
Off policy RL

Deep Reinforcement Learning and Control

Instructors:
Katerina Fragkiadaki
Russ Salakhutdinov

Carnegie Mellon

School of Computer Science

Fall 2021, CMU 10-703

• RL on policy: methods that improve a policy that is used to collect the
data used for such improvement

• RL off policy: methods that improve a policy that is not the same with
the policy that collected the data used for such improvement

On policy versus off policy training

Many of these slides were based on Doina Precup’s slides

• Off-policy RL learns from data collected under a behavioral policy
different than the current policy.

• In what we have seen thus far, “off-policy” transitions are generated
from earlier versions of the current policy.

• They are thus heavily correlated to the current policy.

• Not that much off-policy after all.

Off-policy RL seen so far

• Batch RL learns from a fixed experience buffer that does not grow with
data collected from a near on policy exploratory policy.

• This is truly off-policy RL.

• Q:Who could have provided such an experience buffer?

• A: A set of expert demonstrations for example.

Batch RL

• DDPG (behavioral): (what we have seen in the course) a DDPG policy based on which
actions are selected (with small exploration noise) and the experience buffer is
populated.

• (Truly) Off-policy DDPG: a DDPG policy that uses experience tuples from the buffer, it
does not influence in any way the data collected in the buffer

• Final buffer: We train a DDPG agent for 1 million time
steps, adding N (0, 0.5) Gaussian noise to actions for high
exploration, and store all experienced transitions. This
collection procedure creates a dataset with a diverse set of
states and actions, with the aim of sufficient coverage.

• Concurrent: We concurrently train the off-policy and
behavioral DDPG agents, for 1 million time steps. To
ensure sufficient exploration, a standard N (0, 0.1)
Gaussian noise is added to actions taken by the behavioral
policy. Each transition experienced by the behavioral policy
is stored in a buffer replay, which both agents learn from.
As a result, both agents are trained with the identical
dataset.

• Imitation: A trained DDPG agent acts as an expert, and is
used to collect a dataset of 1 million transitions, and
populates a buffer, from which the off policy agent learns.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

• Final buffer: We train a DDPG agent for 1 million time
steps, adding N (0, 0.5) Gaussian noise to actions for high
exploration, and store all experienced transitions. This
collection procedure creates a dataset with a diverse set of
states and actions, with the aim of sufficient coverage.

• Concurrent: We concurrently train the off-policy and
behavioral DDPG agents, for 1 million time steps. To
ensure sufficient exploration, a standard N (0, 0.1)
Gaussian noise is added to actions taken by the behavioral
policy. Each transition experienced by the behavioral policy
is stored in a buffer replay, which both agents learn from.
As a result, both agents are trained with the identical
dataset.

• Imitation: A trained DDPG agent acts as an expert, and is
used to collect a dataset of 1 million transitions, and
populates a buffer, from which the off policy agent learns.

• DDPG (behavioral): (what we have seen in the course) a DDPG policy based on which
actions are selected (with small exploration noise) and the experience buffer is
populated.

• (Truly) Off-policy DDPG: a DDPG policy that uses experience tuples from the buffer, it
does not influence in any way the data collected in the buffer

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

Surprise!

Agenƚ orange and agenƚ blƵe are ƚrained ǁiƚh͙

1. The same off-policy algorithm (DDPG).

2. The same dataset.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

The Difference?

1. Agent orange: Interacted with the environment.
• Standard RL loop.
• Collect data, store data in buffer, train, repeat.

2. Agent blue: Never interacted with the environment.
• Trained with data collected by agent orange concurrently.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

1. Trained with the same off-policy algorithm.
2. Trained with the same dataset.
3. One interacts with the enǀironmenƚ͘ One doeƐn͛ƚ.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

Off-policy deep RL fails when truly off-policy.

why?

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

The Q value estimates are higher than their GT values

• DDPG (behavioral): (what we have seen in the course) a DDPG policy based on which
actions are selected (with small exploration noise) and the experience buffer is
populated.

• (Truly) Off-policy DDPG: a DDPG policy that uses experience tuples from the buffer, it
does not influence in any way the data collected in the buffer

• Final buffer: We train a DDPG agent for 1 million time
steps, adding N (0, 0.5) Gaussian noise to actions for high
exploration, and store all experienced transitions. This
collection procedure creates a dataset with a diverse set of
states and actions, with the aim of sufficient coverage.

