Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control

Monte Carlo Learning and Temporal
Difference Learning

Fall 2021, CMU 10-703

Instructors
Katerina Fragkiadaki
Russ Salakhutdinov

Summary so far

* So far, to estimate value functions we have been using dynamic
programming with known rewards and dynamics functions:

V[k+1](S) = Z n(a S)<”(S, a) + }’ZP(S’I S, a)v[k](s’)>, Vs

V[k+1](S) = max (I’(S, a) + /4 2 p(Sll AR a)V[k](S/)>, Vs

aed oy

Q: Was our agent interacting with the world? Was our agent exploring?

A: 1) No. 2) No, if you know everything, there is nothing to explore.

Coming up

* So far, to estimate value functions we have been using dynamic
programming with known rewards and dynamics functions:

vﬂ,[k+1](s) — Z ﬂ(a | S)<7"(S, a) + VZP(S’| S, a)Vﬂ-,[k](S/)>, Vs

Viks)(8) = max <” (s,a) +7 Z p(s'[s, a)v[k](S’)>, Vs
ac

s'es

* Next: estimate value functions and policies from interaction experience,
without known rewards or dynamics.

« How? By sampling all the way. Instead of probabilities distributions
to compute expectations, we will use empirical expectations by
averaging sampled returns.

Monte Carlo (MC) Methods

- Monte Carlo methods are learning methods

Experience — values, policy

- Monte Carlo methods learn from complete sampled trajectories and
their returns.

- Only defined for episodic tasks .

- All episodes must terminate.

- Monte Carlo uses the simplest possible idea: value = mean return

Monte-Carlo Policy Evaluation

. Goal: learn vﬂ(s) from episodes of experience under policy :

51,A1, R2, ooy Sk ~ T

- Remember that the return is the total discounted reward:

Gt = Rep1 +YRep2 + ... + WT_IRT

- Remember that the value function is the expected return:

Ve (S) =

“:71- [Gt ‘ St — 5]

+ Monte-Carlo policy evaluation uses empirical mean return instead of

expected return

Monte-Carlo Policy Evaluation

. Goal: learn vﬂ(s) from episodes of experience under policy 7.

- ldea: Average returns observed after visits to s:

- Every-Visit MC: average returns for every time s is visited in an episode

- First-visit MC: average returns only for first time s is visited in an
episode

- Both converge asymptotically based on the law of large humbers

https://en.wikipedia.org/wiki/Law_of_large_numbers

First-Visit MC Policy Evaluation

- To evaluate state s

- The first time-step t that state s is visited in an episode,

*Increment counter: N(s) < N(s)+1

- Increment total return: 5(s) < S(s) + G;

- Value is estimated by mean return V(s) = S(s)/N(s)

- By law of large numbers V(s) = vr(s) as N(s) — o0

Law of large numbers

https://en.wikipedia.org/wiki/Law_of_large_numbers

Every-Visit MC Policy Evaluation

- To evaluate state s

- Every time-step t that state s is visited in an episode,

+ Increment counter: N(s) < N(s) + 1

- Increment total return: ~ S(s) < S(s) + G;

- Value is estimated by mean return V/(s) = S(s)/N(s)

+ By law of large numbers V/(s) — v, (s) as N(s) — oo

Incremental Mean

- The mean p, of a sequence x; . .. Xx; can be computed incrementally:

Monte Carlo Prediction

- Update V(s) incrementally after episode S1, A1, R, ..., ST
- For each state St with return Gt
N(St) — N(St) + 1

1
N(S¢)

V(S:) < V(S:) A (Gt — V(5¢))

- In non-stationary problems, it can be useful to track a running mean,
l.e. forget old episodes.

V(S:) < V(S5¢) + a(G: — V(S:))

Backup Diagram for Monte Carlo

- Entire rest of episode included Q

- Only one choice considered at each state (unlike DP)

-+ Does not bootstrap from successor state’s values
(unlike DP), i.e., the value estimates of later states are
not used to inform the values of nearby states.

