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• In problems with large number of states, e.g.  

• Backgammon: 10^20 states  

• Go: 10^170 states  

• Helicopter: continuous state space  

tabular methods that enumerate every single state do not work.

Large-Scale Reinforcement Learning 



Value Function Approximation (VFA)

• So far we have represented value function by a lookup table  

• Every state s has an entry , or 

• Every state-action pair  has an entry  

• Problem with large MDPs: 

• There are too many states and/or actions to store in memory  

• It is too slow to learn the value of each state individually  

• Solution for large MDPs: 

• Estimate value function with function approximation  

                          or   

• Generalize from seen states to unseen states 

V(s)

(s, a) Q(s, a)

̂v(s, w) ≈ vπ(s) ̂q(s, a, w) ≈ qπ(s, a)



• Value function approximation (VFA) replaces the table with a general 
parameterized form:

Value Function Approximation (VFA)

̂v(St, w)

̂q(St, At, w)

w

w

|w | < < |𝒮 |

When we update the parameters  ,   the values of many states change  
simultaneously!

w



• Policy approximation replaces the table with a general parameterized 
form:

Policy Approximation

̂π(At |St, w)w



• There are many function approximators, e.g.  

• Linear combinations of features 

• Neural networks 

• Decision tree  

• Nearest neighbour  

• Fourier / wavelet bases 

• … 

Which Function Approximation?



• There are many function approximators, e.g.  

• Linear combinations of features 

• Neural networks 

• Decision tree  

• Nearest neighbour  

• Fourier / wavelet bases 

• …  

• differentiable function approximators

Which Function Approximation?



• Let J(w) be a differentiable function of parameter vector w  

• Define the gradient of J(w) to be:  
 

∇wJ(w) =

∂J(w)
∂w1

⋮
∂J(w)
∂wn

Gradient Descent



• Let J(w) be a differentiable function of parameter vector w  

• Define the gradient of J(w) to be:  
 

 

• To find a local minimum of J(w), adjust  
w in direction of the negative gradient:  

                 

∇wJ(w) =

∂J(w)
∂w1

⋮
∂J(w)
∂wn

Δw = −
1
2

α∇wJ(w)

Gradient Descent

Step-size



• Let J(w) be a differentiable function of parameter vector w  

• Define the gradient of J(w) to be:  
 

 

• Starting from a guess  

• We consider the sequence   

s.t. :  

• We then have 

∇wJ(w) =

∂J(w)
∂w1

⋮
∂J(w)
∂wn

w0

w0, w1, w2, . . .
wn+1 = wn −

1
2

α∇wJ(wn)

J(w0) ≥ J(w1) ≥ J(w2) ≥ . . .

Gradient Descent



• Goal: find parameter vector w minimizing mean-squared error between 

the true value function  and its approximation :  
 

                              

vπ(S) ̂v(S, w)

J(w) = 𝔼π [(vπ(S) − ̂v(S, w))2]

Our objective



• Goal: find parameter vector w minimizing mean-squared error between 

the true value function  and its approximation :  
 

                               

• Let   denote how much time we spend in each state  under policy , 
then: 
 

                   

• Very important choice: it is OK if we cannot learn the value of states we 
visit very few times, there are too many states, I should focus on the ones 
that matter: the RL solution to curse of dimensionality.

vπ(S) ̂v(S, w)

J(w) = 𝔼π [(vπ(S) − ̂v(S, w))2]
μ(S) s π

J(w) =
|𝒮|

∑
n=1

μ(S)[vπ(S) − ̂v(S, w)]2
∑
s∈𝒮

μ(S) = 1

Our objective



• Goal: find parameter vector w minimizing mean-squared error between 

the true value function  and its approximation :  
 

                                  

• Let   denote how much time we spend in each state  under policy , 
then: 
 

                     

• In contrast to:  

                             

vπ(S) ̂v(S, w)

J(w) = 𝔼π [(vπ(S) − ̂v(S, w))2]
μ(S) s π

J(w) =
|𝒮|

∑
n=1

μ(S)[vπ(S) − ̂v(S, w)]2
∑
s∈𝒮

μ(S) = 1

J2(w) =
1

|𝒮 | ∑
s∈𝒮

[vπ(S) − ̂v(S, w)]2

Our objective



Let  be the initial state distribution, i.e, the probability that an episode 

starts at state .  

Then the un-normalized on-policy state probability  satisfies the following 
recursions: 

 

h(s)
s

η(s) = h(s) + ∑̄
s

η(s̄)∑
a

π(a | s̄)p(s | s̄, a), ∀s ∈ δ

μ(s) =
η(s)

∑s′ 
η(s′ )

, ∀s ∈ 𝒮

On-policy state distribution



• Goal: find parameter vector w minimizing mean-squared error between 

the true value function  and its approximation :  

 

 

                      

vπ(S) ̂v(S, w)

J(w) = 𝔼π [(vπ(S) − ̂v(S, w))2]
Δw = −

1
2

α∇wJ(w)

= α𝔼π [(vπ(S) − ̂v(S, w))∇w ̂v(S, w)]

Our objective



• Goal: find parameter vector w minimizing mean-squared error between 

the true value function  and its approximation :  

 

 

                       

• Starting from a guess 

vπ(S) ̂v(S, w)

J(w) = 𝔼π [(vπ(S) − ̂v(S, w))2]
Δw = −

1
2

α∇wJ(w)

= α𝔼π [(vπ(S) − ̂v(S, w))∇w ̂v(S, w)]
w0

Our objective



• Goal: find parameter vector w minimizing mean-squared error between the 

true value function  and its approximation :  

 

 

                       

• Starting from a guess  

• We consider the sequence  s.t. :  

• We then have 

vπ(S) ̂v(S, w)

J(w) = 𝔼π [(vπ(S) − ̂v(S, w))2]
Δw = −

1
2

α∇wJ(w)

= α𝔼π [(vπ(S) − ̂v(S, w))∇w ̂v(S, w)]
w0

w0, w1, w2, . . . wn+1 = wn −
1
2

α∇wJ(wn)

J(w0) ≥ J(w1) ≥ J(w2) ≥ . . .

