
10-703 Recitation 3
MCTS, TD Learning, Deep Q Learning, REINFORCE, Actor Critic

 + Homework 2 stuff

Athiya Deviyani

1



Content

- Monte Carlo
- Temporal Difference and Q-Learning
- Deep Q-Learning
- Monte Carlo Tree Search
- REINFORCE
- Actor Critic
- Homework 2 Code Walkthrough
- Questions

2



Monte Carlo

3



Monte Carlo (MC): Approach

Collect samples from your environment (state, action, reward trajectories).

Rather than storing all the rewards, we can do incremental update which uses visit count and the 
previous value function.

Where the return G is the sum of the discounted rewards

At the end of the trajectory you update each of the states that youʼve encountered with the average 
return.

4



Monte Carlo (MC): Pseudocode

5

Aggregate backwards

You can do incremental update where you do one over n times the difference rather than holding all the returns in a list, use 
that as update rule.

How to generate policy from this? You will need Q-values by calculating the returns, and just do argmax of the Q



Monte Carlo vs. Dynamic Programming (Value/Policy Iteration)

6

Dynamic Programming (Value/Policy 
Iteration)

Monte Carlo Learning

Iterate through all of the states and update all of 
the states, which requires full knowledge of the 
reward function (the transition function and 
reward function)

Do a single trajectory, update all the states within 
that trajectory. It assumes that all the trajectories 
are episodic (terminates at time step T)

Biased estimate: one-step bootstrap Unbiased estimate: average over the returns, but 
higher variance



Monte Carlo vs. Dynamic Programming Backup Diagrams

7

Only goes down one layer and uses the value 
function from the next state to compute the value 
function of the current state, and it does this across 
the future states.

Goes all the way down the tree until the terminal 
state and only update states along this trajectory 
(does not consider multiple different possibilities)



Temporal Difference and Q-Learning

8



Temporal Difference Learning (TD Learning)

Monte Carlo requires episodic trajectories (termination), otherwise it wonʼt work! 
Additionally, if the trajectory is very long, using MC will require a lot of memory and 
computational resources.

New update rule:

+ Can learn before reaching a terminal state
+ Much more memory and computation-efficient than MC
- Using value in the target introduces bias

9

Replacement: use value function to approximate 
the sum of the future discounted return

If alpha is very small, 
it is actually 
equivalent to the 
1/N(S_t) 



TD Learning: Approach

- Monte Carlo learns at the end of each episode, TD Learning learns at each step, i.e. 
update V(St) at each step

- Since we havenʼt completed an episode, we donʼt have the expected return Gt, so 
we need to estimate it

- This estimation is called bootstrapping, because TD bases its update in part on an existing estimate 
V(St+1) and not a complete sample Gt

10



TD Learning: Pseudocode

11



TD Learning: N-step returns

Further develop TD to have N-step returns. Use exact return for N steps, and starting from step N+1, we 
use the value function to estimate the future returns. N-step TD learning will have less reliance on the 
value function. Unlike the original TD(0), the N-step TD will be much more stable.

12

Approximate with v

MC estimate

Less reliance on vN-step returns

TD(0) N-step returns

12



TD Learning: N-step returns example with N=2

13



Q-Learning: Off-policy TD Learning

Q-Learning is an off-policy value-based method that uses a TD approach to train its 
action-value (Q) function.

1-step Q-Learning update

- Key benefit: off-policy (the policy you are using to select the action is different from 
the policy you are ʻlearningʼ; on-policy methods attempt to evaluate or improve the 
policy that is used to make decisions)

- Only require state, action, reward, and next state drawn from the MDP
- Doesnʼt depend on the policy anywhere!
- Is foundation for many sample-efficient RL methods

14



Q-Learning: Pseudocode

16



Q-Learning: Approach

1. Initialize the Q-table for each state-action pair arbitrarily (e.g. set all of the values to 0)
2. Choose an action using the epsilon-greedy strategy

a. As training goes on, our estimates become better, so it is useful to progressively reduce the epsilon 
value (so we exploit more than we explore)

3. Perform action At, get reward Rt+1 and next state St+1
4. Update Q(St, At)

a. We update our policy or value function after one step of the interaction 
b. Produce the TD target by using the immediate reward Rt+1 plus the discounted value of the next state 

i. This is computed by finding the action that maximizes the current Q-function at the next state 
(we use a greedy policy to select the next best action)

17



Deep Q-Learning

18Source: https://huggingface.co/learn/deep-rl-course/unit3/deep-q-algorithm 

https://huggingface.co/learn/deep-rl-course/unit3/deep-q-algorithm


Deep Q-Learning: Overview

- In Q-learning, we directly update the Q-value of a state-action pair directly. If the state space and action 
space are too large, we can use a function approximator (neural network) to approximate the Q-values!

