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Paradox

The requirement of large number of
samples for model-free RL, only
possible in simulation, renders

model-free RL a model-based
framework: we can’t do without the
simulator.



Choices

We want to learn manipulation and locomotion policies, what do we do?

1. We use a Physics simulator, where Physics rules between objects and/or particles have been hand-coded by
engineers. We train our policies there with reinforcement (trial-and-error) and/or demonstrations. We then
transfer them to the real world.

2. Wedirectly learn policies in the real world.



Choices

We want to learn manipulation and locomotion policies, what do we do?

1. We use a Physics simulator, where Physics rules between objects and/or particles have been hand-coded by
engineers. We train our policies there with reinforcement (trial-and-error) and/or demonstrations. We then
transfer them to the real world.

2. Wedirectly learn policies in the real world.

3. We combine simulators with deeply learned residuals for action or next state prediction to compensate for wrong
simulation models-> residual Physics



Pros of Simulation

We can afford many samples

Safe: we do not want to deploy partially trained policies in the real world
Avoids wear and tear of the robot

We can explore creative robot configurations



Cons of Simulation

e Under-modeling: It is hard to exactly replicate the real world and its physics and mechanics
e Large engineering effort into building the environment which we care to manipulate

e \Wrong parameters. Even if our physical equations were correct, we would need to estimate the right parameters,
e.g., inertia, frictions (system identification).

e Systematic discrepancy w.r.t. the real world regarding:
1. observations

2. dynamics

Result: Policies learnt in simulation usually do not directly transfer to the real world



Simulators

MulJoCo: rigid and deformable body simulator on a CPU

MuJoCo physics

Roboti LLC

WWW.mujoco.org

http://www.mujoco.org/image/home/mujocodemo.mp4

FLEX: particle based simulator on a GPU for rigid / soft bodies
fluids, gas.

https://www.youtube.com/watch?v=100Nuq71gl4


http://www.mujoco.org/image/home/mujocodemo.mp4

Sim2Real:What has shown to work

e Domain randomization (dynamics, visuals)

e Intelligent adaptive domain randomization (dynamics, visuals)

e Residual Physics: combine analytic models with deep learning

e Visual Abstraction: Learning from label images as opposed to pixel images-> semantic maps between simulation
and real world are closer than textures

e Action Abstraction: Learning higher level policies, not low-level controllers because the low level dynamics are very
different between Simulation and Reality



Sim2Real:What has shown to work

Domain randomization (dynamics, visuals)

Learning to adapt the textures of the simulator to match the real domain

Learning to adapt the dynamics of the simulator to match the real domain

Learning from label images as opposed to pixel images-> semantic maps between simulation and real world are
closer than textures

e Abstraction: Learning higher level policies, not low-level controllers because the low level dynamics are very
different between Simulation and Reality



What has shown to work

e Domain randomization ( , visuals)



Domain randomization

Tralnlng

We create (automatically) tons of simulation environments by randomizing textures and camera viewpoints. We use
the simulation data to train object detectors

Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World, Tobin et al.



Data dreaming

1. Obtaining object masks
o background subtraction gives ground truth object masks

2. Creating synthetic labelled data

o Massive augmentation of ground truth masks by random
transformations/occlusions and random backgrounds

3. Training object detectors
o Mask R-CNN

"

instance segmentation

Data Dreaming for Object Detection: Learning Object-Centric State Representations for Visual Imitation, Sieb et al.



Let’s try a more fine grained task

Cuboid Pose Estimation




Synthetic data generation




Synthetic data generation




Predicting vertex heatmaps
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SIM2REAL

* Pose detector fails when the brightness of the image changes. Solution?
e Randomize also the brightness



Synthetic data generation




SIM2REAL

e Now it works..



SIM2REAL

Surprising Result

* Even for non cube objects sometimes



SIM2REAL

Baxter's camera

e |t canfail under clutter.
e Solution: use an architecture from computer vision research: combine object detection with vertex heatmap
prediction, do not predict vertex heatmaps with the whole image as input



Car detection

VKITTI (Virtual KITTI): a carefully designed simulation dataset to mimic real driving conditions (large engineering
effort)

DR: an automatically created simulation dataset with non-realistic visuals and content (small engineering effort)
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number of real images used in fine-tuning

The fewer the real labelled data, the larger the gain from synthetic data

Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization, NVIDIA



SOLVING RUBIK’S CUBE WITH A ROBOT HAND

A PREPRINT

OpenAl
Illge Akkaya. Marcin Andrychowicz] Maciek Chociej; Mateusz Litwin Bob McGrew Arthur Petron!
Alex Paino! Matthias Plappert Glenn Powell Raphael Ribas] Jonas Schneider; Nikolas Tezak?
Jerry Tworek? Peter Welinder;” Lilian Weng?” Qiming Yuan! Wojciech Zaremba Lei Zhang”®

