Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control
Off policy RL

Fall 2021, CMU 10-703

Instructors:
Katerina Fragkiadaki
Russ Salakhutdinov

On policy versus off policy training

- RL on policy: methods that improve a policy that is used to collect the
data used for such improvement

- RL off policy: methods that improve a policy that is not the same with
the policy that collected the data used for such improvement

Many of these slides were based on Doina Precup’s slides

Off-policy RL seen so far

« Off-policy RL learns from data collected under a behavioral policy
different than the current policy.

* In what we have seen thus far, “off-policy” transitions are generated
from earlier versions of the current policy.

* They are thus heavily correlated to the current policy.

* Not that much off-policy after all.

Batch RL

Batch RL learns from a fixed experience buffer that does not grow with
data collected from a near on policy exploratory policy.

* This is truly off-policy RL.

* Q:Who could have provided such an experience buffer?

A: A set of expert demonstrations for example.

« DDPG (behavioral): (what we have seen in the course) a DDPG policy based on which
actions are selected (with small exploration noise) and the experience buffer is
populated.

 (Truly) Off-policy DDPG: a DDPG policy that uses experience tuples from the buffer, it
does not influence in any way the data collected in the buffer

m Off-Policy DDPG Behavioral -o- True Value
- Final buffe_r. We train a DDPG ggent for1 mllllpn time _ _— 2500 3500]
steps, adding N (0, 0.5) Gaussian noise to actions for high p— 3000 2000
exploration, and store all experienced transitions. This =
collection procedure creates a dataset with a diverse set of ® 2500 . -
states and actions, with the aim of sufficient coverage. c::) 2000 2000 2000
o 1500 1500 1500

@
= A

- Concurrent: We concurrently train the off-policy and o 1000 - 1000 W 1000

behavioral DDPG agents, for 1 million time steps. To < 50 500 500

0

ensure sufficient exploration, a standard N (0, 0.1) 0 0

Gaussian noise is added to actions taken by the behavioral 0.0 qf?meogep%‘;(1 e%? 10 0.0 OT'Zimeo's‘itep%% e%f 10 00 Tirr?i; Steps?fes) 03
policy. Each transition experienced by the behavioral policy

is stored in a buffer replay, which both agents learn from. (a) Final buffer (b) Concurrent (C) Imitation

As a result, both agents are trained with the identical

dataset. performance performance performance

- Imitation: A trained DDPG agent acts as an expert, and is
used to collect a dataset of 1 million transitions, and
populates a buffer, from which the off policy agent learns.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

« DDPG (behavioral): (what we have seen in the course) a DDPG policy based on which
actions are selected (with small exploration noise) and the experience buffer is
populated.

 (Truly) Off-policy DDPG: a DDPG policy that uses experience tuples from the buffer, it
does not influence in any way the data collected in the buffer

m Off-Poli DDPG mu Behavioral -~ 1 2 Value
3500 3500 0| .
€ 3000 3000 0
= i | |
- Concurrent: We concurrently train the off-policy and “I‘:’ 2500 NP A ' P 2500 1
; e 2000| | 1 2000 0
behavioral DDPG agents, for 1 million time steps. To ®
ensure sufficient exploration, a standard N (0, 0.1) & | [1500 P
Gaussian noise is added to actions taken by the behavioral @ 1000} A 1000 ! P
policy. Each transition experienced by the behavioral policy < 500 /\/J\-’\/W . 500 W 0
is stored in a buffer replay, which both agents learn from. 0 0 0
: : S onti 00 02 04 06 08 |) 00 02 04 06 08 1.0 0.0 0.1 0.2 03
Q:taasr:tsult, both agents are trained with the identical Timo stops (106) Time steps (1e6) Time steps (1e6)
(a) Final buffer (b) Concurrent (¢) Imitation
performance performance performance
ﬁ

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

HalfCheetah-v1 Hopper-v1 Walker2d-v1

> 8000

C 6000

Q 1500 1500
& 4000 1000 1000
O

S 2000

I 0 500 500

0
0.0 02 04 0.6 08 1.0 0.0 02 04 06 0.8 1.0 00 02 04 06 08 1.0
Time steps (1e6) Time steps (1e6) Time steps (1e6)

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

Agent orange and agent blue are trained with...