Our objective



• Goal: find parameter vector w minimizing mean-squared error between 

the true value function  and its approximation : 

                               

• Gradient descent finds a local minimum: 

                               

vπ(S) ̂v(S, w)
J(w) = 𝔼π [(vπ(S) − ̂v(S, w))2]

Δw = −
1
2

α∇wJ(w)

= α𝔼π [(vπ(S) − ̂v(S, w))∇w ̂v(S, w)]

Gradient Descent



• Goal: find parameter vector w minimizing mean-squared error between 

the true value function  and its approximation : 

                               

• Gradient descent finds a local minimum: 

                                

• Stochastic gradient descent (SGD) samples the gradient: 

                                

                              

vπ(S) ̂v(S, w)
J(w) = 𝔼π [(vπ(S) − ̂v(S, w))2]

Δw = −
1
2

α∇wJ(w)

= α𝔼π [(vπ(S) − ̂v(S, w))∇w ̂v(S, w)]

Δw = α (vπ(S) − ̂v(S, w))∇w ̂v(S, w)

Gradient Descent



• Given experience consisting of ⟨state, value⟩ pairs  

                             

• Repeat 

• Sample state, value from experience  

                                                 

• Apply stochastic gradient descent update  

                             

• Converges to least squares solution 

D = {⟨s1, vπ
1⟩, ⟨s2, vπ

2⟩, …, ⟨sT, vπ
T⟩}

⟨s, vπ⟩ ∼ D

Δw = α (vπ − ̂v(s, w))∇w ̂v(s, w)

SGD with Experience Replay 



• Represent state by a feature vector  

                                               

• For example 

• Distance of robot from landmarks  

• Trends in the stock market 

• Piece and pawn configurations in chess 

x(S) =
x1(S)

⋮
xn(S)

Feature Vectors



• Represent value function by a linear combination of features  

                                 

• Objective function is quadratic in parameters   

                                 

• Update rule is particularly simple  
 

                             

• Update = step-size × prediction error × feature value  

• Later, we will look at the neural networks as function approximators. 

̂v(S, w) = x(S)⊤w =
n

∑
j=1

xj(S)wj

w
J(w) = 𝔼π [(vπ(S) − x(S)⊤w)2]

∇w ̂v(S, w) = x(S)
Δw = α (vπ(S) − ̂v(S, w)) x(S)

Linear Value Function Approximation (VFA)



• We have assumed the true value function  is given by a supervisor 

• But in RL there is no supervisor, only rewards 

• In practice, we substitute a target for  

• For MC, the target is the return  

                           

• For TD(0), the target is the TD target:  

              

                 

vπ(s)

vπ(s)

Gt

Δw = α (Gt− ̂v (St, w))∇w ̂v (St, w)
Rt+1 + γ ̂v (St+1, w)

Δw = α (Rt+1 + γ ̂v (St+1, w)− ̂v (St, w))∇w ̂v (St, w)

Incremental Prediction Algorithms 



• Return  is an unbiased, noisy sample of true value   

• Can therefore apply supervised learning to “training data”:  

                               

• For example, using linear Monte-Carlo policy evaluation: 

                          

• Monte-Carlo evaluation converges to a local optimum 

Gt vπ(St)

⟨S1, G1⟩, ⟨S2, G2⟩, …, ⟨ST, GT⟩

Δw = α (Gt − ̂v (St, w))∇w ̂v (St, w)

Monte Carlo with VFA



Monte Carlo with VFA
194 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

Gradient Monte Carlo Algorithm for Approximating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S⇥ Rn ! R

Initialize value-function weights ✓ as appropriate (e.g., ✓ = 0)
Repeat forever:

Generate an episode S0, A0, R1, S1, A1, . . . , RT , ST using ⇡
For t = 0, 1, . . . , T � 1:

✓  ✓ + ↵
⇥
Gt � v̂(St,✓)

⇤
rv̂(St,✓)

If Ut is an unbiased estimate, that is, if E[Ut] = v⇡(St), for each t, then ✓t is guar-
anteed to converge to a local optimum under the usual stochastic approximation
conditions (2.7) for decreasing ↵.

For example, suppose the states in the examples are the states generated by in-
teraction (or simulated interaction) with the environment using policy ⇡. Because
the true value of a state is the expected value of the return following it, the Monte
Carlo target Ut

.
= Gt is by definition an unbiased estimate of v⇡(St). With this

choice, the general SGD method (9.7) converges to a locally optimal approximation
to v⇡(St). Thus, the gradient-descent version of Monte Carlo state-value prediction
is guaranteed to find a locally optimal solution. Pseudocode for a complete algorithm
is shown in the box.

One does not obtain the same guarantees if a bootstrapping estimate of v⇡(St)

is used as the target Ut in (9.7). Bootstrapping targets such as n-step returns G(n)
t

or the DP target
P

a,s0,r ⇡(a|St)p(s0, r|St, a)[r + �v̂(s0,✓t)] all depend on the current
value of the weight vector ✓t, which implies that they will be biased and that they
will not produce a true gradient-descent method. One way to look at this is that
the key step from (9.4) to (9.5) relies on the target being independent of ✓t. This
step would not be valid if a bootstrapping estimate was used in place of v⇡(St).
Bootstrapping methods are not in fact instances of true gradient descent (Barnard,
1993). They take into account the e↵ect of changing the weight vector ✓t on the
estimate, but ignore its e↵ect on the target. They include only a part of the gradient
and, accordingly, we call them semi-gradient methods.

Although semi-gradient (bootstrapping) methods do not converge as robustly as
gradient methods, they do converge reliably in important cases such as the linear
case discussed in the next section. Moreover, they o↵er important advantages which
makes them often clearly preferred. One reason for this is that they are typically
significantly faster to learn, as we have seen in Chapters 6 and 7. Another is that they
enable learning to be continual and online, without waiting for the end of an episode.
This enables them to be used on continuing problems and provides computational
advantages. A prototypical semi-gradient method is semi-gradient TD(0), which uses
Ut

.
= Rt+1 + �v̂(St+1,✓) as its target. Complete pseudocode for this method is given

in the box at the top of the next page.



TD Learning with VFA

We ignore the dependence of the target on !  