Main ideas:

e Trained solely in simulation

e Automatic domain randomization for training:
e Control Policies
e State estimators from images

e LSTM policy as opposed to feedforward net



Models for the cube and the hand in Mujoco




Policy with memory

(a) Network architecture for value function (b) Network architecture for agent policy
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Inputs available in simulation Inputs available on the real robot

Discrete actions: 11 bins per each of 20 actuated joints

Rewards:
The difference between the previous and the current distance of the system state from the goal state

- an additional reward of 5 whenever a goal is achieved
a penalty of —20 whenever a cube/block is dropped
Trained with PPO



State estimation

(b) An assembled Giiker cube while charging.
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Adaptive Domain Randomization

\

Update
Distribution

\

Sample
Environment

\

Generate Data

Evaluate
Performance

A

Algorithm 1 ADR

Require: ¢°
Require: {DF DH}d |
Require: m, t;, ty, where t; <ty
Require: A
¢ — qD’()
repeat
)\ ~ P‘ﬁ,
i~U{l,...,d},z~U(0,1)
if x < 0.5 then
D,‘ (—Dzb,/\z (—(Df‘
else
Di < Di”’ )\,‘ — @{1
end if
p - EVALUATEPERFORMANCE(\)
D.,' — Dz U {p}
if LENGTH(D);) > m then
p <~ AVERAGE(D;)
CLEAR(D;)
if]_) 2 Ly then
i — i + A
else if p < ¢, then
Gi + @i — A
end if
end if
until training is complete

> Initial parameter values
> Performance data buffers
> Thresholds

> Update step size

> Select the lower bound in “boundary sampling”
> Select the higher bound in “boundary sampling”

> Collect model performance on environment parameterized by A
> Add performance to buffer for A;, which was boundary sampled

\

Optimize Model




DR for state estimation




Automatic Domain Randomization (ADR)

Automatic vs. manual domain randomization
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https://openai.com/blog/solving-rubiks-cube/



Time to success when the network’s memory is erased

6.5 sec

Perturbation
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The LSTM state is interpretable

0 1 TR Y 1T



Driving Policy Transfer via Modularity and

Abstraction
Matthias Miiller Alexey Dosovitskiy
Visual Computing Center Intelligent Systems Lab
KAUST, Saudi Arabia Intel Labs, Germany
Bernard Ghanem Vladlen Koltun
Visual Computing Center Intelligent Systems Lab
KAUST, Saudi Arabia Intel Labs, USA

|dea: the driving policy is not directly exposed to raw perceptual input or low-level vehicle dynamics.



Main idea

Pixels to steering wheel mapping is not SIM2REAL transferable: image textures and car dynamics mismatch
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Instead: |abel maps to waypoint mapping is better SIM2REAL transferable: label maps and waypoints are similar
across SIM and REAL. A low-level controller will take the car from waypoint to waypoint in the real world

Perception module

a ™

/ Segmentation
S

-

Driving policy Controller
\
PN Waypoints Corlt rol

Command C W



Results: Train/Test

Weather 1 Weather 2

Town 1

Town 2

We train policies via behaviour cloning (standard regression loss) in Town1/ Weather1 dataset, and evaluate them on
all four.



Weather 1 Weather 2
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Town 2
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Figure 4: Quantitative evaluation of goal-directed navigation in simulation. We report the success
rate over 25 navigation trials in four town-weather combinations. The models have been trained
in Town 1 and Weather 1. The evaluated models are: img2ctrl — predicting low-level control from
color images; img2wp — predicting waypoints from color images; seg2ctrl — predicting low-level
control from the segmentation produced by the perception module; ours — predicting waypoints
from the segmentation produced by the perception module. Suffix ‘+” denotes models trained with
data augmentation, and ‘+dr’ denotes the model trained with domain ramdomization.



TossingBot: Learning to Throw Arbitrary Objects
with Residual Physics

Andy Zeng!?, Shuran Song!?3, Johnny Lee?, Alberto Rodriguez*, Thomas Funkhouser':?
Princeton University “?Google 3Columbia University “Massachusetts Institute of Technology
http://tossingbot.cs.princeton.edu

Pik-n-place bot (slow)

Tossing bot (this work)

Tossing: learning to grasp and throw objects into selected boxes outside the robot’s natural range



Tossing Bot

x16 orientations x16
/ ) (per grasping angle) Grasping
Module ¢
(FCN ResNet-7) g
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(FCN ResNet-7) (pixel-wise horizontal grasps)
Throwing
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Controller : . A Throwing Release Velocity
Sim. thr owing VElOClty v (per pixel-wise sampled grasp)

Jointly learns grasping and throwing by mapping visual observations (RGB-D images) to control parameters for motion
primitives

Grasping primitive parameters: 3D location of a top-down parallel jaw grasp (IK are used to execute the grasp). The
output of the grasping net represents pixel wise grasping success. Rotate the input by 16 angles and output 16 such
pixel wise probability maps, to allow any oriented planar grasp.