1. The same off-policy algorithm (DDPG).

2. The same dataset.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

The Difference?

1. Agent orange: Interacted with the environment.

* Standard RL loop.
* Collect data, store data in buffer, train, repeat.

2. Agent blue: Never interacted with the environment.
* Trained with data collected by agent orange concurrently.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

1. Trained with the same off-policy algorithm.
2. Trained with the same dataset.
3. One interacts with the environment. One doesn’t.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

Off-policy deep RL fails when truly off-policy.

why?

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

« DDPG (behavioral): (what we have seen in the course) a DDPG policy based on which
actions are selected (with small exploration noise) and the experience buffer is
populated.

 (Truly) Off-policy DDPG: a DDPG policy that uses experience tuples from the buffer, it
does not influence in any way the data collected in the buffer

m Off-Policy DDPG I Behavioral -o- True Value
3500 3500 3500 |
C 3000 3000 3000
= 2500 Nl W N\ 2500 2500
0C 2000, | 2000 "\ 2000
%1500 1500 1500
o 1000 - A 1000 / 1000
Z 500 /\/\J\«/vv 500 W 500
0 0 0
- Final buffer: We train a DDPG agent for 1 million time 00 02 04 06 08 1.0 00 02 04 06 08 1.0 0.0 0.1 0.2 0.3
steps, adding N (0, 0.5) Gaussian noise to actions for high Time steps (1e6) Time steps (1e6) Time steps (1e6)
exploration, and store all experienced transitions. This . T
coIFI)ection procedure createspa dataset with a diverse set of (a) Final buffer (b) Concurrent (C) Imitation
states and actions, with the aim of sufficient coverage. performance performance performanee
x 104 < 10%
- Concurrent: We concurrently train the off-policy and 8 7
behavioral DDPG agents, for 1 million time steps. To 3 1500 6
ensure sufficient exploration, a standard N (0, 0.1) ‘>° N 5
Gaussian noise is added to actions taken by the behavioral T 2 1000 4
policy. Each transition experienced by the behavioral policy % ﬁ Q 3
is stored in a buffer replay, which both agents learn from. g 0 500 2
As a result, both agents are trained with the identical D -2 1
dataset. 0 0
—400 02 04 06 08 1.0 00 02 04 06 08 10 0.0 0.1 0.2 0.3
- Imitation: A trained DDPG agent acts as an expert, and is Time steps (1e6) Time steps (1e6) Time steps (1e6)
used to collect a dataset of 1 million transitions, and . : PR
populates a buffer, from which the off policy agent learns. (d) Final bqﬁer (e) COHCUF‘I‘CHI (f) Imltat!on
value estimate value estimate value estimate

The Q value estimates are higher than their GT values

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

Why model-free RL does not work with fixed experience
buffers?

Extrapolation error:

The Q-function trained from a fixed experience buffer has no way of
knowing whether the actions not contained in the buffer are better or

waorse.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

Why model-free RL does not work with fixed experience
buffers?

Extrapolation Error

Q(s,a) «r+yQ(s,a’)

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

Extrapolation Error

Q(s,a) « r+yQ(s,a’)
Rt

GIVEN GENERATED

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al

Q learning

Extrapolation Error

Q(s,a) «r+yQ(s,a)

1. (s,a,r,s')~Dataset
2. a~m(s’)

a’ = n(s’) = argmax Qy(s’, a)

Off-Policy Deep Reinforcement Learning without Exploratio

Extrapolation Error

Q(s,a) «r+yQ(s,a)

(s’,a’) € Dataset —» Q(s',a’) = bad
- Q(s,a) = bad

Extrapolation Error

Q(s,a) «r+yQ(s,a)

(s’,a’) &€ Dataset - Q(s’,a’) = bad
- Q(s,a) = bad

Extrapolation Error

Q(s,a) «r+vyQ(s,a’)

(s’,a’) &€ Dataset - Q(s’,a’) = bad
— Q(s,a) = bad

Extrapolation Error

Attempting to evaluate m without (sufficient)
access to the (s, a) pairs m visits.

Off-Policy Deep Reinforcement Learning without Exploratio

Solution: Batch constrained RL

A policy which only traverses transitions contained in the batch can be
evaluated without error.