We call it semi-gradient methods

w

• The TD-target  is a biased sample of true value Rt+1 + γ ̂v (St+1, w) vπ(St)

• For example, using linear TD(0): 

                 Δw = α (R + γ ̂v (S′ , w) − ̂v(S, w))∇w ̂v(S, w)

• Can still apply supervised learning to “training data”: 

⟨S1, R2 + γ ̂v (S2, w)⟩, ⟨S2, R3 + γ ̂v (S3, w)⟩, …, ⟨ST−1, RT⟩



TD Learning with VFA
9.3. STOCHASTIC-GRADIENT AND SEMI-GRADIENT METHODS 195

Semi-gradient TD(0) for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rn ! R such that v̂(terminal,·) = 0

Initialize value-function weights ✓ arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A ⇠ ⇡(·|S)
Take action A, observe R, S0

✓  ✓ + ↵
⇥
R + �v̂(S0,✓)� v̂(S,✓)

⇤
rv̂(S,✓)

S  S0

until S0 is terminal

Example 9.1: State Aggregation on the 1000-state Random Walk State
aggregation is a simple form of generalizing function approximation in which states
are grouped together, with one estimated value (one component of the weight vector
✓) for each group. The value of a state is estimated as its group’s component, and
when the state is updated, that component alone is updated. State aggregation is
a special case of SGD (9.7) in which the gradient, rv̂(St,✓t), is 1 for St’s group’s
component and 0 for the other components.

Consider a 1000-state version of the random walk task (Examples 6.2 and 7.1).
The states are numbered from 1 to 1000, left to right, and all episodes begin near the
center, in state 500. State transitions are from the current state to one of the 100
neighboring states to its left, or to one of the 100 neighboring states to its right, all
with equal probability. Of course, if the current state is near an edge, then there may
be fewer than 100 neighbors on that side of it. In this case, all the probability that
would have gone into those missing neighbors goes into the probability of terminating
on that side (thus, state 1 has a 0.5 chance of terminating on the left, and state 950
has a 0.25 chance of terminating on the right). As usual, termination on the left
produces a reward of �1, and termination on the right produces a reward of +1.
All other transitions have a reward of zero. We use this task as a running example
throughout this section.

Figure 9.1 shows the true value function v⇡ for this task. It is nearly a straight
line, but tilted slightly toward the horizontal and curving further in this direction for
the last 100 states at each end. Also shown is the final approximate value function
learned by the gradient Monte-Carlo algorithm with state aggregation after 100,000
episodes with a step size of ↵ = 2⇥ 10�5. For the state aggregation, the 1000 states
were partitioned into 10 groups of 100 states each (i.e., states 1–100 were one group,
states 101-200 were another, and so on). The staircase e↵ect shown in the figure is
typical of state aggregation; within each group, the approximate value is constant,
and it changes abruptly from one group to the next. These approximate values are



Control with VFA

• Policy evaluation Approximate policy evaluation: ̂q( ⋅ , ⋅ ,w) ≈ qπ

• Policy improvement ε-greedy policy improvement 



Action-Value Function Approximation 

• Approximate the action-value function  

̂q(S, A, w) ≈ qπ(S, A)

• Minimize mean-squared error between the true action-value function 

 and the approximate action-value function: 

                                 

qπ(S, A)

J(w) = 𝔼π [(qπ(S, A) − ̂q(S, A, w))2]
• Use stochastic gradient descent to find a local minimum 

                  
−

1
2

∇wJ(w) = (qπ(S, A) − ̂q(S, A, w))∇w ̂q(S, A, w)

Δw = α (qπ(S, A) − ̂q(S, A, w))∇w ̂q(S, A, w)



Linear Action-Value Function Approximation 

• Represent state and action by a feature vector  

                                             x(S, A) =
x1(S, A)

⋮
xn(S, A)

• Represent action-value function by linear combination of features  

                               ̂q(S, A, w) = x(S, A)⊤w =
n

∑
j=1

xj(S, A)wj

• Stochastic gradient descent update  

                        
∇w ̂q(S, A, w) = x(S, A)

Δw = α (qπ(S, A) − ̂q(S, A, w)) x(S, A)



Incremental Control Algorithms 

• Like prediction, we must substitute a target for qπ(S, A)

• For MC, the target is the return  

                     

Gt

Δw = α (Gt− ̂q (St, At, w))∇w ̂q (St, At, w)

• For TD(0), the target is the TD target:  Rt+1 + γQ (St+1, At+1)
Δw = α (Rt+1 + γ ̂q (St+1, At+1, w)− ̂q (St, At, w))∇w ̂q (St, At, w)



Incremental Control Algorithms 

234 CHAPTER 10. ON-POLICY CONTROL WITH APPROXIMATION

action-value prediction is

✓t+1
.
= ✓t + ↵

h
Ut � q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.1)

For example, the update for the one-step Sarsa method is

✓t+1
.
= ✓t + ↵

h
Rt+1 + �q̂(St+1, At+1, ✓t)� q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.2)

We call this method episodic semi-gradient one-step Sarsa. For a constant policy,
this method converges in the same way that TD(0) does, with the same kind of error
bound (9.14).

To form control methods, we need to couple such action-value prediction methods
with techniques for policy improvement and action selection. Suitable techniques
applicable to continuous actions, or to actions from large discrete sets, are a topic of
ongoing research with as yet no clear resolution. On the other hand, if the action set
is discrete and not too large, then we can use the techniques already developed in
previous chapters. That is, for each possible action a available in the current state St,
we can compute q̂(St, a, ✓t) and then find the greedy action A⇤

t = argmaxa q̂(St, a, ✓t).
Policy improvement is then done (in the on-policy case treated in this chapter) by
changing the estimation policy to a soft approximation of the greedy policy such as
the "-greedy policy. Actions are selected according to this same policy. Pseudocode
for the complete algorithm is given in the box.

