

e o is afinite set of actions

e p isone step dynamics function

e risareward function

e y isadiscount factory € [0,1]
policy: 77((1 | 3) * denotes optimal gx(s,a) = I qr (s, a)

State-value function: vﬂ(s) — [E[Gt | St = 5]

Action-value function: q,(s,a) = E[G,|S, = s5,A, = a]

Policy evaluation

e Find value function for a given policy

e Converges to unique true value function in limit

e In practice, use iterative policy evaluation (below) - stop when
max delta below a threshold

e Can update value function “in place” or use two copies

Iterative Policy Evaluation, for estimating V =~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8, arbitrarily except that V (terminal) = 0

Loop:
A+0
Loop for each s € 8:
v+ V(s)
V(s) o m(als) y, p(s',75,0) [r + 7V (s")]
A +— max(A, |v —V(s)|)
until A < 6

Bellman Backup & Contraction Mapping Theorem

e value function v_pi is the unique Contractlon Mapplng TheOrem
solution to its Bellman equation.
. An operator F' on anormed vector space 2 isa y-contraction,
e Bellman backup operator is .)
_ forO < y < 1 providedforallx,y € X
gamma-contraction

I1F(x) = FO)Il < 7llx =yl

vk+1(8) = Ex[Ri+1 +Yvk(Se+1) | St=4] Theorem (Contraction mapping)
_ Z (als) Zp(sl’ r|s, a) [,,, s ,\/,,Uk(sl)]’ Fora y-contraction F inacomplete normed vector space 2
a slr

e [converges to a unique fixed point in

e Define the Bellman expectation backup operator « atalinear convergence rate y.

F'"(v) =r"+yT"v

Policy improvement

e Given value function for current policy, do one-step look-ahead
and check if it is better to change policy to new action in each
state

e Strictly improving except when policy is already optimal

3. Policy Improvement
policy-stable < true
For each s € 8:
old-action < m(s)
m(s) < argmax, > . p(s',r|s,a)[r +V (s')]
If old-action # w(s), then policy-stable < false
If policy-stable, then stop and return V = v, and 7 = m,; else go to 2

Policy iteration

Policy Iteration (using iterative policy evaluation) for estimating = ~ =,

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Loop:
A+0
Loop for each s € 8:
v+ V(s)
V(s) ¢ Sy, p(s's], 7(8)) [r + AV ()]
A + max(A, |v -V (s)|)
until A < @ (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable < true
For each s € 8:
old-action < 7 (s)
m(s) < argmax,), .p(s',7|s,a) [r+~V(s)]
If old-action # m(s), then policy-stable + false
If policy-stable, then stop and return V = v, and 7 = m,; else go to 2

Value iteration

e Combine policy evaluation and policy iteration in each
state sweep

e Effectively combines one sweep of policy evaluation and
one sweep of policy improvement.

e Often much faster convergence than policy iteration

Value Iteration, for estimating = ~ 7,

Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:

| A+0

| Loop for each s € 8:

| v+ V(s)

| V(s) < maxq) . .p(s',7]s,a) [r+~V(s)]

| A + max(A, v -V (s)|)

until A < 6

Output a deterministic policy, m = m,, such that
m(s) = argmaxgy Y . . p(s',7|s,a) [r + YV (s')]

Monte Carlo

e We do not assume complete knowledge of the environment.
e Monte Carlo methods require only experience—sample sequences of states, actions, and rewards
from actual or simulated interaction with an environment.
e Average returns observed after visits to a state
e Does not depend on estimates of other states (no bootstrapping)
e Get rid of exploring starts:
o on-policy (e.g. epsilon greedy),
o off policy (i.e. importance sampling)

First-visit MC prediction, for estimating V = v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € §
Returns(s) - an empty list, for all s € §

Loop forever (for each episode):
Generate an episode following 7: Sp, Ao, R1, 51, A1, Ra,. ..,
G+ 0
Loop for each step of episode, t =T —1,T—-2,..., 0:
G+ vG+ R
Unless S; appears in Sop, S1,...,St—1:
Append G to Returns(St)
V (St) + average(Returns(St))

St—_1,Ar—-1,Rr

Monte Carlo ES (Exploring Starts), for estimating 7 = 7.

Initialize:
7(s) € A(s) (arbitrarily), for all s € §
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) < empty list, for all s € 8, a € A(s)

Loop forever (for each episode):
Choose Sy € 8, Ag € A(Sp) randomly such that all pairs have probability > 0
Generate an episode from Sy, Ag, following 7: Sp, Ao, R1,...,S7—1,Ar_1, R
G0
Loop for each step of episode, t =T—1,T—-2,...,0:
G+ vG + Ry
Unless the pair S¢, Ay appears in Sp, Ao, S1, A1 ..., St—1,A¢—1:
Append G to Returns(S, A¢)
Q(St, Ar) + average(Returns(St, At))
7(S;) < argmax, Q(S¢, a)

I
!
!