O
- Value is estimated by mean return. ¢

o
O
)

l terminal state

Summary so far

 Unknown dynamics: estimate value functions and optimal policies
using Monte Carlo

- Monte Carlo Prediction: estimate the value function of a given policy
by deploying it, collect episodes and average their returns.

« Next: Monte Carlo control: find optimal policies by interaction

Monte-Carlo Control

E | E | E | E
MO — Qg —> M1 —> G, —> Ty —> =+ — Ty — (x

evaluation
Q ~ Qr

7r Q

improvement

- MC policy iteration step: Policy evaluation using MC methods followed
by policy improvement

- Policy improvement step: greedify with respect to value (or action-
value) function

Greedy Policy

- For any action-value function q, the corresponding greedy policy is the
one that:

For each s, deterministically chooses an action with maximal action-
value:

m(s) = argmaxq(s,a).
a

- Policy improvement then can be done by constructing each ;_ as the
greedy policy with respect to g, ;.

MC Estimation of Action Values (Q)

+ Monte Carlo (MC) is most useful when a model is not available

. We want to learn g * (s, a) because then we can get an optimal
policy without knowing dynamics.

. q,(s,a) - average return starting from state s and action a following it

@r(s,a) = Eg|Rip1 +yvr(Se41) | Si=s, Ay =a]
— Zp(s', r|s,a) [r + 'y'uﬂ(s')] .

- Converges asymptotically if every state-action pair is visited.

- Q: Is this possible if we are using a deterministic policy?

Dynamic Programming Trial-and-error learning

/O?k “Q @X)

In trial-and-error learning the state transitions are not available to you unless
you visit them.

The Exploration problem

* |If we always follow the deterministic policy to collect experience, we will
never have the opportunity to see and evaluate (estimate q) of
alternative actions...

* ALL learning methods face a dilemma: they seek to learn action values
conditioned on subsequent optimal behaviour but they need to act
suboptimally in order to explore all actions (to discover the optimal
actions). The exploration-exploitation dilemma.

* Q: Does a learning algorithm know when the optimal policy has been
reached to stop exploring?

The Exploration problem

 |f we always follow the deterministic policy to collect experience, we will
never have the opportunity to see and evaluate (estimate q) of alternative

actions...

« ALL learning methods face a dilemma: they seek to learn action values
conditioned on subsequent optimal behaviour but they need to act
suboptimally in order to explore all actions (to discover the optimal
actions). The exploration-exploitation dilemma.

e Solutions:

1. exploring starts: Every state-action pair has a non-zero probability of
being the starting pair

2. Give up on deterministic policies and only search over €-soft policies

3. Off-policy: use a different policy to collect experience than the one you
care to evaluate

Monte Carlo Exploring Starts

Initialize, for all s € 8, a € A(s): Fixed point is optimal
Q(s,a) < arbitrary olicv rt*
7(s) < arbitrary pOLLY
Returns(s, a) < empty list

Repeat forever:
Choose Sy € 8§ and Ag € A(Sy) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ag, following 7
For each pair s, a appearing in the episode:
(G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s, a))
For each s in the episode:
7(s) < argmax, Q(s,a)

Convergence of MC Control

- Greedified policy meets the conditions for policy improvement:

qr, (S, argmax qr, (s, a))
a

Max gr, (s, a)

Gy, (S, Tht1(8))

qwk(saﬂ-k(s))

U, (8).

AVARAV,

- And thus must be = 7.

- This assumes exploring starts and infinite number of episodes for MC
policy evaluation

On-policy Monte Carlo Control

- On-policy: learn about policy currently executing

- How do we get rid of exploring starts?

. The policy must be eternally soft: z(a | s) >0 for all s and a.

+ For example, for e-soft policy, probability of an action, ri(als),

A1 0T T)
non-max max (greedy)

- Similar to GPI: move policy towards greedy policy

- Converges to the best e-soft policy.

¢ — soft Policies

- They keep choosing suboptimal actions even when the best one has
been discovered.

- The second best action is as bad as the worst action.

- However, we will stick with them till we figure out better exploration
methods later in the course.