Example 10.1: Mountain–Car Task Consider the task of driving an underpow-
ered car up a steep mountain road, as suggested by the diagram in the upper left
of Figure 10.1. The di�culty is that gravity is stronger than the car’s engine, and
even at full throttle the car cannot accelerate up the steep slope. The only solution
is to first move away from the goal and up the opposite slope on the left. Then, by

Episodic Semi-gradient Sarsa for Estimating q̂ ⇡ q⇤

Input: a di↵erentiable function q̂ : S⇥A⇥ Rn ! R

Initialize value-function weights ✓ 2 Rn arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

S, A initial state and action of episode (e.g., "-greedy)
Repeat (for each step of episode):

Take action A, observe R, S0

If S0 is terminal:
✓  ✓ + ↵

⇥
R� q̂(S, A, ✓)

⇤
rq̂(S, A, ✓)

Go to next episode
Choose A0 as a function of q̂(S0, ·, ✓) (e.g., "-greedy)
✓  ✓ + ↵

⇥
R + �q̂(S0, A0, ✓)� q̂(S, A, ✓)

⇤
rq̂(S, A, ✓)

S  S0

A A0



Incremental Control Algorithms 

• Like prediction, we must substitute a target for qπ(S, A)

• For MC, the target is the return  

                     

Gt

Δw = α (Gt− ̂q (St, At, w))∇w ̂q (St, At, w)

• For TD(0), the target is the TD target:  Rt+1 + γQ (St+1, At+1)
Δw = α (Rt+1 + γ ̂q (St+1, At+1, w)− ̂q (St, At, w))∇w ̂q (St, At, w)

• Can we guess the deep Q learning update rule? 

Δw = α(Rt+1 + γ max
At+1

̂q(St+1, At+1, w)− ̂q(St, At, w))∇w ̂q(St, At, w)



Deep Q-Networks (DQNs)
• Represent action-state value function by Q-network with weights w  

Q(s, a, w) ≈ Q*(s, a)

When would this be preferred?



Q-Learning with FA

• Minimize MSE loss by stochastic gradient descent 

                        I = (r + γ max
a

Q (s′ , a′ , w)−Q(s, a, w))
2

• Converges to Q∗ using table lookup representation 

• But diverges using neural networks due to:  

• Correlations between samples  

• Non-stationary targets 



Q-Learning

• Converges to Q∗ using table lookup representation 

• But diverges using neural networks due to:  

• Correlations between samples  

• Non-stationary targets 

Solutions to both problems in:

• Minimize MSE loss by stochastic gradient descent 

                        I = (r + γ max
a

Q (s′ , a′ , w)−Q(s, a, w))
2



DQN

• To remove correlations, build data-set from agent’s own experience 

• Sample experiences from data-set and apply update  

                      I = (r + γ max
a

Q (s′ , a′ , w)−Q(s, a, w))
2



DQN

• To remove correlations, build data-set from agent’s own experience 

• To deal with non-stationarity, target parameters w− are held fixed 

• Sample experiences from data-set and apply update  

                      I = (r + γ max
a

Q (s′ , a′ , w−)−Q(s, a, w))
2



Experience Replay 

• Given experience consisting of ⟨state, value⟩, or  <state, action/value> 
pairs  

                             D = {⟨s1, vπ
1⟩, ⟨s2, vπ

2⟩, …, ⟨sT, vπ
T⟩}

• Repeat 

• Sample state, value from experience  

                                              

• Apply stochastic gradient descent update  
 

                          

⟨s, vπ⟩ ∼ 𝒟

Δw = α (vπ − ̂v(s, w))∇w ̂v(s, w)



DQNs: Experience Replay 

• DQN uses experience replay and fixed Q-targets 

• Use stochastic gradient descent 

• Store transition  in replay memory D (st, at, rt+1, st+1)
• Sample random mini-batch of transitions  from D (s, a, r, s′ )
• Compute Q-learning targets w.r.t. old, fixed parameters w− 

• Optimize MSE between Q-network and Q-learning targets  
 

ℒi (wi) = 𝔼s,a,r,s′ ∼𝒟i [(r + γ max
a′ 

Q (s′ , a′ ; w−
i ) − Q (s, a; wi))

2

]
Q-learning target Q-network



DQNs in Atari



DQNs in Atari

Mnih et.al., Nature, 2014

• End-to-end learning of values  from pixels  

• Input observation is stack of raw pixels from last 4 frames  

• Output is  for 18 joystick/button positions 

• Reward is change in score for that step 

Q(s, a)

Q(s, a)

• Network architecture and hyperparameters fixed across all games 



DQNs in Atari

Mnih et.al., Nature, 2014

• End-to-end learning of values  from pixels  

• Input observation is stack of raw pixels from last 4 frames  

• Output is for 18 joystick/button positions 

• Reward is change in score for that step 

Q(s, a)

Q(s, a)

• Network architecture and hyperparameters fixed across all games 

DQN source code: sites.google.com/a/deepmind.com/
dqn/ 



Extensions

• Double Q-learning for fighting maximization bias 

• Prioritized experience replay 

• Multistep returns



Maximization Bias

• We often need to maximize over our value estimates. The estimated 
maxima suffer from maximization bias 

• Consider a state for which all ground-truth . Our estimates 

 are uncertain, some are positive and some negative.  

•  while . 

q*(s, a) = 0
Q(s, a)

Q(s, argmax
a

Q(s, a)) > 0 q*(s, argmax
a

q*(s, a)) = 0

• This is because we use the same estimate Q both to choose the 
argmax and to evaluate it.



Double Tabular Q-Learning
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Initialize Q1(s, a) and Q2(s, a), 8s 2 S, a 2 A(s), arbitrarily
Initialize Q1(terminal-state, ·) = Q2(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q1 and Q2 (e.g., "-greedy in Q1 + Q2)
Take action A, observe R, S0

With 0.5 probabilility:

Q1(S, A) Q1(S, A) + ↵
⇣
R + �Q2

�
S0, argmaxa Q1(S0, a)

�
�Q1(S, A)

⌘

else:

Q2(S, A) Q2(S, A) + ↵
⇣
R + �Q1

�
S0, argmaxa Q2(S0, a)

�
�Q2(S, A)

⌘

S  S0;
until S is terminal

Figure 6.15: Double Q-learning.

The idea of doubled learning extends naturally to algorithms for full MDPs. For
example, the doubled learning algorithm analogous to Q-learning, called Double Q-
learning, divides the time steps in two, perhaps by flipping a coin on each step. If
the coin comes up heads, the update is

Q1(St, At) Q1(St, At)+↵
⇣
Rt+1 +Q2

�
St+1, argmax

a

Q1(St+1, a)
�
�Q1(St, At)

⌘
.

(6.8)

If the coin comes up tails, then the same update is done with Q1 and Q2 switched,
so that Q2 is updated. The two approximate value functions are treated completely
symmetrically. The behavior policy can use both action value estimates. For ex-
ample, an "-greedy policy for Double Q-learning could be based on the average (or
sum) of the two action-value estimates. A complete algorithm for Double Q-learning
is given in Figure 6.15. This is the algorithm used to produce the results in Fig-
ure 6.14. In this example, doubled learning seems to eliminate the harm caused by
maximization bias. Of course there are also doubled versions of Sarsa and Expected
Sarsa.