- In deep Q-learning, we create a loss function that compares our Q-value prediction and the Q-target and 
uses gradient descent to update the weights of our Deep Q-Network to approximate our Q-values better

19

Target value Prediction



Deep Q-Learning: Algorithm

Sampling: we perform 
actions and store the 
observed experience tuples 
in a replay memory

Training: select a small 
batch of tuples randomly and 
learn from this batch using a 
gradient descent update step

20



Deep Q-Learning: Limitations and Solutions

Because deep Q-learning combines a non-linear Q-value function (Neural network) with 
bootstrapping (when we update targets with existing estimates and not an actual 
complete return), it might suffer from instability.

To help us stabilize the training, we implement three different solutions:

1. Experience Replay to make more efficient use of experiences.
2. Fixed Q-Target to stabilize the training.
3. Double Deep Q-Learning, to handle the problem of the overestimation of Q-values.

21



Deep Deep Q-Learning: Experience Replay
Uses the experiences of the training more efficiently 
(we can use a replay buffer that saves experience 
samples that we can reuse during sampling)

- Agent can learn from the same experience 
multiple times!

Avoid forgetting previous experiences and reduce the 
correlation between experiences

- if we give sequential samples of experiences to 
our neural network is that it tends to forget the 
previous experiences as it gets new experiences

By randomly sampling experiences, we remove 
correlation in the observation sequences to avoid actin 
values from oscillating or diverging catastrophically.

22



Deep Q-Learning: Fixed Q-Target

- Problem: at every step of training, both our Q-values and target values shift 
(nonstationary targets)

- Where the most instability comes from
- Updating the network weights changes the target value, which requires more updates
- Unintended generalization to other states Sʼ can lead to error propagation

- Solution: use a separate network with fixed parameters to estimate the TD target 
and compy the parameters from our Deep Q-Network every c steps

- For c steps, the target network is fixed, after that you update the target network once and continue to 
update your value function for another c steps, repeat the process

- Network has more time to fit targets accurately before they change
- Slows down training, but not too many alternatives (recently: functional regularization)

24

Target value Prediction



Deep Q-Learning: Fixed Q-Target

25



Monte Carlo Tree Search

27



Monte Carlo Tree Search: Background Motivation

Problem: Large State-Action Space

- Trying to estimate the value at every state (solving the full MDP) is often infeasible

- MC and TD still try to estimate Q/V value function for every state or state-action visited
- Too much memory for tabular (e.g. for chess, this would be 10^48 states)
- Neural Network may be undefined at unseen states, and ʻsimilarʼ states may have completely different values 

and optimal paths (TD and MC rely on the fact that every state and every action has been visited)
28



Monte Carlo Tree Search: Definitions

- Planning: any computational process that uses a model to create or improve a 
policy

- Given a model environment, come up with the best policy

- Online planning: unroll the model of the environment forward in time to select 
the right action sequences to achieve your goal

- On the fly, while youʼre playing the game youʼre in a particular state, you use the knowledge of the 
model of the environment model to unroll it forward and evaluate all possible alternatives

- Limited by resources

29



Monte Carlo Tree Search: vs. Online Planning

30

Online planning

- Use internal model to simulate trajectories at 
current state, find the best one

- Problems: curse of dimensionality
- Too many actions possible: large tree branching 

factor
- Too many steps: large tree depth

MCTS

- Only estimate value function for relevant part 
of state space

- Consider only part of the full MDP at a given 
step



Monte Carlo Tree Search: Overview

31

Tree: stores Q-values for only a subset of all state-actions (stores Q-values for those)
MC-method: require episode termination to update values

state

action

Until 
termination

Update 
values



Monte Carlo Tree Search: Selection

32

Given: current state of agent (root node), empty or existing tree 
with Q-values

Steps

Where UCB_sample is 

Keep doing UCB repeatedly until you reach frontier of the tree 
(unexplored state). For every state we bookkeep the number of 
visits and wins.

