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On policy versus off policy training

- RL on policy: methods that improve a policy that is used to collect the
data used for such improvement

- RL off policy: methods that improve a policy that is not the same with
the policy that collected the data used for such improvement

Many of these slides were based on Doina Precup’s slides



Off-policy RL seen so far

« Off-policy RL learns from data collected under a behavioral policy
different than the current policy.

* In what we have seen thus far, “off-policy” transitions are generated
from earlier versions of the current policy.

* They are thus heavily correlated to the current policy.

* Not that much off-policy after all.



Batch RL

Batch RL learns from a fixed experience buffer that does not grow with
data collected from a near on policy exploratory policy.

* This is truly off-policy RL.

* Q:Who could have provided such an experience buffer?

A: A set of expert demonstrations for example.



« DDPG (behavioral): (what we have seen in the course) a DDPG policy based on which
actions are selected (with small exploration noise) and the experience buffer is
populated.

 (Truly) Off-policy DDPG: a DDPG policy that uses experience tuples from the buffer, it
does not influence in any way the data collected in the buffer
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- Imitation: A trained DDPG agent acts as an expert, and is
used to collect a dataset of 1 million transitions, and
populates a buffer, from which the off policy agent learns.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al
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Agent orange and agent blue are trained with...

1. The same off-policy algorithm (DDPG).

2. The same dataset.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al



The Difference?

1. Agent orange: Interacted with the environment.

* Standard RL loop.
* Collect data, store data in buffer, train, repeat.

2. Agent blue: Never interacted with the environment.
* Trained with data collected by agent orange concurrently.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al



1. Trained with the same off-policy algorithm.
2. Trained with the same dataset.
3. One interacts with the environment. One doesn’t.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al



Off-policy deep RL fails when truly off-policy.

why?

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al
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The Q value estimates are higher than their GT values
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Why model-free RL does not work with fixed experience
buffers?

Extrapolation error:

The Q-function trained from a fixed experience buffer has no way of
knowing whether the actions not contained in the buffer are better or

waorse.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al



Why model-free RL does not work with fixed experience
buffers?

Extrapolation Error

Q(s,a) «r+yQ(s,a’)
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Extrapolation Error

Q(s,a) « r+yQ(s,a’)
Rt

GIVEN GENERATED
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Q learning

Extrapolation Error

Q(s,a) «r+yQ(s,a)

1. (s,a,r,s')~Dataset
2. a~m(s’)

a’ = n(s’) = argmax Qy(s’, a)

Off-Policy Deep Reinforcement Learning without Exploratio
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(s’,a’) € Dataset —» Q(s',a’) = bad
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Extrapolation Error

Q(s,a) «r+vyQ(s,a’)

(s’,a’) &€ Dataset - Q(s’,a’) = bad
— Q(s,a) = bad



Extrapolation Error

Attempting to evaluate m without (sufficient)
access to the (s, a) pairs m visits.

Off-Policy Deep Reinforcement Learning without Exploratio



Solution: Batch constrained RL

A policy which only traverses transitions contained in the batch can be
evaluated without error.

BCQ learns a policy with a similar state-action visitation to the data in the batch

Q(s,a) « (1—a)Q(s,a)+a(r+v max Q(s',a")).

a'st.(s’'.a')EB



Solution: Batch constrained RL

BCAQ learns a policy with a similar state-action visitation to the data in the
batch.

Train a generative model to provide action samples that match the action
samples in the batch:

m(s) = argmax Qy(s,a; +&s(s,a;, P)),
a;+€s(s.a;,P)

{a; ~ Gu(8) }i-,-

A state conditioned generative model that predicts actions
given a state that are contained in the batch B



Learning stochastic generative models

* As we vary the input noisy samples z, we land in a different plausible action

a. y
/4




Learning stochastic generative models

« QOur generative model will transforms the input Gaussian distributions into
the desired action distribution.

« Why simple Gaussian noise suffices to create complex outputs?

* The neural net will transform it to a complex distribution!

......
—————————————



Unconditional generative models

// Each sample z should give me a sample from the
manifold | am trying to model once it passes
| X through the neural network
id y

We want to learn a mapping from z to the output X, usually we assume a
Gaussian distribution to sample every coordinate of X from:

P(X|z;0) = /' (X|f(z;0),6” - I)

Let’'s maximize data likelihood. This requires an intractable integral, too

many zs.

m@ax. P(X) = JP(X | z; 0)P(2)dz

What if we forget that it is intractable and approximate it with few

SampleS? (Q: do we know how to take
- _ 0 — : radients here?
min. Y —logPX)==3 ¥ logPXl50)==3 ¥ Ife0)-X|* © )

j _] Z{""/V(O,I) _] Zl'N/V(O,I)



Deep Variational Inference

Let’s consider sampling z’s from an alternative distribution Q(z) and try to minimize
the KL between this (variational approximation) and the true posterior, P(z | X). And
because | can pick any distribution Q | like, | will also condition it on X to help inform

the sampling.
Dy, (Qz| X) || P(z]| X)) = [Q(ZIX)IOg Q(le)dz
o P(z] X)
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Variational Autoencoder
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Dyt (N

Variational Autoencoder

From left to right: re-parametrization trick!
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Variational Autoencoder

At test time
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(b) Learned MNIST manifold

(a) Learned Frey Face manifold

Auto-Encoding Variational Bayes, Kingma and Welling



Conditional VAE
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