On-policy Monte Carlo Control

Initialize, for all s € 8, a € A(s):
Q(s,a) < arbitrary
Returns(s, a) < empty list
m(a|s) < an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s,a appearing in the episode:
(G < return following the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
(c) For each s in the episode:
A* < argmax, Q(s,a)
For all a € A(s):
1—e+¢/|lA(s)| if a= A"
m(als) { e/|A(s)] e if @ # A*

Off-policy methods

- Learn the value of the target policy & from experience due to behavior
policy .

- For example, & is the greedy policy (and ultimately the optimal policy)
while u is exploratory (e.g., e-soft) policy

- In general, we only require coverage, i.e., that 4 generates behavior
that covers, or includes, 7.

u(als) > 0 for every s,a at which w(als) > 0

- Q: can | average returns as before to obtain the value function of 7 ?

Off-policy methods

- Learn the value of the target policy & from experience due to behavior
policy .
- For example, & is the greedy policy (and ultimately the optimal policy)

while u is exploratory (e.g., e-soft) policy

- In general, we only require coverage, i.e., that 4 generates behavior
that covers, or includes, 7.

u(als) > 0 for every s,a at which w(als) > 0

- Idea: Importance Sampling:

- Weight each return by the ratio of the probabilities of the trajectory
under the two policies.

Estimating Expectations

. General Idea: Draw independent samples {z', . ., 7" }from distribution

p(z) to approximate expectation:
51/ = [£z ~

| — .
< 2 [=1
n=1

p(2) f(z)

Estimating Expectations

. General Idea: Draw independent samples {z', . ., 7" }from distribution

p(z) to approximate expectation:
51/ = [£z ~

| — .
< 2 [=1
n=1

p(2) f(z)

Note that: E|f] = E|

Z

so the estimator has correct mean (unbiased).

- The variance: A 1

varlf] = E[(f — E[f))?].

- Variance decreases as 1/N.

Estimating Expectations

. General Idea: Draw independent samples {z', . ., 7" }from distribution

p(z) to approximate expectation:
51/ = [£z ~

| — .
< 2 [=1
n=1

(%) f(z)

- Note that: E|f] = E|

so the estimator has correct mean (unbiased).

- The variance: A 1

varlf] = E[(f — E[f))?].

- Variance decreases as 1/N.

- Remark: The accuracy of the estimator does not depend on
dimensionality of z.

Importance Sampling

- Suppose we have an easy-to-sample proposal distribution g(z), such
that

q(z) >0 if p(z) > 0. 3 f] = /f(z)p(z)dz

= [185 ()

- The quantities

w" = p(2")/q(z")
are known as importance weights.

Importance Sampling

- Let our proposal be of the form: g(2) = ¢(2)/Z,.

sif) = [sz = [foE B =2 [162 e

B
Zq 1 D(2" " 1 o oes
wz—ﬂ;géngﬂz)= 202 S ur ()

p n

‘QN)

A\

-+ But we can use the same weights to approximat¢z 0/ Zp

i—zziq/ﬁ(z)dz/% dzN p

- Hence:
N

Elf] =) —

N
n=1 Zmzl w'

n

<

5 w™.
T

Importance Sampling Ratio

. Probability of the rest of the trajectory, after S,, under policy

PI‘{At, St+1: At+1a KRR ST Sta At:T—l ~ 77}

= W(Atlst)p(st+1|sta At)’/T(At+1|St+1) " 'P(5T|ST—1, AT—l)
T—-1

| [(AkISk)p(Sk+1/Sk, Ar),
k=t

- Importance Sampling: Each return is weighted by the relative
probability of the trajectory under the target and behavior policies

pl — Hf‘# 7 (Ak|Sk)P(Sk+1|Sk, Ak) _ qﬁ m(Ag|Sk)
Hk =t 'u'(Sk)p(Sk+1 SkaAk) k—t 'U’(Ak Sk)

- This is called the Importance Sampling Ratio

Importance Sampling

- Ordinary importance sampling forms estimate
T(t)
. ZtE‘T(s) py Gy
T(s)

- New notation: time steps increase across episode boundaries:

V(s)

= oSa@. ag...s....4. ..