“Children” here refers to 
actions, so in this step we look 
at possible actions from the 
current state

Inside the search tree



Monte Carlo Tree Search: Expansion

33

Given: a new state s not part of the tree (state that you have not 
seen before; unexpanded child)

Steps

- Based on some rule (e.g. state < max depth), possibly add 
this new state to the tree

- Take random action (since no Q-values are available), 
receive reward r if available

- Calculate return, G = Simulation(s, a)
- Store Q(s, a) = gamma*G + r
- Return gamma*G + r to propagate return to parent node

Inside the search tree



Monte Carlo Tree Search: Simulation

34

Given: a new state s not part of the tree

Steps:

- If state is terminal, return reward
- Else, use a very fast policy to determine action a to take

- Most commonly used policy: random policy

- G = Simulation(s, a)
- Main difference with previous stage: we do not store Q-value!

- Return gamma*G + r

Inside the search tree



Monte Carlo Tree Search: Simulation

35

Propagate return from the recursive calls

Calculate the return at each state

Update visitation count and value of each visited state

Inside the search tree



Monte Carlo Tree Search: Summary

- For the current state of agent, repeatedly perform the previous steps until some 
stopping criteria is reached

- Examples: time limit, Q-value convergence within some threshold
- Execute the best action (select action with the highest Q-value estimate)
- Reuse the subtree of the successor state and repeat

36

When to use MCTS over learning algorithms?

- More useful if you have limited amount of time
- Access to internal model (environment dynamics)
- Size or dynamic nature of the state-action space (in MCTS, the state action space 

size doesnʼt matter because it only explores the best actions)



REINFORCE

37



REINFORCE: Policy-based methods

- Value-based methods: learn a value function (an optimal value function leads to an 
optimal policy)

- Goal: minimize the loss between the predicted and target value
- Policy is implicit as it is generated directly from the value function (e.g. eps-greedy from Q-function)
- Examples: Monte Carlo, DQN, SARSA

- Policy-based methods: learn to approximate optimal policy directly (without learning a 
value function)

- Parameterize the policy, e.g. using a neural network
- Policy outputs a probability distribution over actions (stochastic policy)
- Goal: maximize the performance of the parameterized policy using gradient ascent 38



REINFORCE: Policy Gradient algorithm

Goal: control the probability distribution of actions by tuning the policy such that good 
actions (that maximizes the return) are sampled more frequently in the future

Optimization method: let agent interact with the environment during an episode; if we 
win the episode, we want to increase P(a|s), and decrease if we lose

39



REINFORCE: Algorithm

REINFORCE, or Monte Carlo policy-gradient, uses an estimated return from an entire episode 
to update the policy parameter θ.

In a loop,

1. Use the policy πθ to collect episode τ
2. Use the episode to estimate the gradient g = ∇θJ(θ)

3. Update the weights of the policy: θ ← θ + αg
40



REINFORCE: Algorithm

REINFORCE, or Monte Carlo policy-gradient, uses an estimated return from an entire episode 
to update the policy parameter θ.

In a loop,

1. Use the policy πθ to collect episode τ
2. Use multiple episodes to estimate the gradient g = ∇θJ(θ)

3. Update the weights of the policy: θ ← θ + αg
41



REINFORCE: The Variance Problem

46

The gradient estimator above is unbiased, i.e. with large N it will accurately 
approximate the true gradient.

Problem: usually, a very large N is required

How do we minimize the variance of our estimator?



REINFORCE: Reducing Variance

- Policy gradient methods suffer from high variance caused by the empirical returns
- We can reduce the variance by subtracting a baseline from the returns in the policy 

gradient, as it will make smaller gradients (thus more stable updates!)
- The baseline is a proxy for the expected actual return that does not introduce any bias to the policy gradient
- Good example of a baseline is the value function: policy gradient - value function baseline = advantage

- You can also use a parametrized model Q(s,a) to approximate the value in the advantage instead of using the 
empirical returns, and this method is called Actor-Critic

47Source: https://medium.com/p/e95ace11c1c4 

https://medium.com/p/e95ace11c1c4


REINFORCE: Policy-based methods, pros and cons

Pros

- We can estimate the policy directly without storing additional data
- Policy-gradient methods can learn a stochastic policy

- We donʼt need to implement an exploration/exploitation trade-off by hand
- More effective in high-dimensional action spaces and continuous action spaces
- Better convergence properties

