
Sim2Real Transfer

Deep Reinforcement Learning and Control

Instructors
Katerina Fragkiadaki
Ruslan Salakhutdinov

Carnegie Mellon

School of Computer Science

Fall 2021, CMU 10-703

The requirement of large number of
samples for model-free RL, only
possible in simula.on, renders
model-free RL a model-based

framework: we can’t do without the
simulator.

Paradox

We want to learn manipulation and locomotion policies, what do we do?

1. We use a Physics simulator, where Physics rules between objects and/or particles have been hand-coded by
engineers. We train our policies there with reinforcement (trial-and-error) and/or demonstrations. We then
transfer them to the real world.

2. We directly learn policies in the real world.

Choices

We want to learn manipulation and locomotion policies, what do we do?

1. We use a Physics simulator, where Physics rules between objects and/or particles have been hand-coded by
engineers. We train our policies there with reinforcement (trial-and-error) and/or demonstrations. We then
transfer them to the real world.

2. We directly learn policies in the real world.

3. We combine simulators with deeply learned residuals for action or next state prediction to compensate for wrong
simulation models-> residual Physics

Choices

• We can afford many samples
• Safe: we do not want to deploy partially trained policies in the real world
• Avoids wear and tear of the robot
• We can explore creative robot configurations

Pros of Simulation

• Under-modeling: It is hard to exactly replicate the real world and its physics and mechanics

• Large engineering effort into building the environment which we care to manipulate

• Wrong parameters. Even if our physical equations were correct, we would need to estimate the right parameters,
e.g., inertia, frictions (system identification).

• Systematic discrepancy w.r.t. the real world regarding:

1. observations

2. dynamics

Result: Policies learnt in simulation usually do not directly transfer to the real world

Cons of Simulation

Simulators

http://www.mujoco.org/image/home/mujocodemo.mp4 https://www.youtube.com/watch?v=1o0Nuq71gI4

FLEX: particle based simulator on a GPU for rigid / soft bodies,
fluids, gas.

MuJoCo: rigid and deformable body simulator on a CPU

http://www.mujoco.org/image/home/mujocodemo.mp4

• Domain randomization (dynamics, visuals)
• Intelligent adaptive domain randomization (dynamics, visuals)
• Residual Physics: combine analytic models with deep learning
• Visual Abstraction: Learning from label images as opposed to pixel images-> semantic maps between simulation

and real world are closer than textures
• Action Abstraction: Learning higher level policies, not low-level controllers because the low level dynamics are very

different between Simulation and Reality

Sim2Real:What has shown to work

• Domain randomization (dynamics, visuals)
• Learning to adapt the textures of the simulator to match the real domain
• Learning to adapt the dynamics of the simulator to match the real domain
• Learning from label images as opposed to pixel images-> semantic maps between simulation and real world are

closer than textures
• Abstraction: Learning higher level policies, not low-level controllers because the low level dynamics are very

different between Simulation and Reality

Sim2Real:What has shown to work

• Domain randomization (dynamics, visuals)
• Learning to adapt the textures of the simulator to match the real domain
• Learning to adapt the dynamics of the simulator to match the real domain
• Learning from label images as opposed to pixel images-> semantic maps between simulation and real world are

closer than textures
• Learning higher level policies, not low-level controllers, as the low level dynamics are very different between Sim

and REAL

What has shown to work

We create (automatically) tons of simulation environments by randomizing textures and camera viewpoints. We use
the simulation data to train object detectors

'RPDLQ�5DQGRPL]DWLRQ�IRU�7UDQVIHUULQJ�'HHS�1HXUDO�
1HWZRUNV�IURP�6LPXODWLRQ�WR�WKH�5HDO�:RUOG

7RELQ�HW�DO��������
DU;LY�����������

Domain randomization

Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World, Tobin et al.

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

Body Level

Similar randomization can be used for training object detectors on-the-fly in the real world directly.

1. Obtaining object masks
○ background subtraction gives ground truth object masks

2. Creating synthetic labelled data
○ Massive augmentation of ground truth masks by random

transformations/occlusions and random backgrounds

3. Training object detectors
○ Mask R-CNN

Data dreaming

Data Dreaming for Object Detection: Learning Object-Centric State Representations for Visual Imitation, Sieb et al.

