
Deep Reinforcement Learning and Control

Off policy RL

Fall 2021, CMU 10-703

Ruosong Wang

Extrapolation Error

• 𝑄 𝑠, 𝑎 = 𝑟(𝑠, 𝑎) + 𝛾𝑄(𝑠!, 𝑎′)

• If (𝑠!, 𝑎′) is not in the dataset, then estimate for 𝑄 𝑠, 𝑎 could be bad

• Could function approximation help here?

• I.e., can we use the dataset + supervised learning to predict 𝑄(𝑠!, 𝑎′)?

Offline Policy Evaluation

• Given a dataset 𝐷 = {(𝑠" , 𝑎" , 𝑟" , 𝑠"!)}
• A target policy 𝜋
• Goal: estimate the value of the policy

• Value Iteration
• For 𝑡 = 1, 2, …
• !𝑄! 𝑠", 𝑎" = 𝑟" + 𝛾 !𝑉!#$(𝑠"%)
• !𝑉! 𝑠 = !𝑄!(𝑠, 𝜋(𝑠))

Tabular setting:
If every state-action pair has poly(1/(1 − 𝛾), 1/𝜀)
samples, then estimated value is accurate up to an
error of 𝜀

|S| = 3!"#

How to deal with larger (or even continuous) state space?

RL with Function Approximation

•

• Function approximation 𝑓 ∈ ℱ
• ℱ: function class with bounded complexity.
• Linear functions, kernels, neural networks, etc

Value-based Learning
𝑄 𝑠, 𝑎 ≈ 𝑓(𝑠, 𝑎)

state action 𝑓

This talk: the linear setting
Feature extractor 𝜙 ∶ 𝑆 × 𝐴 → ℝ'
ℱ = linear functions with respect to 𝜙
𝑄(𝑠, 𝑎 = 𝜙 𝑠, 𝑎)𝜃∗

One-Step Offline RL (𝛾 = 0)

• Given a dataset 𝐷 = {(𝑠" , 𝑎" , 𝑟")}
• We know that 𝑄 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠!, 𝑎! = 𝑟(𝑠, 𝑎)
• And 𝑄 𝑠, 𝑎 is linear, i.e., 𝑄 𝑠, 𝑎 = 𝜙 𝑠, 𝑎 #𝜃∗ for some unknown 𝜃∗

• Can we use the given dataset to learn Q-values for other state-action pairs?
• Linear regression (with distribution shift)

• Feature Matrix: Φ ∈ ℝ%×' with 𝜙(𝑠" , 𝑎") as rows
• Least squares predictor: 9𝜃 = Φ#Φ ()Φ𝑟

One-Step Offline RL (𝛾 = 0)

• Feature Covariance Matrix
• Σ = 𝔼 +,- ∼/[𝜙 𝑠, 𝑎 𝜙 𝑠, 𝑎)]

• Suppose
• Coverage: 𝜎012 Σ ≥ 𝜆012

• Lemma: When 𝐷 ≥ poly(𝑑, 1/𝜀, 1/𝜆*+,), then least squares works
• For any 𝑠, 𝑎 , 𝑄(𝑠, 𝑎) − 9𝜃#𝜙 𝑠, 𝑎 ≤ 𝜀

How to deal with large state space + long planning horizon?

Fitted-Q Iteration (FQI)

• Value Iteration + Linear Regression

• For 𝑡 = 1, 2, …
• For each data 𝑠", 𝑎" , !𝑄! 𝑠", 𝑎" = 𝑟" + 𝛾 !𝑉!#$(𝑠"%)
• Run linear regression on {𝜙 𝑠", 𝑎" , !𝑄!(𝑠", 𝑎")} to learn 𝜃! ∈ ℝ'

• !𝑉! 𝑠 = 𝜙 𝑠, 𝜋 𝑠)𝜃!

• Simple and widely used
• When does it work?

Characterizing FQI

• Notations:
• Feature Matrix: Φ ∈ ℝ3×' with 𝜙(𝑠", 𝑎") as rows
• Empirical Feature Covariance Matrix: Σ = Φ)Φ
• “Next” Feature Matrix: Φ ∈ ℝ3×' with 𝜙(𝑠"′, 𝜋(𝑠"%)) as rows

• Lemma

• Non-expansive 𝐿 => error goes to 0 by taking 𝑇 large
• Expansive 𝐿 => geometric error amplification
• Low distribution shift => non-expansive 𝐿

𝜃! − 𝜃∗ = 𝛾!𝐿! (𝜃# − 𝜃∗) where 𝐿 = Σ$%Φ&Φ

Simulation Results

• 𝑁 = 100 or 𝑁 = 200, 𝑑 = 100, 𝛾 = 0.99
• 𝜃∗, 𝜙 𝑠, 𝑎 , 𝜙 𝑠!, 𝜋 𝑠! ∼ 𝑁 0, 𝐼

• 𝑟" = 𝜙 𝑠" , 𝑎" − 𝛾𝜙 𝑠"!, 𝜋 𝑠"!
#
𝜃∗ to ensure linearity

40 60 80 100

1011

1027

1043

1059

1075

1091

10107
kµt ° µ§k2, ∏ = 0.001

k(§̂°1©>©/N)tkF , ∏ = 0.001

kµt ° µ§k2, ∏ = 0.0001

k(§̂°1©>©/N)tkF , ∏ = 0.0001

20 40 60 80 100

102

104

106

108

1010 kµt ° µ§k2, ∏ = 0.001

k(§̂°1©>©/N)tkF , ∏ = 0.001

kµt ° µ§k2, ∏ = 0.0001

k(§̂°1©>©/N)tkF , ∏ = 0.0001

𝑁 = 100 𝑁 = 200Is geometric error amplification inherent in Offline RL?

Hardness Result

• Geometric error amplification is inherent
• Coverage assumption: feature covariance matrix is well-conditioned

Theorem [W., Foster, Kakade’20]
Suppose coverage + linear 𝑄-. There is an MDP such that for any
policy 𝜋, any algorithm requires an exponential number of samples to
approximately evaluate 𝜋.

How serious is the hardness result in practice?

Experimental Methodology

• Step 1: Run online RL methods (DQN, TD3) to find a target policy 𝜋
and a good representation
• Target policy: final policy output by DQN / TD3
• Feature mapping: output of the last hidden layer of the learned value function

networks.
• Step 2: Collect offline data (with distribution shift)
• 𝐷⋆: 1 million samples generated by 𝜋 itself
• We combine 𝐷⋆ with random trajectories / trajectories from lower performing

policies
• Step 3: Run offline RL methods

Figure credit: Lavanya Shukla

Target Policy + Random Policy

Target policy 𝜋Random policy

What happens if we use +

neural representation + offline RL to evaluate ?

+

Results

CartPole-v0 Hopper-v2

Results

Walker2d-v2 MountainCar-v0

What happens if we use +

neural representation + offline RL to evaluate ?

Target Policy + Lower Performing Policy

Target policy 𝜋Lower performing policy

+

Results

CartPole-v0 Hopper-v2

𝑉$! > 𝑉$" > 𝑉$#> 𝑉$$
𝐷⋆: induced by target policy with 1 million samples

𝐷&'() : induced by 𝜋) with 1 million samples

Results

Walker2d-v2 Mountain-v0

Observations

• Adding more data (from random trajectories / lower performing policies)
into the dataset generally hurts the performance

• Geometric error amplification does occur