BCQ learns a policy with a similar state-action visitation to the data in the batch

Q(s,a) « (1—a)Q(s,a)+a(r+v max Q(s',a")).

a'st.(s’'.a')EB

Solution: Batch constrained RL

BCAQ learns a policy with a similar state-action visitation to the data in the
batch.

Train a generative model to provide action samples that match the action
samples in the batch:

m(s) = argmax Qy(s,a; +&s(s,a;, P)),
a;+€s(s.a;,P)

{a; ~ Gu(8) }i-,-

A state conditioned generative model that predicts actions
given a state that are contained in the batch B

Learning stochastic generative models

* As we vary the input noisy samples z, we land in a different plausible action

a. y
/4

Learning stochastic generative models

« QOur generative model will transforms the input Gaussian distributions into
the desired action distribution.

« Why simple Gaussian noise suffices to create complex outputs?

* The neural net will transform it to a complex distribution!

......
—————————————

Unconditional generative models

// Each sample z should give me a sample from the
manifold | am trying to model once it passes
| X through the neural network
id y

We want to learn a mapping from z to the output X, usually we assume a
Gaussian distribution to sample every coordinate of X from:

P(X|z;0) = /' (X|f(z;0),6” - I)

Let’'s maximize data likelihood. This requires an intractable integral, too

many zs.

m@ax. P(X) = JP(X | z; 0)P(2)dz

What if we forget that it is intractable and approximate it with few

SampleS? (Q: do we know how to take
- _ 0 — : radients here?
min. Y —logPX)==3 ¥ logPXl50)==3 ¥ Ife0)-X|* ©)

j _] Z{""/V(O,I) _] Zl'N/V(O,I)

Deep Variational Inference

Let’s consider sampling z’s from an alternative distribution Q(z) and try to minimize
the KL between this (variational approximation) and the true posterior, P(z | X). And
because | can pick any distribution Q | like, | will also condition it on X to help inform

the sampling.
Dy, (Qz| X) || P(z]| X)) = [Q(ZIX)IOg Q(le)dz
o P(z] X)

Deep Variational Inference

Let’s consider sampling z’s from an alternative distribution Q(z) and try to minimize
the KL between this (variational approximation) and the true posterior,P(z| X). And
because | can pick any distribution Q | like, | will also condition it on X to help inform

the sampling. o)
Z| X

Dy (01X || PZ|X)) = [Q@ Xlog = 2d:

= Eylog O(z| X) — Ejylog P(z| X)

Deep Variational Inference

Let’s consider sampling z’s from an alternative distribution Q(z) and try to minimize
the KL between this (variational approximation) and the true posterior,P(z| X). And
because | can pick any distribution Q | like, | will also condition it on X to help inform

the sampling. o)
Z| X

Dy (01X || PZ|X)) = JQ@ Xlog = 2d:

= Eylog O(z| X) — Ejylog P(z| X)
P(X|2)P(z)
P(X)

= Eylog O(z| X) — Ejlog

Deep Variational Inference

Let’s consider sampling z’s from an alternative distribution Q(z) and try to minimize
the KL between this (variational approximation) and the true posterior,P(z| X). And
because | can pick any distribution Q | like, | will also condition it on X to help inform

the sampling. o)
Z| X

Dy (01X || PZ|X)) = JQ@ Xlog = 2d:

= Eylog O(z| X) — Ejylog P(z| X)

P(X|2)P
= Eylog O(z| X) — Ejlog (Pl(i) @

= E,log Q(z| X) — E,log P(X | 2) — E, log P(z) + log P(X)

Deep Variational Inference

Let’s consider sampling z’s from an alternative distribution Q(z) and try to minimize
the KL between this (variational approximation) and the true posterior,P(z| X). And
because | can pick any distribution Q | like, | will also condition it on X to help inform

the sampling.
Dy (QG1X) || P(z] X)) = JQ@ Olog 2&1X)
KL 1)

= Eylog O(z| X) — Ejylog P(z| X)

P(X|2)P
= Eylog O(z| X) — Ejlog (Pl(i) @

= E,log Q(z| X) — E,log P(X | 2) — E, log P(z) + log P(X)
= D (Q(z| X) | P(z)) — Eplog P(X | z) + log P(X)

dz

Deep Variational Inference

Let’s consider sampling z’s from an alternative distribution Q(z) and try to minimize
the KL between this (variational approximation) and the true posterior,P(z| X). And
because | can pick any distribution Q | like, | will also condition it on X to help inform

the sampling.
Dy (QG1X) || P(z] X)) = JQ@ Olog 2&1X)
KL 1)