&XERLG�3RVH�(VWLPDWLRQ

Let’s try a more fine grained task

'DWD�*HQHUDWLRQ

Synthetic data generation

'DWD�*HQHUDWLRQ

Synthetic data generation

0RGHO�2XWSXW���%HOLHI�0DSV

�

�

�

�

�

�

�

Predicting vertex heatmaps

%D[WHU¶V�FDPHUD

SIM2REAL

• Pose detector fails when the brightness of the image changes. Solution?
• Randomize also the brightness

'DWD���&RQWUDVW�DQG�%ULJKWQHVV

Synthetic data generation

%D[WHU¶V�FDPHUD

SIM2REAL

• Now it works..

6XUSULVLQJ�5HVXOW

SIM2REAL

• Even for non cube objects sometimes

%D[WHU¶V�FDPHUD

SIM2REAL

• It can fail under clutter.
• Solution: use an architecture from computer vision research: combine object detection with vertex heatmap

prediction, do not predict vertex heatmaps with the whole image as input

VKITTI (Virtual KITTI): a carefully designed simulation dataset to mimic real driving conditions (large engineering
effort)

DR: an automatically created simulation dataset with non-realistic visuals and content (small engineering effort)

The fewer the real labelled data, the larger the gain from synthetic data

Car detection

Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization, NVIDIA

VKITTI

DR

Main ideas:

• Trained solely in simulation

• Automatic domain randomization for training:

• Control Policies

• State estimators from images

• LSTM policy as opposed to feedforward net

Models for the cube and the hand in Mujoco

Policy with memory

Discrete actions: 11 bins per each of 20 actuated joints
Rewards:
• The difference between the previous and the current distance of the system state from the goal state
• an additional reward of 5 whenever a goal is achieved
• a penalty of −20 whenever a cube/block is dropped
Trained with PPO

State estimation

GT

Adaptive Domain Randomization

DR for state estimation

Automatic Domain Randomization (ADR)

https://openai.com/blog/solving-rubiks-cube/

The LSTM state is interpretable

Idea: the driving policy is not directly exposed to raw perceptual input or low-level vehicle dynamics.

Main idea

Pixels to steering wheel mapping is not SIM2REAL transferable: image textures and car dynamics mismatch

Instead: label maps to waypoint mapping is better SIM2REAL transferable: label maps and waypoints are similar
across SIM and REAL. A low-level controller will take the car from waypoint to waypoint in the real world

Results: Train/Test

We train policies via behaviour cloning (standard regression loss) in Town1/ Weather1 dataset, and evaluate them on
all four.

Tossing bot (this work)
Pik-n-place bot (slow)

Tossing: learning to grasp and throw objects into selected boxes outside the robot’s natural range

Jointly learns grasping and throwing by mapping visual observations (RGB-D images) to control parameters for motion
primitives

• Grasping primitive parameters: 3D location of a top-down parallel jaw grasp (IK are used to execute the grasp). The
output of the grasping net represents pixel wise grasping success. Rotate the input by 16 angles and output 16 such
pixel wise probability maps, to allow any oriented planar grasp.

• Throwing primitive parameters: the release 3D position and velocity of an object leaving the robot hand. The
throwing primitive takes as input parameters φt = (r,v) and executes an end effector trajectory such that the mid-point
between the gripper fingertips reaches a desired release position r = (rx,ry,rz) and velocity v = (vx,vy,vz), at which point
the gripper opens and releases the object.

Tossing Bot

Residual Physics

A. Learned state-to-action mapping
B. Infer action per state with analytic physics models
C. Residual physics for predicting next state
D. Residual physics for predicting action (parameters for controller)—> this work

Use projectile ballistics to provide an estimate for the release object velocity that is needed to get an object
to land at a target location

Jointly learns grasping and throwing by mapping visual observations (RGB-D images) to control parameters for motion
primitives

• Grasping primitive parameters: 3D location of a top-down parallel jaw grasp (IK are used to execute the grasp). The
output of the grasping net represents pixel wise grasping success. Rotate the input by 16 angles and output 16 such
pixel wise probability maps, to allow any oriented planar grasp.