B = 1234586 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27

tt N

T(s) = {4, 20} T(4)=9 T(20) = 25

set of start times next termination times

Importance Sampling

- Ordinary importance sampling forms estimate

t fter t up th h
First time of termination _rre(tl)Jrna er tup throug

following time t

Every time: the set of all time
steps in which state s is visited

Importance Sampling Ratio

- All importance sampling ratios have expected value 1:

4‘
“Ap~p

Sk)

Sk)

Sk)

B . 7(a
= za:lt(ISk)M(

a|Sk)

Z m(a|Sk) = 1.

a

 Note: Importance Sampling can have high (or infinite) variance.

Importance Sampling

- Two ways of averaging weighted returns:

- Ordinary importance sampling forms estimate:

Dynamic Programming Trial-and-error learning

/O?\? @Q }

In trial-and-error learning the state transitions are not available to you unless
you visit them.

So far

- MC has several advantages over DP:
-+ Can learn directly from interaction with environment

- No need for full models

- MC methods provide an alternate policy evaluation process

- One issue to watch for: maintaining sufficient exploration

- Looked at distinction between on-policy and off-policy methods

MC and TD Learning

. Goal: learn v _(s) from episodes of experience under policy z

- Incremental every-visit Monte-Carlo:

. Update value V(S,) toward actual return G,:
V(S:) « V(S:) + a(G: — V(S:))

- Simplest Temporal-Difference learning algorithm: TD(0)

Update value V(St) toward estimated returns Ry 1 + vV (S¢41)
V(St) < V(5¢) + a(Rev1 + 7V (Se41) — V(5e))

Rit1 + vV/(Sey1) is called the TD target
© 0 = Rey1 +vV(Se+1) — V(S:) is called the TD error.

DP vs. MC vs. TD

Learning

MC: sample average return

Remember: . .
/ approximates expectation
’UW(S) = fw[Gt | StZS]
- oo -
= Ln Z’Y Ritkt1 | St=S$
k=0 -

-

/

TD: combine both: Sample
expected values and use a
current estimate V(S,, ;) of the
true v_(S,,1)

o0
L | Rg1 + ’YZ'Yth+k+2 St=38

k=0 .

[Rt+1 + Yur(St+1) | St=3].

\ DP: the expected values are
provided by a model. But we use

a current estimate V(S,, ;) of the
true v_(S,,1) -

Dynamic Programming

V(S,) < Eﬂ[Rt+1 +)/V(SHl)] = Zﬂ(a]St) Zp(SlaT’St’ a)[r +~vV(s")]

Monte Carlo

V(S:) « V(S:) + a (G — V(S:))
St

Simplest TD(0) Method

V(St) <= V(5t) + a(Rep1 + 7 V(Se41) — V(St))

TD Methods Bootstrap and Sample

- Bootstrapping: update involves an estimate
- MC does not bootstrap
- DP bootstraps

- TD bootstraps

- Sampling: update does not involve an expected value
- MC samples
- DP does not sample

- TD samples

TD Prediction

- Policy Evaluation (the prediction problem):

- for a given policy 7, compute the state-value function v_.

- Remember: Simple every-visit Monte Carlo method:

V(Sy) « V(S) + |Gy = V(S1)

4

/

target: the actual return after time t

-+ The simplest Temporal-Difference method TD(0):

V(St) ¢ V(S0) + a|Rep + 9V (Si41) = V(Sy)]
I |

target: an estimate of the return

Example: Driving Home

Elapsed Tvme Predicted Predicted

State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 30
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43

Simple every-visit Monte Carlo method:
V(S) V(Si) + |G — V(Sy)]
+ The simplest Temporal-Difference method TD(0):

V(St) ¢ V(S0) + a|Repr + 9V (Si41) = V(Sy)]