Throwing primitive parameters: the release 3D position and velocity of an object leaving the robot hand. The
throwing primitive takes as input parameters ¢t = (r,v) and executes an end effector trajectory such that the mid-point
between the gripper fingertips reaches a desired release position r = (rx,ry,rz) and velocity v = (vx,vy,vz), at which point
the gripper opens and releases the object.



Residual Physics

©  © > ©

Learned Physics St+1 Learned e Learned
¥ ) 'y )
Physics Physics
® O O s
(a) (b) (c) (d)

A. Learned state-to-action mapping

B. Infer action per state with analytic physics models

C. Residual physics for predicting next state

D. Residual physics for predicting action (parameters for controller)—> this work

Use projectile ballistics to provide an estimate for the release object velocity that is needed to get an object
to land at a target location



Tossing Bot

x16 orientations x16
/ ) (per grasping angle) Grasping
Module ¢
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(FCN ResNet-7) (pixel-wise horizontal grasps)
Throwing
Module
(FCN ResNet-7)
Physics-based :
Controller : . A Throwing Release Velocity
Sim. thr owing VElOClty v (per pixel-wise sampled grasp)

Jointly learns grasping and throwing by mapping visual observations (RGB-D images) to control parameters for motion
primitives

Grasping primitive parameters: 3D location of a top-down parallel jaw grasp (IK are used to execute the grasp). The
output of the grasping net represents pixel wise grasping success. Rotate the input by 16 angles and output 16 such
pixel wise probability maps, to allow any oriented planar grasp.

Throwing primitive parameters: the release 3D position and velocity of an object leaving the robot hand. The
throwing primitive takes as input parameters ¢t = (r,v) and executes an end effector trajectory such that the mid-point
between the gripper fingertips reaches a desired release position r = (rx,ry,rz) and velocity v = (vx,vy,vz), at which point
the gripper opens and releases the object.



Training by trial-and-error

Overhead Camera

The system predicts grasp and throw parameters.

Records grasp success and actual landing location.

Physics-based
Controller

x16 orientations

Perception

Module
(FCN ResNet-7)

x16

Grasping

Module
(FCN ResNet-7)

Grasping Scores
(pixel-wise horizontal grasps)

Throwing
Module

(FCN ResNet-7)

o—

Sim. throwing velocity v

Throwing Release Velocity
(per pixel-wise sampled grasp)

Trains the grasping net as a pixel-wise classification and the throwing net as a location-conditioned regression for the

residual velocity.



Semantics emerge
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Fig. 7. Our method (Residual-physics) outperforms baseline alternatives in
terms of throwing success rates in simulation on the Hammers object set.



Generalization/Adaptation to novel objects

On new objects, TossingBot starts out with lower performance, but quickly adapts within a few hundred training steps
(i.e., an hour or two) to achieve similar performance as with training objects.

What makes learning so sample efficient?



Generalization/Adaptation to novel target locations

- Residual Physics helps generalization.
- The initial estimates of throwing velocities from projectile ballistics easily generalize to new target locations, while the

residuals help make adjustments on top of those estimates to compensate for varying object properties in the real

world.
- Deep learning without physics can only handle target locations seen during training.



Domain adaptation for visual observations

GTA: synthetic data of urban scenes from a camera Cityscapes: real data of urban scenes
mounted on a car from a camera mounted on a car

source target

19 object classes to be detected: people, cars, stop signs, poles, etc.

Our goal: Train detectors and pixel labelers on GTA that generalize to Cityscapes



Baseline

Train a classifier on source and test it on the target, and hope it generalizes

Pick a network architecture, e.g. ResNet101 or VGG

2. Download a pretained neural network, e.g., trained for image classification on
Imagenet dataset

Finetune it on the source domain (GTA)

Apply it on the target domain (Cityscapes)

=

W

Training
source image Labeller NN label mask

, 2> o> Image classification in Imagenet

Testing
target image Labeller NN

H . B




Baseline

Train a classifier on source and test it on the target, and hope it generalizes

1. Download a pretained neural network, e.g., trained for image classification on
Imagenet dataset

Finetune it on the source domain (GTA)

Apply it on the target domain (Cityscapes)

2.
3.

Pretrain on Imagenet -> finetune in GTA->test in GTA: 53% meanloU
Pretrain on Imagenet -> finetune in GTA->test in Cityscapes: 28% meanloU

Pretrain on PASCAL -> finetune in GTA->test in GTA: 58.84% meanloU
Pretrain on PASCAL -> finetune in GTA->test in Cityscapes: 32% meanloU

Pretrain on PASCAL -> in GTA/PASCAL->test in Cityscapes: 39% meanloU



Baseline

Catastrophic forgetting:

e During fine-tuning, the network forgets the general and
nicely transferable PASCAL features!

e Finetuning a neural neton avery limited domainis a
bad idea for transfer

Other solutions for catastrophic forgetting?