Temporal Difference

e We do not assume complete knowledge of the environment.

e TD methods require only experience—sample sequences of states, actions, and rewards from

actual or simulated interaction with an environment.

e Bootstrap from estimates of other states

e Monte Carlo need to wait until end of episode, while TD(0) methods only need to wait one step

e On-policy (i.e. SARSA), off-policy (i.e. Q-learning)

V(S:) « V(S:) + [Rtﬂ L V(B — V(St)]

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size o € (0, 1]

Loop for each episode:

Initialize S

Loop for each step of episode:
A <+ action given by 7 for S
Take action A, observe R, S’
V(S) + V(S)+a[R+V(S)—V(9)]
S+ 5

until S is terminal

Initialize V(s), for all s € 8, arbitrarily except that V (terminal) =0

T
5

TD(0)

Monte Carlo vs Temporal Difference

Predicted
total
travel
time

actual outcome

40

actual
outcome

1 1 1 I I 1
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

T T T T T T
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

Policy-Gradient Methods

Estimate of the _ Search directly for
optimal action-value Value-Based Policy-Based the optimal policy
finction Methods Methods

Cross-Entropy

Monte Carlo
post 12

Sarsa

post 14

Methods

REINFORCE
post 19

Deep Q-Network

Estimate the best
post 15

weights by
gradient ascent

- Value-based methods: learn a value function (an optimal value function leads to an optimal
policy)
- Goal: minimize the loss between the predicted and target value
- Policy is implicit as it is generated directly from the value function (e.g. eps-greedy from Q-function)
- Examples: Monte Carlo, DQN, SARSA
- Policy-based methods: learn to approximate optimal policy directly (without learning a value
function)
- Parameterize the policy, e.g. using a neural network
- Policy outputs a probability distribution over actions (stochastic policy)
- Goal: maximize the performance of the parameterized policy using gradient ascent

17

REINFORCE: Algorithm

REINFORCE, or Monte Carlo policy-gradient, uses an estimated return from an entire
episode to update the policy parameter 6.

In a loop,

1. Use the policy 1, to collect episode T
2. Use the episode to estimate the gradient g = V 6J(0)

VeJ(0) ~ § = Vylogmy(ai|s))R()

t=0 Probability of theagentto Cumulative
select action at from state st return
given our policy

—
Direction of the steepest
increase
of the (log) probability of
selecting action at from
state st

3. Update the weights of the policy: 8 «— 8 + ag

18

REINFORCE - Baseline: Algorithm

Initialize policy parameter 6, baseline b
for iteration=1,2,--- do
Collect a set of trajectories by executing the current policy
At each timestep t in each trajectory 7/, compute
Return G/ = $°] =% rl,, and
Advantage estimate AL = G/ — b(s;).
Re-fit the baseline, by minimizing >, Y. ||b(s:) — G{||?,
Update the policy, using a policy gradient estimate g,
Which is a sum of terms Vy log 7r(at|st,0)/at.

19

Advantage Actor Critic: Algorithm

One-step Actor—Critic (episodic), for estimating mg ~ 7.

Input: a differentiable policy parameterization 7 (al|s,)
Input: a differentiable state-value function parameterization o(s,w)
Parameters: step sizes a® > 0, a™ > 0
Initialize policy parameter 0 € R?" and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I<+1
Loop while S is not terminal (for each time step):
A~m7(S,0)
Take action A, observe S, R
d < R+ ~0(S8",w) — 9(S,w) (if S’ is terminal, then 6(S’,w) = 0)

W W+ aViVo(S,w)
0+ 0+a°I15VIinT(A|S,0)
I+ ~I

S+ S

20

Policy-based methods, pros and cons

Pros

We can estimate the policy directly without storing additional data

Policy-gradient methods can learn a stochastic policy
- We don'’t need to implement an exploration/exploitation trade-off by hand

More effective in high-dimensional action spaces and continuous action spaces
Better convergence properties

Cons

Converges to a local maximum sometimes
Slower, step-by-step: it can take longer to train (inefficient)

Gradient estimate is very noisy: there is a possibility that the collected trajectory may not be
representative of the policy

21

Monte Carlo Tree Search

Repeat while time remains

L>Selection — Expansion — Simulation ——— Backup —J

=4 & 4 A

r A PN

|

Tree Rollout Update

Policy . ~ Policy values
Until termination |

X

Deep Q-Network

Algorithm 4 DQN

1:
2:
3:
4:
5
6
7
8:

9:
10:
11

12;

13:
14:
15:
16:
17:

procedure DQN
Initialize network Q. and Qiarger as a clone of Q.
Initialize replay buffer R and burn in with trajectories followed by random policy
Initialize c =0
repeat for F training episodes:
Initialize Sy
for t=0,1,..., 7T —1:
_ Jargmax, Q,(s;,a) with probability 1 — e
"~] Random action otherwise
Take a; and observe ry, Spy1
Store (4, a, T4, Stv1) i R
Sample minibatch of (s;, ai,Ts, Siv1)with size N from R
T Si+1 is terminal

Yi = :
i + Y maxX, Qrarget (Si+1,a) otherwise

Lw) = % 205 (4 — Qu(si,a))?

Update Q,, using Adam (V,L(w))

c=c+1

Replace Qiarget with current Q. if ¢ % 50 = 0
end procedure

Big Picture Table

Method On/Off Policy? Bootstraps?
Monte Carlo Methods On* N
SARSA On* Y
Expected SARSA Either Y
Q-Learning Off Y
REINFORCE On* N
Actor Critic, A2C On* Y

* can be made off policy with importance sampling