• Throwing primitive parameters: the release 3D position and velocity of an object leaving the robot hand. The
throwing primitive takes as input parameters φt = (r,v) and executes an end effector trajectory such that the mid-point
between the gripper fingertips reaches a desired release position r = (rx,ry,rz) and velocity v = (vx,vy,vz), at which point
the gripper opens and releases the object.

Tossing Bot

The system predicts grasp and throw parameters.

Records grasp success and actual landing location.

Trains the grasping net as a pixel-wise classification and the throwing net as a location-conditioned regression for the
residual velocity.

Training by trial-and-error

Semantics emerge

Results

On new objects, TossingBot starts out with lower performance, but quickly adapts within a few hundred training steps
(i.e., an hour or two) to achieve similar performance as with training objects.

Generalization/Adaptation to novel objects

What makes learning so sample efficient?

• Residual Physics helps generalization.
• The initial estimates of throwing velocities from projectile ballistics easily generalize to new target locations, while the

residuals help make adjustments on top of those estimates to compensate for varying object properties in the real
world.

• Deep learning without physics can only handle target locations seen during training.

Generalization/Adaptation to novel target locations

GTA: synthetic data of urban scenes from a camera
mounted on a car

Cityscapes: real data of urban scenes
from a camera mounted on a car

19 object classes to be detected: people, cars, stop signs, poles, etc.

add some add some

Our goal: Train detectors and pixel labelers on GTA that generalize to Cityscapes

source target

Domain adaptation for visual observations

Baseline

Train a classifier on source and test it on the target, and hope it generalizes
1. Pick a network architecture, e.g. ResNet101 or VGG
2. Download a pretained neural network, e.g., trained for image classification on

Imagenet dataset
3. Finetune it on the source domain (GTA)
4. Apply it on the target domain (Cityscapes)

Image classification in Imagenet

target image Labeller NN

?

Tes.ng

source image Labeller NN label mask

RUI

Training

Baseline

Train a classifier on source and test it on the target, and hope it generalizes
1. Download a pretained neural network, e.g., trained for image classification on

Imagenet dataset
2. Finetune it on the source domain (GTA)
3. Apply it on the target domain (Cityscapes)

Pretrain on PASCAL -> finetune in GTA->test in GTA: 58.84% meanIoU
Pretrain on PASCAL -> finetune in GTA->test in Cityscapes: 32% meanIoU

Pretrain on Imagenet -> finetune in GTA->test in GTA: 53% meanIoU
Pretrain on Imagenet -> finetune in GTA->test in Cityscapes: 28% meanIoU

Pretrain on PASCAL -> cotrain in GTA/PASCAL->test in Cityscapes: 39% meanIoU

Baseline

Train a classifier on source and test it on the target, and hope it generalizes
1. Download a pretained neural network, e.g., trained for image classification on

Imagenet dataset
2. Finetune it on the source domain (GTA)
3. Apply it on the target domain (Cityscapes)

Pretrain on PASCAL -> finetune in GTA->test in GTA: 58.84% meanIoU
Pretrain on PASCAL -> finetune in GTA->test in Cityscapes: 32% meanIoU

Pretrain on Imagenet -> finetune in GTA->test in GTA: 53% meanIoU
Pretrain on Imagenet -> finetune in GTA->test in Cityscapes: 28% meanIoU

Pretrain on PASCAL -> cotrain in GTA/PASCAL->test in Cityscapes: 39% meanIoU

Catastrophic forgetting:
• During fine-tuning, the network forgets the general and

nicely transferable PASCAL features!
• Finetuning a neural net on a very limited domain is a

bad idea for transfer

Other solutions for catastrophic forgetting?

