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• RL on policy: methods that improve a policy that is used to collect the 
data used for such improvement

• RL off policy: methods that improve a policy that is not the same with 
the policy that collected the data used for such improvement

On policy versus off policy training

Many of these slides were based on Doina Precup’s slides 



• Off-policy RL learns from data collected under a behavioral policy 
different than the current policy. 

• In what we have seen thus far, “off-policy” transitions are generated 
from earlier versions of the current policy. 

• They are thus heavily correlated to the current policy. 

• Not that much off-policy after all.

Off-policy RL seen so far



• Batch RL learns from a fixed experience buffer that does not grow with 
data collected from a near on policy exploratory policy. 

• This is truly off-policy RL.

• Q:Who could have provided such an experience buffer?

• A: A set of expert demonstrations for example.

Batch RL



• DDPG (behavioral): (what we have seen in the course) a DDPG policy based on which 
actions are selected (with small exploration noise) and the experience buffer is 
populated.

• (Truly) Off-policy DDPG: a DDPG policy that uses experience tuples from the buffer, it 
does not influence in any way the data collected in the buffer 

• Final buffer: We train a DDPG agent for 1 million time 
steps, adding N (0, 0.5) Gaussian noise to actions for high 
exploration, and store all experienced transitions. This 
collection procedure creates a dataset with a diverse set of 
states and actions, with the aim of sufficient coverage. 

• Concurrent: We concurrently train the off-policy and 
behavioral DDPG agents, for 1 million time steps. To 
ensure sufficient exploration, a standard N (0, 0.1) 
Gaussian noise is added to actions taken by the behavioral 
policy. Each transition experienced by the behavioral policy 
is stored in a buffer replay, which both agents learn from. 
As a result, both agents are trained with the identical 
dataset. 

• Imitation: A trained DDPG agent acts as an expert, and is 
used to collect a dataset of 1 million transitions, and 
populates a buffer, from which the off policy agent learns.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al  
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Surprise!

Agent orange and agent blue are trained with…

1. The same off-policy algorithm (DDPG).

2. The same dataset.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al  



The Difference?

1. Agent orange: Interacted with the environment.
• Standard RL loop. 
• Collect data, store data in buffer, train, repeat.

2. Agent blue: Never interacted with the environment. 
• Trained with data collected by agent orange concurrently.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al  



1. Trained with the same off-policy algorithm.
2. Trained with the same dataset.
3. One interacts with the environment. One doesn’t.

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al  



Off-policy deep RL fails when truly off-policy. 

why?

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al  



The Q value estimates are higher than their GT values 
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Extrapolation error:

The Q-function trained from a fixed experience buffer has no way of 
knowing whether the actions not contained in the buffer are better or 
worse.

Why model-free RL does not work with fixed experience 
buffers?

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al  



Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾𝑄 𝑠′, 𝑎′

Why model-free RL does not work with fixed experience 
buffers?
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Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾𝑄 𝑠′, 𝑎′

GIVEN GENERATED

Off-Policy Deep Reinforcement Learning without Exploration, Fujimoto et al  



Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾𝑄 𝑠′, 𝑎′
1. 𝑠, 𝑎, 𝑟, 𝑠 ~𝐷𝑎𝑡𝑎𝑠𝑒𝑡
2. 𝑎 ~𝜋(𝑠 )

a′� = π(s′�) = argmaxaQθ(s′�, a)

Q learning

Off-Policy Deep Reinforcement Learning without Exploration 



Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾𝑄 𝑠′, 𝑎′
𝑠 , 𝑎 ∉ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 → 𝑄 𝑠 , 𝑎 = 𝐛𝐚𝐝

→ 𝑄 𝑠, 𝑎 = 𝐛𝐚𝐝
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Extrapolation Error

Attempting to evaluate 𝜋 without (sufficient) 
access to the (𝑠, 𝑎) pairs 𝜋 visits.

Off-Policy Deep Reinforcement Learning without Exploration 



A policy which only traverses transitions contained in the batch can be 
evaluated without error. 

BCQ learns a policy with a similar state-action visitation to the data in the batch 

Solution: Batch constrained RL



BCQ learns a policy with a similar state-action visitation to the data in the 
batch.