6.8 Games, Afterstates, and Other Special Cases

In this book we try to present a uniform approach to a wide class of tasks, but of
course there are always exceptional tasks that are better treated in a specialized way.
For example, our general approach involves learning an action-value function, but in
Chapter 1 we presented a TD method for learning to play tic-tac-toe that learned
something much more like a state-value function. If we look closely at that example, it
becomes apparent that the function learned there is neither an action-value function
nor a state-value function in the usual sense. A conventional state-value function
evaluates states in which the agent has the option of selecting an action, but the

Hado van Hasselt 2010



Double Deep Q-Learning

• Older Q-network w− is used to evaluate actions 

• Current Q-network w is used to select actions 

van Hasselt, Guez, Silver, 2015  

Action selection: w

Action evaluation: w−

I = r + γQ (s′ , argmaxQ (s′ , a′ , w)
a′ 

, w−)−Q(s, a, w)

2



Prioritized Replay 

Schaul, Quan, Antonoglou, Silver, ICLR 2016

• Weight experience according to “surprise” (or error)

• Stochastic Prioritization

•  determines how much prioritization is used, with  
corresponding to the uniform case.
α α = 0

• Store experience in priority queue according to DQN error  

                        r + γ max
a′ 

Q (s′ , a′ , w−) − Q(s, a, w)

pi is proportional to 

DQN error

P(i) =
pα

i

∑k pα
k



Multistep Returns

• Truncated n-step return from a state s_t: R(n)
t =

n−1

∑
k=0

γ(k)
t Rt+k+1

• Single step Q-learning update rule:

• Multistep Q-learning update rule:

I = (R(n)
t + γ(n)

t maxa′ Q(St+n, a′ , w) − Q(s, a, w))2R(n)
t + γ(n)

t maxa′ Q(St+n, a′ , w)
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More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t

= Gt. Thus, the last n n-step returns of an episode are
always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t
� Vt(St)

i
, (7.2)

• Monte Carlo:
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• Monte Carlo: 

• TD: 

• Use V_t to estimate remaining return
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• Monte Carlo: 

• TD: 

• Use Vt to estimate remaining return 

• n-step TD: 

• 2 step return:
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The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t

= Gt. Thus, the last n n-step returns of an episode are
always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):
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· · · + �T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step
return:
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= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nVt+n�1(St+n), n � 1, 0  t < T �n. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t + n � T (if the n-step return extends to or beyond termination), then all the
missing terms are taken as zero and the n-step return defined to be equal to the

ordinary full return (G(n)
t

.
= Gt if t + n � T ).

Note that n-step returns for n > 1 involve future rewards and value functions that
are not available at the time of transition from t to t + 1. No real algorithm can use
the n-step return until after it had seen Rt+n and computed Vt+n�1. The first time
these are available to be used is t+n. The natural algorithm for using n-step returns
is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

h
G(n)

t
� Vt+n�1(St)

i
, 0  t < T, (7.2)

while the values of all other states remain unchanged, Vt+n(s) = Vt+n�1(s), 8s 6= St.
We call this algorithm n-step TD. Note that no changes at all are made during the
first n � 1 steps of each episode. To make up for that, an equal number of addition
updates are made at the end of the episode, after termination and before starting
the next episode. Complete pseudocode is given in the box on the next page.

The n-step return uses the value function Vt+n�1 to correct for the missing rewards
beyond Rt+n. An important property of n-step returns is that their expectation is
guaranteed to be a better estimate of v⇡ than Vt+n�1 is, in a worst-state sense. That
is, the worst error of the expected n-step return is guaranteed to be less than or
equal to �n times the worst error under Vt+n�1:

max
s

���E⇡

h
G(n)

t

���St =s
i

� v⇡(s)
���  �n max

s

���Vt+n�1(s) � v⇡(s)
���, (7.3)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that all n-step TD methods
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n-step TD for estimating V ⇡ v⇡

Initialize V (s) arbitrarily, s 2 S

Parameters: step size ↵ 2 (0, 1], a positive integer n
All store and access operations (for St and Rt) can take their index mod n

Repeat (for each episode):
Initialize and store S0 6= terminal
T  1
For t = 0, 1, 2, . . . :
| If t < T , then:
| Take an action according to ⇡(·|St)
| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then T  t + 1
| ⌧  t� n + 1 (⌧ is the time whose state’s estimate is being updated)
| If ⌧ � 0:

| G 
Pmin(⌧+n,T )

i=⌧+1 �i�⌧�1Ri

| If ⌧ + n < T , then: G G + �nV (S⌧+n) (G(n)
⌧ )

| V (S⌧ ) V (S⌧ ) + ↵ [G� V (S⌧ )]
Until ⌧ = T � 1

converge to the correct predictions under appropriate technical conditions. The n-
step TD methods thus form a family of sound methods, with one-step TD methods
and Monte Carlo methods as extreme members.

Example 7.1: n-step TD Methods on the Random Walk Consider using
n-step TD methods on the random walk task described in Example 6.2 and shown
in Figure 6.2. Suppose the first episode progressed directly from the center state,
C, to the right, through D and E, and then terminated on the right with a return
of 1. Recall that the estimated values of all the states started at an intermediate
value, V (s) = 0.5. As a result of this experience, a one-step method would change
only the estimate for the last state, V (E), which would be incremented toward 1, the
observed return. A two-step method, on the other hand, would increment the values
of the two states preceding termination: V (D) and V (E) both would be incremented
toward 1. A three-step method, or any n-step method for n > 2, would increment
the values of all three of the visited states toward 1, all by the same amount.