• Concurrent: We concurrently train the off-policy and
behavioral DDPG agents, for 1 million time steps. To
ensure sufficient exploration, a standard N (0, 0.1)
Gaussian noise is added to actions taken by the behavioral
policy. Each transition experienced by the behavioral policy
is stored in a buffer replay, which both agents learn from.
As a result, both agents are trained with the identical
dataset.

• Imitation: A trained DDPG agent acts as an expert, and is
used to collect a dataset of 1 million transitions, and
populates a buffer, from which the off policy agent learns.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

Extrapolation error:

The Q-function trained from a fixed experience buffer has no way of
knowing whether the actions not contained in the buffer are better or
worse.

Why model-free RL does not work with fixed experience
buffers?

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 ൅ 𝛾𝑄 𝑠′, 𝑎′

Why model-free RL does not work with fixed experience
buffers?

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 ൅ 𝛾𝑄 𝑠′, 𝑎′

GIVEN GENERATED

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 ൅ 𝛾𝑄 𝑠′, 𝑎′
1. 𝑠, 𝑎, 𝑟, 𝑠ᇱ ~𝐷𝑎𝑡𝑎𝑠𝑒𝑡
2. 𝑎ᇱ~𝜋ሺ𝑠ᇱሻ

a′� = π(s′�) = argmaxaQθ(s′�, a)

Q learning

Off-Policy Deep Reinforcement Learning without Exploration

Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 ൅ 𝛾𝑄 𝑠′, 𝑎′
𝑠ᇱ, 𝑎ᇱ ∉ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 → 𝑄 𝑠ᇱ, 𝑎ᇱ ൌ 𝐛𝐚𝐝

→ 𝑄 𝑠, 𝑎 ൌ 𝐛𝐚𝐝

Off-Policy Deep Reinforcement Learning without Exploration

Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 ൅ 𝛾𝑄 𝑠′, 𝑎′
𝑠ᇱ, 𝑎ᇱ ∉ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 → 𝑄 𝑠ᇱ, 𝑎ᇱ ൌ 𝐛𝐚𝐝

→ 𝑄 𝑠, 𝑎 ൌ 𝐛𝐚𝐝

Off-Policy Deep Reinforcement Learning without Exploration

Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 ൅ 𝛾𝑄 𝑠′, 𝑎′
𝑠ᇱ, 𝑎ᇱ ∉ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 → 𝑄 𝑠ᇱ, 𝑎ᇱ ൌ 𝐛𝐚𝐝

→ 𝑄 𝑠, 𝑎 ൌ 𝐛𝐚𝐝

Off-Policy Deep Reinforcement Learning without Exploration

Extrapolation Error

Attempting to evaluate 𝜋 without (sufficient)
access to the ሺ𝑠, 𝑎ሻ pairs 𝜋 visits.

Off-Policy Deep Reinforcement Learning without Exploration

A policy which only traverses transitions contained in the batch can be
evaluated without error.

BCQ learns a policy with a similar state-action visitation to the data in the batch

Solution: Batch constrained RL

BCQ learns a policy with a similar state-action visitation to the data in the
batch.

Train a generative model to provide action samples that match the action
samples in the batch:

Solution: Batch constrained RL

A state conditioned generative model that predicts actions
given a state that are contained in the batch B

Learning stochastic generative models

Tutotial on variational Autoencoders, Doersch

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

z ∼ 𝒩(0, I) [s z] a

• As we vary the input noisy samples z, we land in a different plausible action
a.

Learning stochastic generative models

Tutotial on variational Autoencoders, Doersch

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

f (z) =
z

10
+

z
∥z∥

• Our generative model will transforms the input Gaussian distributions into
the desired action distribution.

• Why simple Gaussian noise suffices to create complex outputs?
• The neural net will transform it to a complex distribution!

z ∼ 𝒩(0, I)

Unconditional generative models

Motion Prediction Under Multimodality with Conditional Stochastic Networks, Google

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

We want to learn a mapping from z to the output X, usually we assume a
Gaussian distribution to sample every coordinate of X from:

P(X |z; θ) = 𝒩(X | f(z; θ), σ2 ⋅ I)

(Q: do we know how to take
gradients here?)min

θ
. ∑

j

− log P(Xj) = − ∑
j

∑
zi∼𝒩(0,I)

log P(Xj |zi; θ) = − ∑
j

∑
zi∼𝒩(0,I)

∥f (zi; θ) − Xj∥2

What if we forget that it is intractable and approximate it with few
samples?