Example: Driving Home

Changes recommended by Monte Changes recommended

Carlo methods (a=1) by TD methods (a=1)
45 -
_._Aactual outcome_____ actual
A outcome
: 40 , 40
Predicted Predicted
total total
travel 154 travel
time time
30
' 1 1] ' || | | | || | |
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office car highway road sireet home

Situation Situation

Advantages of TD Learning

- TD methods do not require a model of the environment, only
experience

TD, but not MC, methods can be fully incremental

- You can learn before knowing the final outcome
- Less memory

-+ Less computation

- You can learn without the final outcome

- From incomplete sequences

-+ Both MC and TD converge (under certain assumptions to be detailed
later), but which is faster?

Bias-Variance Trade-Off

. Monte-Carlo: Update value V(S,) toward actual return G,

V(S:) « V(S:) +a(G — V(S))

- Return G: = Rey1 +YReq2 +...+~7 Ry is unbiased estimate Vi (S)

- TD: Update value V(St) toward estimated returns Re+1 + 7V/(St+1)
V(St) < V(St) + a(Res1 + 7 V(Se41) — V(St))

- True TD target: R, ; + yv,(S,,1) is unbiased estimate v, (S;)
. TD target: R, |+ yV(S,,) is biased estimate of v_(S,).

- TD target is much lower variance than the return:
- Return depends on many random actions, transitions, rewards

- TD target depends on one random action, transition, reward

AB Example

*+ Suppose you observe the following 8 episodes:

A,0,B,0

B, 1

E’i V(B)? 0.75
B. 1 V(A)? 0
B, 1

B, 1

B.0O

- Assume Markov states, no discounting (y = 1)

AB Example

- The prediction that best matches the training data is V(A)=0
- This minimizes the mean-square-error on the training set

- This is what a batch Monte Carlo method gets

AB Example

V(A)? 075

r=20
@ 100%

AB Example

- The prediction that best matches the training data is V(A)=0
- This minimizes the mean-square-error on the training set

- This is what a batch Monte Carlo method gets

- If we consider the sequentiality of the problem, then we would set
V(A)=.75

- This is correct for the maximum likelihood estimate of a Markov
model generating the data

- I.e, if we do a best fit Markov model, and assume it is exactly
correct, and then compute what it predicts.

- This is called the certainty-equivalence estimate

- This is what TD gets

Summary so far

- Introduced one-step tabular model-free TD methods

- These methods bootstrap and sample, combining aspects of DP and
MC methods

Unified View

Temporal- y |
difference programming
learning

height
(depth)
of backup

O .
® Exhaustive
Monte . search
Carlo O 5
[

. Y
. .
.)
. .
. . ’ .
. : . .

l Search, planning in a later lecture!

Learning An Action-Value Function

- Estimate g, for the current policy 7

- — S F—e St ® St ° Sie ®
t St,At _t/l St+1)At+1 w St+2,At+2 w St+3,At+3

-+ Can we come up with the TD update equation for Q values?

Learning An Action-Value Function

- Estimate g, for the current policy 7

- — S F—e St ® St ° AR ®
t St,At " St+1)At+1 w St+2,At+2 w St+3,At+3

After every transition from a nonterminal state, S, , do this:

0(S,.A) < O(S,.A)+a|R,, +70(S,,.A,)-0S,.A)]
If §,,, 1s terminal, then define Q(S,,,,A,,,)=0

r+1

SARSA: On-Policy TD Control

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S, A) + Q(S, A) + a|R+1Q(5", 4") — Q(S, A)]
S+ S A+ A

until S is terminal

Windy Gridworld

S G .

standard
moves

O 0 01 1 1 2 2 1 0

- undiscounted, episodic, reward = —1 until goal

Results of SARSA on the Windy Gridworld

170 -
150 -

100 -
Episodes

50 -

0 1000 2000 3000 4000 5000 6000 7000 8000
Time steps

Q: Can a policy result in infinite loops? What will MC policy iteration do then?

- |f the policy leads to infinite loop states, MC control will get trapped as the episode
will not terminate.

* Instead, TD control can update continually the state-action values and switch to a
different policy.