Baseline

Train a classifier on source and test it on the target, and hope it generalizes

1. Download a pretained neural network, e.g., trained for image classification on
Imagenet dataset

2. Finetune it on the source domain (GTA):
1. Adapt only the top layers and keep the earlier frozen.
2. Cotrain it using both the old task and the new task in the smaller dataset

3. Apply it on the target domain (Cityscapes)

Pretrain on PASCAL -> finetune in GTA->test in GTA: 58.84% meanIoU
Pretrain on PASCAL -> finetune in GTA->test in Cityscapes: 32% meanIoU

Pretrain on Imagenet -> finetune in GTA->test in GTA: 53% meanIoU
Pretrain on Imagenet -> finetune in GTA->test in Cityscapes: 28% meanIoU

Pretrain on PASCAL -> cotrain in GTA/PASCAL->test in Cityscapes: 39% meanIoU

Learning to translate images across domains
(sim and real) Image Translation: and are pair-wise labeled

Junho Cho, Perception and Intelligence Lab, SNU 3

Junho Cho, Perception and Intelligence Lab, SNU 6

• Paired

• Unpaired (this is our case)

• The generator takes the (source) image as input and tries to output the corresponding target image

• Minimize

• image reconstruction loss

• adversarial loss: pairs of source-target images as input to discriminator

Paired case

Loss function

: source image, : target image, : noise

Junho Cho, Perception and Intelligence Lab, SNU 26

z ∼ 𝒩(0,I)

Paired case Loss function

: source image, : target image, : noise

Junho Cho, Perception and Intelligence Lab, SNU 26

z ∼ 𝒩(0,I)

ℒcGAN(G, D) = 𝔼x,y∼pdata a(x,y)[log D(x, y)] + 𝔼x∼pdata (x),z∼pz(z)[log(1 − D(x, G(x, z)))]

ℒL1(G) = 𝔼x,y∼pdata(x,y),z∼pz(z) [∥y − G(x, z)∥1]

: source image, :target image, : noisex y z

Junho Cho, Perception and Intelligence Lab, SNU 28

Paired case

Junho Cho, Perception and Intelligence Lab, SNU 30

Paired case

Junho Cho, Perception and Intelligence Lab, SNU 31

Paired case

proposed DiscoGAN

Junho Cho, Perception and Intelligence Lab, SNU 73

Unpaired case

CycleGAN has similar contribution on this point

Junho Cho, Perception and Intelligence Lab, SNU 74

Unpaired case: Cycle GAN / DISCO GAN

Junho Cho, Perception and Intelligence Lab, SNU 75

Cycle GAN / DISCO GAN

CycleGAN

Use more GAN techniques: LSGAN, use image buffer of previous generated samples

Junho Cho, Perception and Intelligence Lab, SNU 79

Unpaired case

Junho Cho, Perception and Intelligence Lab, SNU 80

Unpaired case

Junho Cho, Perception and Intelligence Lab, SNU 81

Unpaired case

• I want to learn the function : given image I and end-effector motion v, will I successfully grasp the
object?

• can be trained with supervised learning. I want to use a simulated environment to quickly collect lots
of samples. I want it to generalize to the real world.

Grasp(I, v; θ)

Grasp(I, v; θ)

Sim2real for learning to grasp

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

• Use Bullet simulator to emulate the Kuka hardware setup. Camera is mounted over the Kuka shoulder

• 51300 ShapeNet 3D models

• Use progressively better grasping models to collect data

• Randomization: both visuals and dynamics were randomized in simulation: the background image, object masses,
textures, coefficients of friction.

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

Sim2real for learning to grasp

Feature adaptation

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

We add a domain classifier, that attempts to classify
the domain the features come from

The shared features C1, C2 attempt to confuse the
domain classifier (maximize its loss), while the domain
classifier features attempts to minimize its loss.

Grasping prediction (task loss)

Two losses: domain confusion loss and grasping prediction loss

Pixel Adaptation

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

Grasping prediction
(task loss)

mask mf

mask ms

Three losses: grasping prediction loss, semantic labelling loss, adversarial loss

Pixel Adaptation

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

Goal: we want our generator to translate simulated images so that:
1. they do well in the task loss (grasping),
2. look real
3. retain the same semantics as their simulated counterparts

Three losses: grasping prediction loss, semantic labelling loss, adversarial loss

Results