Which value of n is better? Figure 7.2 shows the results of a simple empirical test
for a larger random walk process, with 19 states (and with a �1 outcome on the
left, all values initialized to 0), which we use as a running example in this chapter.
Results are shown for n-step TD methods with a range of values for n and ↵. The
performance measure for each parameter setting, shown on the vertical axis, is the
square-root of the average squared error between the predictions at the end of the
episode for the 19 states and their true values, then averaged over the first 10 episodes
and 100 repetitions of the whole experiment (the same sets of walks were used for all

S0 → S1 → S2 → S3 → S4 → S5 → S6 → S7 → S8 → S9 → S10 → S11 → S12 . . . ST

S0 → S1 → S2 → S3 → S4 → S5 → S6 → S7 → S8 → S9 → S10 → S11 → S12 . . . ST

S0 → S1 → S2 → S3 → S4 → S5 → S6 → S7 → S8 → S9 → S10 → S11 → S12 . . . ST

S0 → S1 → S2 → S3 → S4 → S5 → S6 → S7 → S8 → S9 → S10 → S11 → S12 . . . ST
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n-step TD methods on the random walk task described in Example 6.2 and shown
in Figure 6.2. Suppose the first episode progressed directly from the center state,
C, to the right, through D and E, and then terminated on the right with a return
of 1. Recall that the estimated values of all the states started at an intermediate
value, V (s) = 0.5. As a result of this experience, a one-step method would change
only the estimate for the last state, V (E), which would be incremented toward 1, the
observed return. A two-step method, on the other hand, would increment the values
of the two states preceding termination: V (D) and V (E) both would be incremented
toward 1. A three-step method, or any n-step method for n > 2, would increment
the values of all three of the visited states toward 1, all by the same amount.

Which value of n is better? Figure 7.2 shows the results of a simple empirical test
for a larger random walk process, with 19 states (and with a �1 outcome on the
left, all values initialized to 0), which we use as a running example in this chapter.
Results are shown for n-step TD methods with a range of values for n and ↵. The
performance measure for each parameter setting, shown on the vertical axis, is the
square-root of the average squared error between the predictions at the end of the
episode for the 19 states and their true values, then averaged over the first 10 episodes
and 100 repetitions of the whole experiment (the same sets of walks were used for all

S0 → S1 → S2 → S3 → S4 → S5 → S6 → S7 → S8 → S9 → S10 → S11 → S12 . . . ST

S0 → S1 → S2 → S3 → S4 → S5 → S6 → S7 → S8 → S9 → S10 → S11 → S12 . . . ST

S0 → S1 → S2 → S3 → S4 → S5 → S6 → S7 → S8 → S9 → S10 → S11 → S12 . . . ST

S0 → S1 → S2 → S3 → S4 → S5 → S6 → S7 → S8 → S9 → S10 → S11 → S12 . . . ST

No value update
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and 100 repetitions of the whole experiment (the same sets of walks were used for all
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n-step TD for estimating V ⇡ v⇡

Initialize V (s) arbitrarily, s 2 S

Parameters: step size ↵ 2 (0, 1], a positive integer n
All store and access operations (for St and Rt) can take their index mod n

Repeat (for each episode):
Initialize and store S0 6= terminal
T  1
For t = 0, 1, 2, . . . :
| If t < T , then:
| Take an action according to ⇡(·|St)
| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then T  t + 1
| ⌧  t� n + 1 (⌧ is the time whose state’s estimate is being updated)
| If ⌧ � 0:

| G 
Pmin(⌧+n,T )

i=⌧+1 �i�⌧�1Ri

| If ⌧ + n < T , then: G G + �nV (S⌧+n) (G(n)
⌧ )

| V (S⌧ ) V (S⌧ ) + ↵ [G� V (S⌧ )]
Until ⌧ = T � 1

converge to the correct predictions under appropriate technical conditions. The n-
step TD methods thus form a family of sound methods, with one-step TD methods
and Monte Carlo methods as extreme members.

Example 7.1: n-step TD Methods on the Random Walk Consider using
n-step TD methods on the random walk task described in Example 6.2 and shown
in Figure 6.2. Suppose the first episode progressed directly from the center state,
C, to the right, through D and E, and then terminated on the right with a return
of 1. Recall that the estimated values of all the states started at an intermediate
value, V (s) = 0.5. As a result of this experience, a one-step method would change
only the estimate for the last state, V (E), which would be incremented toward 1, the
observed return. A two-step method, on the other hand, would increment the values
of the two states preceding termination: V (D) and V (E) both would be incremented
toward 1. A three-step method, or any n-step method for n > 2, would increment
the values of all three of the visited states toward 1, all by the same amount.

Which value of n is better? Figure 7.2 shows the results of a simple empirical test
for a larger random walk process, with 19 states (and with a �1 outcome on the
left, all values initialized to 0), which we use as a running example in this chapter.
Results are shown for n-step TD methods with a range of values for n and ↵. The
performance measure for each parameter setting, shown on the vertical axis, is the
square-root of the average squared error between the predictions at the end of the
episode for the 19 states and their true values, then averaged over the first 10 episodes
and 100 repetitions of the whole experiment (the same sets of walks were used for all
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Figure 6.5: A small Markov process for generating random walks.

other words, which method learns faster? Which makes the more e�cient use
of limited data? At the current time this is an open question in the sense
that no one has been able to prove mathematically that one method converges
faster than the other. In fact, it is not even clear what is the most appro-
priate formal way to phrase this question! In practice, however, TD methods
have usually been found to converge faster than constant-↵ MC methods on
stochastic tasks, as illustrated in the following example.

Example 6.2: Random Walk In this example we empirically compare the
prediction abilities of TD(0) and constant-↵ MC applied to the small Markov
process shown in Figure 6.5. All episodes start in the center state, C, and
proceed either left or right by one state on each step, with equal probabil-
ity. This behavior is presumably due to the combined e↵ect of a fixed policy
and an environment’s state-transition probabilities, but we do not care which;
we are concerned only with predicting returns however they are generated.
Episodes terminate either on the extreme left or the extreme right. When an
episode terminates on the right a reward of +1 occurs; all other rewards are
zero. For example, a typical walk might consist of the following state-and-
reward sequence: C, 0,B, 0,C, 0,D, 0,E, 1. Because this task is undiscounted
and episodic, the true value of each state is the probability of terminating
on the right if starting from that state. Thus, the true value of the cen-
ter state is v⇡(C) = 0.5. The true values of all the states, A through E, are
1
6 ,

2
6 ,

3
6 ,

4
6 , and 5

6 . Figure 6.6 shows the values learned by TD(0) approaching the
true values as more episodes are experienced. Averaging over many episode
sequences, Figure 6.7 shows the average error in the predictions found by
TD(0) and constant-↵ MC, for a variety of values of ↵, as a function of num-
ber of episodes. In all cases the approximate value function was initialized
to the intermediate value V (s) = 0.5, for all s. The TD method is consis-
tently better than the MC method on this task over this number of episodes.