Train a generative model to provide action samples that match the action 
samples in the batch:

Solution: Batch constrained RL

A state conditioned generative model that predicts actions 
given a state that are contained in the batch B



Learning stochastic generative models

Tutotial on variational Autoencoders, Doersch

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

z ∼ 𝒩(0, I ) [s z] a

• As we vary the input noisy samples z, we land in a different plausible action 
a.



Learning stochastic generative models

Tutotial on variational Autoencoders, Doersch

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

f (z) =
z

10
+

z
∥z∥

• Our generative model will transforms the input Gaussian distributions into 
the desired action distribution.

• Why simple Gaussian noise suffices to create complex outputs? 
• The neural net will transform it to a complex distribution!

z ∼ 𝒩(0, I)



Unconditional generative models

Motion Prediction Under Multimodality with Conditional Stochastic Networks, Google 

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

We want to learn a mapping from z to the output X, usually we assume a 
Gaussian distribution to sample every coordinate of X from:

P(X |z; θ) = 𝒩(X | f(z; θ), σ2 ⋅ I)

(Q: do we know how to take 
gradients here?)min

θ
. ∑

j

− log P(Xj) = − ∑
j

∑
zi∼𝒩(0,I)

log P(Xj |zi; θ) = − ∑
j

∑
zi∼𝒩(0,I)

∥f (zi; θ) − Xj∥2

What if we forget that it is intractable and approximate it with few 
samples?

Each sample z should give me a sample from the 
manifold I am trying to model once it passes 
through the neural network

max
θ

. P(X) = ∫ P(X |z; θ)P(z)dz

Let’s maximize data likelihood. This requires an intractable integral, too 
many zs.

z ∼ 𝒩(0, I ) X



Deep Variational Inference

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

DKL(Q(z |X) | |P(z |X)) = ∫ Q(z |X)log
Q(z |X)
P(z |X)

dz

= 𝔼Q log Q(z |X) − 𝔼Q log P(z |X)

= 𝔼Q log Q(z |X) − 𝔼Q log
P(X |z)P(z)

P(X)

= 𝔼Q log Q(z |X) − 𝔼Q log
P(X |z)P(z)

P(X)
= 𝔼Q log Q(z |X) − 𝔼Q log P(X |z) − 𝔼Q log P(z) + log P(X)
= DKL(Q(z |X) |P(z)) − 𝔼Q log P(X |z) + log P(X)

min
ϕ,θ

. DKL(Q(z |X; ϕ) | |P(z)) − 𝔼Q log P(X |z; θ)

Let’s consider sampling � ’s from an alternative distribution �  and try to minimize 
the KL between this (variational approximation) and the true posterior, � . And 
because I can pick any distribution �  I like, I will also condition it on �  to help inform 
the sampling. 

z Q(z)
P(z |X)

Q X

encoder
decoder

𝔼Q log P(X |z) − DKL(Q(z |X) |P(z)) = log P(X) − DKL(Q(z |X) | |P(z |X))
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Variational Autoencoder

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

min
ϕ,θ

. DKL(Q(z |X; ϕ) | |P(z)) − 𝔼Q log P(X |z; θ)
decoder

Tutotial on variational Autoencoders, Doersch

encoder

z = μ + ϵ ⋅ σ



Variational Autoencoder

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

From left to right: re-parametrization trick!

min
ϕ,θ

. DKL(Q(z |X; ϕ) | |P(z)) − 𝔼Q log P(X |z; θ)
decoder

Tutotial on variational Autoencoders, Doersch

encoder

z = μ + ϵ ⋅ σ



Variational Autoencoder

Auto-Encoding Variational Bayes, Kingma and Welling

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

At test time



Conditional VAE

Tutotial on variational Autoencoders, Doersch

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

min
ϕ

. DKL(Q(z |X, Y ) | |P(z |𝒟) = min
ϕ

. DKL(Q(z |X, Y ) |P(z)) − 𝔼Q log P(𝒟 |z)

X : st Y : at

Conditioning



∎BCQ ∎DDPG