Each sample z should give me a sample from the
manifold I am trying to model once it passes
through the neural network

max
θ

. P(X) = ∫ P(X |z; θ)P(z)dz

Let’s maximize data likelihood. This requires an intractable integral, too
many zs.

z ∼ 𝒩(0, I) X

Deep Variational Inference

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

DKL(Q(z |X) | |P(z |X)) = ∫ Q(z |X)log
Q(z |X)
P(z |X)

dz

= 𝔼Q log Q(z |X) − 𝔼Q log P(z |X)

= 𝔼Q log Q(z |X) − 𝔼Q log
P(X |z)P(z)

P(X)

= 𝔼Q log Q(z |X) − 𝔼Q log
P(X |z)P(z)

P(X)
= 𝔼Q log Q(z |X) − 𝔼Q log P(X |z) − 𝔼Q log P(z) + log P(X)
= DKL(Q(z |X) |P(z)) − 𝔼Q log P(X |z) + log P(X)

min
ϕ,θ

. DKL(Q(z |X; ϕ) | |P(z)) − 𝔼Q log P(X |z; θ)

Let’s consider sampling � ’s from an alternative distribution � and try to minimize
the KL between this (variational approximation) and the true posterior, � . And
because I can pick any distribution � I like, I will also condition it on � to help inform
the sampling.

z Q(z)
P(z |X)

Q X

encoder
decoder

𝔼Q log P(X |z) − DKL(Q(z |X) |P(z)) = log P(X) − DKL(Q(z |X) | |P(z |X))

Deep Variational Inference

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

DKL(Q(z |X) | |P(z |X)) = ∫ Q(z |X)log
Q(z |X)
P(z |X)

dz

= 𝔼Q log Q(z |X) − 𝔼Q log P(z |X)

= 𝔼Q log Q(z |X) − 𝔼Q log
P(X |z)P(z)

P(X)

= 𝔼Q log Q(z |X) − 𝔼Q log
P(X |z)P(z)

P(X)
= 𝔼Q log Q(z |X) − 𝔼Q log P(X |z) − 𝔼Q log P(z) + log P(X)
= DKL(Q(z |X) |P(z)) − 𝔼Q log P(X |z) + log P(X)

min
ϕ,θ

. DKL(Q(z |X; ϕ) | |P(z)) − 𝔼Q log P(X |z; θ)

encoder
decoder

𝔼Q log P(X |z) − DKL(Q(z |X) |P(z)) = log P(X) − DKL(Q(z |X) | |P(z |X))

Let’s consider sampling � ’s from an alternative distribution � and try to minimize
the KL between this (variational approximation) and the true posterior,� . And
because I can pick any distribution � I like, I will also condition it on � to help inform
the sampling.

z Q(z)
P(z |X)

Q X

Deep Variational Inference

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

DKL(Q(z |X) | |P(z |X)) = ∫ Q(z |X)log
Q(z |X)
P(z |X)

dz

= 𝔼Q log Q(z |X) − 𝔼Q log P(z |X)

= 𝔼Q log Q(z |X) − 𝔼Q log
P(X |z)P(z)

P(X)

= 𝔼Q log Q(z |X) − 𝔼Q log
P(X |z)P(z)

P(X)
= 𝔼Q log Q(z |X) − 𝔼Q log P(X |z) − 𝔼Q log P(z) + log P(X)
= DKL(Q(z |X) |P(z)) − 𝔼Q log P(X |z) + log P(X)

min
ϕ,θ

. DKL(Q(z |X; ϕ) | |P(z)) − 𝔼Q log P(X |z; θ)

encoder
decoder

𝔼Q log P(X |z) − DKL(Q(z |X) |P(z)) = log P(X) − DKL(Q(z |X) | |P(z |X))

Let’s consider sampling � ’s from an alternative distribution � and try to minimize
the KL between this (variational approximation) and the true posterior,� . And
because I can pick any distribution � I like, I will also condition it on � to help inform
the sampling.

z Q(z)
P(z |X)