Exercise 6.1 This is an exercise to help develop your intuition about why
TD methods are often more e�cient than Monte Carlo methods. Consider
the driving home example and how it is addressed by TD and Monte Carlo
methods. Can you imagine a scenario in which a TD update would be better on
average than an Monte Carlo update? Give an example scenario—a description
of past experience and a current state—in which you would expect the TD
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Figure 7.2: Performance of n-step TD methods as a function of ↵, for various values of n,
on a 19-state random walk task (Example 7.1).

parameter settings). Note that methods with an intermediate value of n worked best.
This illustrates how the generalization of TD and Monte Carlo methods to n-step
methods can potentially perform better than either of the two extreme methods.

Exercise 7.1 Why do you think a larger random walk task (19 states instead of
5) was used in the examples of this chapter? Would a smaller walk have shifted the
advantage to a di↵erent value of n? How about the change in left-side outcome from
0 to �1 made in the larger walk? Do you think that made any di↵erence in the best
value of n?

7.2 n-step Sarsa

How can n-step methods be used not just for prediction, but for control? In this
section we show how n-step methods can be combined with Sarsa in a straightforward
way to produce an on-policy TD control method. The n-step version of Sarsa we call
n-step Sarsa, and the original version presented in the previous chapter we henceforth
call one-step Sarsa, or Sarsa(0).

The main idea is to simply switch states for actions (state–action pairs) and then
use an "-greedy policy. The backup diagrams for n-step Sarsa, shown in Figure 7.3
are like those of n-step TD (Figure 7.1), strings of alternating states and actions,
except that the Sarsa ones all start and end with an action rather a state. We redefine
n-step returns in terms of estimated action values:

G(n)
t

, Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nQt+n�1(St+n, At+n), n � 1, 0  t < T �n,

(7.4)

n-step TD 
results

• An intermediate  is best 

• An intermediate  is best

α

n



It’s much the same for action values
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1-step Sarsa
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa

∞-step Sarsa
aka Monte Carlo

n-step 
Expected Sarsa

Figure 7.3: The spectrum of n-step backups for state-action values. They range from the
one-step backup of Sarsa(0) to the up-until-termination backup of a Monte Carlo method. In
between are the n-step backups, based on n steps of real rewards and the estimated value of
the nth next state–action pair, all appropriately discounted. On the far right is the backup
diagram for n-step Expected Sarsa.

with G(n)
t

, Gt if t + n � T . The natural algorithm is then

Qt+n(St, At) , Qt+n�1(St, At)+↵
h
G(n)

t
� Qt+n�1(St, At)

i
, 0  t < T, (7.5)

while the values of all other states remain unchanged, Qt+n(s, a) = Qt+n�1(s, a), 8s, a
such that s 6= St or a 6= At. This is the algorithm we call n-step Sarsa. Pseudocode
is shown in the box on the next page, and an example of why it can speed up learning
compared to one-step methods is given in Figure 7.4.

What about Expected Sarsa? The backup diagram for the n-step version of Ex-
pected Sarsa is shown on the far right in Figure 7.3. It consists of a linear string of
sampled actions and states, just as in n-step Sarsa, except that its last element is
a branch over all action possibilities weighted, as always, by their probability under
⇡. This algorithm can be described by the same equation as n-step Sarsa (above)
except with the n-step return defined as

G(n)
t

, Rt+1+· · ·+�n�1Rt+n+�n
X

a

⇡(a|St+n)Qt+n�1(St+n, a), n � 1, 0  t  T�n.

(7.6)
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Q-learning Expected Sarsa

Figure 6.12: The backup diagrams for Q-learning and expected Sarsa.

6.6 Expected Sarsa

Consider the learning algorithm that is just like Q-learning except that instead of
the maximum over next state–action pairs it uses the expected value, taking into
account how likely each action is under the current policy. That is, consider the
algorithm with the update rule

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �E[Q(St+1, At+1) | St+1]�Q(St, At)

i

 Q(St, At) + ↵
h
Rt+1 + �

X

a

⇡(a|St+1)Q(St+1, a)�Q(St, At)
i
, (6.7)

but that otherwise follows the schema of Q-learning (as in Figure 6.10). Given the
next state, St+1, this algorithm moves deterministically in the same direction as
Sarsa moves in expectation, and accordingly it is called expected Sarsa. Its backup
diagram is shown in Figure 6.12.

Expected Sarsa is more complex computationally than Sarsa but, in return, it
eliminates the variance due to the random selection of At+1. Given the same amount
of experience we might expect it to perform slightly better than Sarsa, and indeed it
generally does. Figure 6.13 shows summary results on the cli↵-walking task with Ex-
pected Sarsa compared to Sarsa and Q-learning. As an on-policy method, Expected
Sarsa retains the significant advantage of Sarsa over Q-learning on this problem. In
addition, Expected Sarsa shows a significant improvement over Sarsa over a wide
range of values for the step-size parameter ↵. In cli↵ walking the state transitions
are all deterministic and all randomness comes from the policy. In such cases, Ex-
pected Sarsa can safely set ↵ = 1 without su↵ering any degradation of asymptotic
performance, whereas Sarsa can only perform well in the long run at a small value
of ↵, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cli↵ walking results we have taken Expected Sarsa to be an on-policy
algorithm, but in general we can use a policy di↵erent from the target policy ⇡ to
generate behavior, in which case Expected Sarsa becomes an o↵-policy algorithm.
For example, suppose ⇡ is the greedy policy while behavior is more exploratory;
then Expected Sarsa is exactly Q-learning. In this sense Expected Sarsa subsumes
and generalizes Q-learning while reliably improving over Sarsa. Except for the small
additional computational cost, Expected Sarsa may completely dominate both of the
other more-well-known TD control algorithms.
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Figure 7.2: Performance of n-step TD methods as a function of ↵, for various values of n,
on a 19-state random walk task (Example 7.1).

parameter settings). Note that methods with an intermediate value of n worked best.
This illustrates how the generalization of TD and Monte Carlo methods to n-step
methods can potentially perform better than either of the two extreme methods.