= Eylog O(z| X) — Ejylog P(z| X)

P(X|2)P
= Eylog O(z| X) — Ejlog (Pl(i) @

= E,log Q(z| X) — E,log P(X | 2) — E, log P(z) + log P(X)
= D (Q(z| X) | P(z)) — Eplog P(X | z) + log P(X)

dz

fgien- D (O | X; @) | | P(z)) — Ep log P(X| 25 0)

decoder

Variational Autoencoder

I

| X = flz))?)

l

P :

() |

JLZ) |

N I

|

Decoder I

- > |
KLIN (X, S0X))N, 1)) ('[f) o
1
- : .11
Sample Z from NV (e X) XX)y
l
l
l
l
l
Encoder :
(@) I
,r I
l
X l
l

fgigl- D (O] X; @) || P(z)) — Eplog P(X| 23 0)

decoder

Tutotial on variational Autoencoders, Doersch

Dyt (N

Variational Autoencoder

From left to right: re-parametrization trick!

%

L’[.-\’lf;nﬁ: X)X AT, [

(1

min .
0

o)||N(0,1)) ———Z(l-l-log

I
| X — fl7) |X - f(2)|*
1 | ‘s
fiz) : fiz)
I
I 0
Decoder | 1 (LAl X). 2(X)[IA(0. 1)]| | Decoder
() : A A ()

Sample ¥ from NV (je(X) X[X))

Encoder
(@)

A

A

X2 X)

Encoder
(@)

I=UTE€E-O

Sample € from N (0. /)

0\

X

D (O] X; @) || P(z)) — Eplog P(X| 23 0)

decoder

—03)

Tutotial on variational Autoencoders, Doersch

Variational Autoencoder

At test time

Decoder

(P)

Sample tfronw.\'ub.l)|

DAY NANNNAANNENNSNNSNNNNS
VAV LELLLLLLW NN~
QAVINNNRLELLLLVYS Y NN~
QAVVNININHG ot GVVVY W~~~
QOAVVHHINNWVWWBPBVIVIVIY W@ - —-—
QAOODOHINININMNMEBPIBDIOIIY W@ W - —
QQAQOQOOOMHIMNMMMO WM DOIOID D W@ - - —
QOO MMNMN N ®O DD D e —
QODMMM MMM N MDD DD e e —
QOO MMM NN WD DD e e —
QOMMMM M 0" 000000 e e on oo o —
QA48 0% 000700000000 n o~ 0~ 0~ i o=
NI L L GGG U o e
it rororororrrso oo~
S odogororororrrrraaan~N
SddadadadocrrrrrrTIIIRNN
SddddgorrrsrrrddTTITRIXINN
SAdITTTTrTrrrrr>rIPrIr22R2NN
I g g ol ol ol ol ol ol ol ol Ol NN LN

(b) Learned MNIST manifold

(a) Learned Frey Face manifold

Auto-Encoding Variational Bayes, Kingma and Welling

Conditional VAE

1Y — f=. X)) . flz. X)
I
K ik
flz. X] I Decoder
0\ | (P)
KLIN(pnY, X)), 8, X)||AN(0, 1] | Decoder :
,T\ ’T‘ (P) !
i
I X Sample z from A\ (0. /)
I

Y XYL X

, X:s, Y:aq,
Encoder | |Sample ¢ from \(0. /)
(2) Conditioning
P s
Y A

min. Dg(QGIX.)| |P|2) = min. Dy (0GIX, V)| PR) =~ Eglog A2 |2)

Tutotial on variational Autoencoders, Doersch

HalfCheetah-v1 Hopper-v1 Walker2d-v1

10000 3000
2000

C 8000 2500

-

© 1500 2000

2 6000

o 1500

& 4000 1000

(1000

O 2000

< 500 500
0

0
0.0 02 04 06 08 1.0 0.0 02 04 0.6 08 1.0 0.0 02 04 06 08 1.0
Time steps (1e6) Time steps (1e6) Time steps (1€6)

EBCQ mDDPG