Cons

- Converges to a local maximum sometimes
- Slower, step-by-step: it can take longer to train (inefficient)
- Gradient estimate is very noisy: there is a possibility that the collected trajectory may not 

be representative of the policy
- High variance

49



Actor Critic

50Source: https://huggingface.co/learn/deep-rl-course/unit6/advantage-actor-critic 

https://huggingface.co/learn/deep-rl-course/unit6/advantage-actor-critic


Actor-Critic: Overview

In Actor-Critic methods, we learn two 
function approximations

- A policy that controls how our agent 
acts, or the actor

- A value function to assist the policy 
update by measuring how good the 
action taken is, or the critic

51



Actor-Critic: Algorithm

52



Actor-Critic: Algorithm

1. At each time step t, we get the current state St from the environment and pass it as input through 
our Actor and Critic model

2. Our policy takes the state and outputs action At

3. The Critic model takes that action also as input and computes the value of taking that action at that 
state using St and At (the Q-value)

53



Actor-Critic: Algorithm

4. The action At performed in the environment outputs a new state St+1 and a reward Rt+1

5. The Actor model updates its policy parameters using the Q-value

54



Actor-Critic: Algorithm

6. Then, the Actor model produces the next action to take at At given the new state St+1
7. The Critic model then updates its parameters

55



Actor-Critic: Advantage Actor-Critic (A2C)

- When we use the Advantage function as the Critic instead of the Action value 
function, we can stabilize learning further

- The Advantage function calculates the relative advantage of an action 
compared to the others possible at a state (how is taking that action at a state 
better compared to the average value of the state?) 

56



Actor-Critic: Advantage Actor-Critic (A2C)

- If A(s,a) > 0: our gradient is pushed in that direction
- If A(s,a) < 0: our gradient is pushed in the opposite direction

The problem with implementing this advantage function is that it requires two value 
functions - Q(s,a) and V(s). Fortunately, we can use the TD error as a good estimator of 
the advantage function.

57



Actor-Critic: Architecture

Architecture choices

58



Code walkthrough

59



Part 1: REINFORCE, REINFORCE+Baseline, A2C

60

Init: initialize the type that you are going to use, the model(s) 
that you are going to use, Adam optimizer

Evaluate_policy: Run through the policy once to obtain the 
return from a single trajectory (where return is the sum of the 
rewards)

Generate_episode: Collect state, action, reward pairs 
(trajectories) by executing the current policy
Hint: you might also want to return the action probabilities here to avoid 
recalculation in the future

Train: Train the model(s), calculate the loss, backpropagate 
the loss, zero the gradients
Hint: when doing A2C, be careful about detaching the gradients of the 
actor/critic (when you are updating the loss of the actor, make sure to 
detach values coming from the critic used in the loss update)

Tip: implement REINFORCE, REINFORCE+Baseline, and A2C 
sequentially as they build off of each other



Part 2: Deep Q-Network (DQN)

DQN architecture is already provided to you!

61



Part 2: Q-Network 

Init: environment, learning rate, QNetwork 
(what are the input and output size of the 
model?), Adam optimizer, logging directory 
(if you want to use it)

Everything else is optional! 

62



Part 2: Replay Memory

Init: Initialize a replay buffer to store (states, actions, 
rewards, next_states, termination), memory size, 
burn in value (initial trajectory size after 
initialization).
Hint: use collections.deque(maxlen=memory_size)

Sample_batch: samples a random batch from the 
memory (make sure it works, otherwise your entire 
algorithm will break)

Append: add a (state, action, reward, next_state, 
termination) to the replay memory 
Warning: if you donʼt use a deque with a max length, then you will 
need to manually keep track of the length to avoid your code 
from running too slow

63



Part 2: DQN Agent
Init: initialize hyperparameters, replay memory, QNetwork, target 
network

Epsilon_greedy_policy: return an action based on the epsilon greedy 
policy (eps=0.05)

Greedy_policy: return an action based on the greedy policy

Train: take a step in the environment, add the observations to the replay 
memory, make a gradient update by sampling a batch from the replay 
memory

Test: interact with the environment to get your respective rewards

Burn_in_memory: initialize replay memory with burn_in number of 
transitions with random agent

Main: initialize the DQN agent and train for num_episodes. Make sure to 
keep track of the reward, plot the average rewards and the range
Hint: use plt.fill_between to plot the range (max, min rewards)

64



Questions?

65