Exercise 7.1 Why do you think a larger random walk task (19 states instead of
5) was used in the examples of this chapter? Would a smaller walk have shifted the
advantage to a di↵erent value of n? How about the change in left-side outcome from
0 to �1 made in the larger walk? Do you think that made any di↵erence in the best
value of n?

7.2 n-step Sarsa

How can n-step methods be used not just for prediction, but for control? In this
section we show how n-step methods can be combined with Sarsa in a straightforward
way to produce an on-policy TD control method. The n-step version of Sarsa we
call n-step Sarsa(�), and the original version presented in the previous chapter we
henceforth call one-step Sarsa, or Sarsa(0).

The main idea is to simply switch states for actions (state–action pairs) and then
use an "-greedy policy. The backup diagrams for n-step Sarsa, shown in Figure 7.3
are like those of n-step TD (Figure 7.1), strings of alternating states and actions,
except that the Sarsa ones all start and end with an action rather a state. We redefine
n-step returns in terms of estimated action values:
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Figure 7.3: The spectrum of n-step backups for state-action values. They range from the
one-step backup of Sarsa(0) to the up-until-termination backup of a Monte Carlo method. In
between are the n-step backups, based on n steps of real rewards and the estimated value of
the nth next state–action pair, all appropriately discounted. On the far right is the backup
diagram for n-step Expected Sarsa.
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while the values of all other states remain unchanged, Qt+n(s, a) = Qt+n�1(s, a), 8s, a
such that s 6= St or a 6= At. This is the algorithm we call n-step Sarsa. Pseudocode
is shown in the box on the next page, and an example of why it can speed up learning
compared to one-step methods is given in Figure 7.4.

What about Expected Sarsa? The backup diagram for the n-step version of Ex-
pected Sarsa is shown on the far right in Figure 7.3. It consists of a linear string of
sampled actions and states, just as in n-step Sarsa, except that its last element is
a branch over all action possibilities weighted, as always, by their probability under
⇡. This algorithm can be described by the same equation as n-step Sarsa (above)
except with the n-step return defined as
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while the values of all other states remain unchanged, Qt+n(s, a) = Qt+n�1(s, a), 8s, a
such that s 6= St or a 6= At. This is the algorithm we call n-step Sarsa. Pseudocode
is shown in the box on the next page, and an example of why it can speed up learning
compared to one-step methods is given in Figure 7.4.
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pected Sarsa is shown on the far right in Figure 7.3. It consists of a linear string of
sampled actions and states, just as in n-step Sarsa, except that its last element is
a branch over all action possibilities weighted, as always, by their probability under
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• Action-value form of n-step return 

• -step Sarsa: 

• -step Expected Sarsa is the same update with a slightly different n-
step return:

n

n
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7.3 n-step O↵-policy Learning by Importance Sampling

Recall that o↵-policy learning is learning the value function for one policy, ⇡, while
following another policy, µ. Often, ⇡ is the greedy policy for the current action-
value-function estimate, and µ is a more exploratory policy, perhaps "-greedy. In
order to use the data from µ we must take into account the di↵erence between the
two policies, using their relative probability of taking the actions that were taken
(see Section 5.5). In n-step methods, returns are constructed over n steps, so we are
interested in the relative probability of just those n actions. For example, to make
an o↵-policy version of n-step TD,1 the update for time t (actually made at time
t + n) can simply be weighted by ⇢t+n

t
,

Vt+n(St)
.
= Vt+n�1(St) + ↵⇢t+n

t

h
G(n)

t
� Vt+n�1(St)

i
, 0  t < T, (7.7)

where ⇢t+n

t
, called the importance sampling ratio, is the relative probability under

the two policies of taking the n actions from At to At+n�1 (cf. Eq. 5.3):

⇢t+n

t

.
=

min(t+n�1,T�1)Y

k=t

⇡(Ak|Sk)

µ(Ak|Sk)
. (7.8)

For example, if any one of the actions would never be taken by ⇡ (i.e., ⇡(Ak|Sk) = 0)
then the n-step return should be given zero weight and be totally ignored. On the
other hand, if by chance an action is taken that ⇡ would take with much greater
probability than µ does, then this will increase the weight that would otherwise be
given to the return. This makes sense because that action is characteristic of ⇡
(and therefore we want to learn about it) but is selected rarely by µ and thus rarely
appears in the data. To make up for this we have to over-weight it when it does
occur. Note that if the two policies are actually the same (the on-policy case) then
the importance sampling ratio is always 1. Thus our new update (7.7) generalizes
and can completely replace our earlier n-step TD update. Similarly, our previous
n-step Sarsa update can be completely replaced by its general o↵-policy form:

Qt+n(St, At)
.
= Qt+n�1(St, At)+↵⇢t+n

t+1

h
G(n)

t
� Qt+n�1(St, At)

i
, 0  t < T. (7.9)

Note the importance sampling ratio here starts one step later than for n-step TD
(above). This is because here we are updating a state–action pair. We do not have
to care how likely we were to select the action; now that we have selected it we want
to learn fully from what happens, with importance sampling only for subsequent
actions. Pseudocode for the full algorithm is shown in the box on the next page.

The o↵-policy version of n-step Expected Sarsa would use the same update as
above for Sarsa except that the importance sampling ratio would have an additional
one less factor in it. That is, the above equation would use ⇢t+n�1

t+1 instead of ⇢t+n

t+1 ,

1
The algorithms presented in this section are the simplest forms of o↵-policy n-step TD. There

may be others based on the ideas developed in Chapter 5, including those of weighted importance

sampling and per-reward importance sampling. This is a good topic for further research.
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• Recall the importance-sampling ratio: 

• We get off-policy methods by weighting updates by this ratio 

• Off-policy -step TD: 

• Off-policy -step Sarsa: 

• Off-policy -step Expected Sarsa:
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n
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Conclusions Regarding n-step Methods

• Generalize Temporal-Difference and Monte Carlo learning methods, 
sliding from one to the other as n increases 

•  is TD as in Chapter 6 

•  is MC as in Chapter 5 

• an intermediate  is often much better than either extreme 

• applicable to both continuing and episodic problems 

• There is some cost in computation 

• need to remember the last  states 

• learning is delayed by  steps 

• per-step computation is small and uniform, like TD

n = 1

n = ∞

n

n

n