Q-Learning: Off-Policy TD Control

* One-step Q-learning:

Q(St, At) < Q(St, Ar) + a {Rt+1 +ymax Q(Sei1,a) — QS At)}

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’

Q(S,A) + Q(S,A) + a|R + ymax, Q(5",a) — Q(S, A)]

S+ S

until S is terminal

Remember SARSA: Q(S,A4) + Q(S,A) + ao[R+~vQ(S", A") — Q(S, A)]

Cliff-walking

R=-1
Safer path
Optimal path
S The Cliff *(,T
R =-100
Sarsa ¢ — greedy,e = 0.1
254
Sum of 504
rewards Q-learning
during
episode s
-100 : . . | |
0 100 200 300 400 500

Episodes

Maximization Bias

We often need to maximize over our value estimates. The estimated
maxima suffer from maximization bias

Consider a state for which all action a, g«(s,a) = 0. Our estimates
(s, a) are uncertain, some are positive and some negative.

Q(s, argmax Q(s, a)) > 0 while g-(s, argmax g«(s,a)) = 0.

a a

This is because we use the same estimate Q both to choose the
argmax and to evaluate it.

100%;

» N(-0.1,1)
B e)—=(A)——O

75%! | N\ ; left right
% left |
actions 50%| .
from A ~Q-learning

- Double '
25% Q-learning
5700»————————————4——————————'————’———'————'—optimal
1 100 200 300

Episodes

Double Q-Learning

+ Train 2 action-value functions, Q1 and Q2
- Do Q-learning on both, but
* never on the same time steps (Q1 and Q2 are independent)

- pick Q1 or Q2 at random to be updated on each step

- If updating Q1, use Q2 for the value of the next state:

Q1(St, At) < Q1(St, A¢) +
+a (Rt+1 +Q2(St+1, argmax Q1(Si41,a)) — Q1(St, At))

- Action selections are e-greedy with respect to the sum of Q1 and Q2

Double Tabular Q-Learning

Initialize Q1(s,a) and Q2(s,a),Vs € 8,a € A(s), arbitrarily
Initialize Q1 (terminal-state,-) = Q2(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from)1 and Q)2 (e.g., e-greedy in Q1 + Q)2)
Take action A, observe R, S’
With 0.5 probabilility:

Ql(sv A) — Ql(Sa A) + &(R =+ ’YQQ (Sla argmax, Ql(sla a)) o Ql(S7 A))
else:

QQ(Sa A) A Q2(S7 A) =+ Oé(R + ’le (Sla argimnax , QQ(Sla CL)) o QZ(Sv A))
S« 5

until S is terminal

Expected Sarsa

- Instead of the sample value-of-next-state, use the expectation!

Q(St, Ar) <+ Q(St, Ay) + :Rt+1 + YE[Q(St41, Atr1) | Sia1] — Q(St, At)}

— Q(S5t, Ar) + a :Rt+1 + ’YZW(CL‘SHJ)Q(SHM a) — Q(St, At)}

- Expected Sarsa performs better than Sarsa (but costs more)
- Q: why?

Q: Is expected SARSA on policy or off policy?
What if 7 is the greedy deterministic policy?

Performance on the Cliff-walking Task

0
H ‘)\5, é é 5 é > > > > > > > > > > > K
: E t r
40 - Asymptotic Performance xpected Sarsa
‘‘‘‘‘‘ xx/XX.
—8——8—FF—8—F—+8 1
Q-learnin
i J St Sarsa |
N A VvV v v\ @ -
Reward v v YT e b 5 B\8 b g
per -80F xgY goa v Q-learning]
episode x Y g
- v a _
‘.><‘~ “Interim Performance
120 | R (after 100 episodes) _
-
V- .
il

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Summary

- Introduced one-step tabular model-free TD methods

+ These methods bootstrap and sample, combining aspects of DP and
MC methods

- TD methods are computationally congenial

- Extend prediction to control by employing some form of GPI

* On-policy control: Sarsa

- Off-policy control: Q-learning