Baseline

Train a classifier on source and test it on the target, and hope it generalizes

1. Download a pretained neural network, e.g., trained for image classification on
Imagenet dataset
2. (GTA):
1. Adapt only the top layers and keep the earlier frozen.
2. Cotrain it using both the old task and the new task in the smaller dataset
3. Apply it on the target domain (Cityscapes)

Pretrain on Imagenet -> finetune in GTA->test in GTA: 53% meanloU
Pretrain on Imagenet -> finetune in GTA->test in Cityscapes: 28% meanloU

Pretrain on PASCAL -> finetune in GTA->test in GTA: 58.84% meanloU
Pretrain on PASCAL -> finetune in GTA->test in Cityscapes: 32% meanloU

Pretrain on PASCAL -> in GTA/PASCAL->test in Cityscapes: 39% meanloU



Learning to translate images across domains

sim and real

* Paired

e Unpaired (this is our case)

Labels to Facade BW to Color

input out
Day to Night

/4
input output input output

B "9

apple — orane



Paired case

e The generator takes the (source) image as input and tries to output the corresponding target image
e Minimize
e image reconstruction loss

e adversarial loss: pairs of source-target images as input to discriminator

Positive examples Negative examples
Real or fake pair? Real or fake pair?

D D %
W
'_'-,,, ‘\

G tries to synthesize fake
images that fool D X

D tries to identify the fakes




Paired case

G tries to synthesize fake
images that fool D

D tries to identify the fakes

X: source image, y:target image, z: noise

L .can(G,D) = E apllog D, y)] + E,., data (x),ZNpZ(Z)[log(l — D(x, G(x,2)))]

“™Pdata .

ng(G) — |Ex,ywpdata(x,y),zwpz(z) [”y _ G(.X, Z)lll]



Paired case




Paired case

Input Ground truth Output Input Ground truth Output




Paired case

Ground truth
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Unpaired case




Unpaired case: Cycle GAN / DISCO GAN
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Cycle GAN / DISCO GAN
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Figure 7: Different variants of our method for mapping labels<+photos trained on cityscapes. From left to right: input, cycle-
consistency loss alone, adversarial loss alone, GAN + forward cycle-consistency loss (F'(G(x)) ~ x), GAN + backward
cycle-consistency loss (G(F(y)) = y), CycleGAN (our full method), and ground truth. Both Cycle alone and GAN +
backward fail to produce images similar to the target domain. GAN alone and GAN + forward suffer from mode collapse,
producing identical label maps regardless of the input photo.
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Unpaired case

_Monet T Photos _ = Zebras < Horses 7 . Summer Z_ Winter

zebra — hrse

horse — zebra

Photograph Van Gogh ' Czanne



alred case




Unpaired case
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SimZ2real for learning to grasp

(a) Simulated World (b) Real World (c) Simulated Samples (d) Real Samples

e | want to learn the function Grasp(/, v; @) : given image | and end-effector motion v, will | successfully grasp the
object?

e Grasp(/, v; 0) can be trained with supervised learning. | want to use a simulated environment to quickly collect lots
of samples. | want it to generalize to the real world.

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017



SimZ2real for learning to grasp

(@ Simulated World (b) Real World (c) Simulated Samples (d) Real Samples

e Use Bullet simulator to emulate the Kuka hardware setup. Camera is mounted over the Kuka shoulder
e 51300 ShapeNet 3D models
e Use progressively better grasping models to collect data

e Randomization: both visuals and dynamics were randomized in simulation: the background image, object masses,
textures, coefficients of friction.

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017



Feature adaptation

Two losses: domain confusion loss and grasping prediction loss

We add a domain classifier, that attempts to classify

~ A the domain the features come from
i

i fc3 h ‘ Domain

L: fo Classifier

§ —L—"

5 C, s+N; 7 7

E [ er ] ogDANN — Zi\/:a—N {d,’ logd,- -+ (1 —d,-)log(l —d,')}
o -

& | fc1

S| ¢ o

The shared features C1, C2 attempt to confuse the
domain classifier (maximize its loss), while the domain
classifier features attempts to minimize its loss.

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017



Pixel Adaptation

Three losses: grasping prediction loss, semantic labelling loss, adversarial loss

[ real/fake ]

{ X, X' } mask m*
(synthetic)

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017




Pixel Adaptation

Three losses: grasping prediction loss, semantic labelling loss, adversarial loss
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Goal: we want our generator to translate simulated images so that:
1. theydowellin the task loss (grasping),

2. lookreal
3. retain the same semantics as their simulated counterparts

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017



Results
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