Q X

Deep Variational Inference

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

min
ϕ,θ

. DKL(Q(z |X; ϕ) | |P(z)) − 𝔼Q log P(X |z; θ)

encoder
decoder

𝔼Q log P(X |z) − DKL(Q(z |X) |P(z)) = log P(X) − DKL(Q(z |X) | |P(z |X))

Let’s consider sampling � ’s from an alternative distribution � and try to minimize
the KL between this (variational approximation) and the true posterior,� . And
because I can pick any distribution � I like, I will also condition it on � to help inform
the sampling.

z Q(z)
P(z |X)

Q X

DKL(Q(z |X) | |P(z |X)) = ∫ Q(z |X)log
Q(z |X)
P(z |X)

dz

= 𝔼Q log Q(z |X) − 𝔼Q log P(z |X)

= 𝔼Q log Q(z |X) − 𝔼Q log
P(X |z)P(z)

P(X)
= 𝔼Q log Q(z |X) − 𝔼Q log P(X |z) − 𝔼Q log P(z) + log P(X)
= DKL(Q(z |X) |P(z)) − 𝔼Q log P(X |z) + log P(X)

Deep Variational Inference

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

min
ϕ,θ

. DKL(Q(z |X; ϕ) | |P(z)) − 𝔼Q log P(X |z; θ)

encoder
decoder

𝔼Q log P(X |z) − DKL(Q(z |X) |P(z)) = log P(X) − DKL(Q(z |X) | |P(z |X))

Let’s consider sampling � ’s from an alternative distribution � and try to minimize
the KL between this (variational approximation) and the true posterior,� . And
because I can pick any distribution � I like, I will also condition it on � to help inform
the sampling.

z Q(z)
P(z |X)

Q X

DKL(Q(z |X) | |P(z |X)) = ∫ Q(z |X)log
Q(z |X)
P(z |X)

dz

= 𝔼Q log Q(z |X) − 𝔼Q log P(z |X)

= 𝔼Q log Q(z |X) − 𝔼Q log
P(X |z)P(z)

P(X)
= 𝔼Q log Q(z |X) − 𝔼Q log P(X |z) − 𝔼Q log P(z) + log P(X)
= DKL(Q(z |X) |P(z)) − 𝔼Q log P(X |z) + log P(X)

Deep Variational Inference

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

DKL(Q(z |X) | |P(z |X)) = ∫ Q(z |X)log
Q(z |X)
P(z |X)

dz

= 𝔼Q log Q(z |X) − 𝔼Q log P(z |X)

= 𝔼Q log Q(z |X) − 𝔼Q log
P(X |z)P(z)

P(X)
= 𝔼Q log Q(z |X) − 𝔼Q log P(X |z) − 𝔼Q log P(z) + log P(X)
= DKL(Q(z |X) |P(z)) − 𝔼Q log P(X |z) + log P(X)

min
ϕ,θ

. DKL(Q(z |X; ϕ) | |P(z)) − 𝔼Q log P(X |z; θ)

𝔼Q log P(X |z) − DKL(Q(z |X) |P(z)) = log P(X) − DKL(Q(z |X) | |P(z |X))

Let’s consider sampling � ’s from an alternative distribution � and try to minimize
the KL between this (variational approximation) and the true posterior,� . And
because I can pick any distribution � I like, I will also condition it on � to help inform
the sampling.

z Q(z)
P(z |X)

Q X

encoder
decoder

Variational Autoencoder

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

min
ϕ,θ

. DKL(Q(z |X; ϕ) | |P(z)) − 𝔼Q log P(X |z; θ)
decoder

Tutotial on variational Autoencoders, Doersch

encoder

z = μ + ϵ ⋅ σ

Variational Autoencoder

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

From left to right: re-parametrization trick!

min
ϕ,θ

. DKL(Q(z |X; ϕ) | |P(z)) − 𝔼Q log P(X |z; θ)
decoder

Tutotial on variational Autoencoders, Doersch

encoder

z = μ + ϵ ⋅ σ

Variational Autoencoder

Auto-Encoding Variational Bayes, Kingma and Welling

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

At test time

Conditional VAE

Tutotial on variational Autoencoders, Doersch

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

min
ϕ

. DKL(Q(z |X, Y) | |P(z |𝒟) = min
ϕ

. DKL(Q(z |X, Y) |P(z)) − 𝔼Q log P(𝒟 |z)

X : st Y : at

Conditioning

∎BCQ ∎DDPG

