Function Approximation in RL

Fall 2021, CMU 10-703
Instructors
Katerina Fragkiadaki
Russ Salakhutdinov

Used Materials

- Disclaimer: Much of the material and slides for this lecture were borrowed from Rich Sutton's class and David Silver's class on Reinforcement Learning.

Large-Scale Reinforcement Learning

- In problems with large number of states, e.g.
- Backgammon: $10^{\wedge} 20$ states
- Go: $10^{\wedge} 170$ states
- Helicopter: continuous state space
tabular methods that enumerate every single state do not work.

Value Function Approximation (VFA)

- So far we have represented value function by a lookup table
- Every state s has an entry $V(s)$, or
- Every state-action pair (s, a) has an entry $Q(s, a)$
- Problem with large MDPs:
- There are too many states and/or actions to store in memory
- It is too slow to learn the value of each state individually
- Solution for large MDPs:
- Estimate value function with function approximation

$$
\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s) \text { or } \hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)
$$

- Generalize from seen states to unseen states

Value Function Approximation (VFA)

- Value function approximation (VFA) replaces the table with a general parameterized form:

$$
|\mathbf{w}| \ll|\mathcal{S}|
$$

When we update the parameters \mathbf{w}, the values of many states change simultaneously!

Policy Approximation

- Policy approximation replaces the table with a general parameterized form:

Which Function Approximation?

- There are many function approximators, e.g.
- Linear combinations of features
- Neural networks
- Decision tree
- Nearest neighbour
- Fourier / wavelet bases
- ...

Which Function Approximation?

- There are many function approximators, e.g.
- Linear combinations of features
- Neural networks
- Decision tree
- Nearest neighbour
- Fourier / wavelet bases
- differentiable function approximators

Gradient Descent

- Let $\mathrm{J}(\mathrm{w})$ be a differentiable function of parameter vector w
- Define the gradient of $\mathrm{J}(\mathrm{w})$ to be:

$$
\nabla_{\mathbf{w}} J(\mathbf{w})=\left(\begin{array}{c}
\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_{1}} \\
\vdots \\
\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_{n}}
\end{array}\right)
$$

Gradient Descent

- Let $\mathrm{J}(\mathrm{w})$ be a differentiable function of parameter vector w
- Define the gradient of $\mathrm{J}(\mathrm{w})$ to be:

$$
\nabla_{\mathbf{w}} J(\mathbf{w})=\left(\begin{array}{c}
\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_{1}} \\
\vdots \\
\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_{n}}
\end{array}\right)
$$

- To find a local minimum of $\mathrm{J}(\mathrm{w})$, adjust
 w in direction of the negative gradient:

$$
\Delta \mathbf{w}=-\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})
$$

Step-size

Gradient Descent

- Let $\mathrm{J}(\mathrm{w})$ be a differentiable function of parameter vector w
- Define the gradient of $J(w)$ to be:

$$
\nabla_{\mathbf{w}} J(\mathbf{w})=\left(\begin{array}{c}
\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_{1}} \\
\vdots \\
\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_{n}}
\end{array}\right)
$$

- Starting from a guess \mathbf{w}_{0}

- We consider the sequence $\mathbf{w}_{0}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots$
s.t.: $\mathbf{w}_{n+1}=\mathbf{w}_{n}-\frac{1}{2} \alpha \nabla_{\mathbf{w}} J\left(\mathbf{w}_{n}\right)$
- We then have $J\left(\mathbf{w}_{0}\right) \geq J\left(\mathbf{w}_{1}\right) \geq J\left(\mathbf{w}_{2}\right) \geq \ldots$

Our objective

- Goal: find parameter vector w minimizing mean-squared error between the true value function $v_{\pi}(S)$ and its approximation $\hat{v}(S, \mathbf{w})$:

$$
J(\mathbf{w})=\mathbb{E}_{\pi}\left[\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right)^{2}\right]
$$

Our objective

- Goal: find parameter vector w minimizing mean-squared error between the true value function $v_{\pi}(S)$ and its approximation $\hat{v}(S, \mathbf{w})$:

$$
J(\mathbf{w})=\mathbb{E}_{\pi}\left[\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right)^{2}\right]
$$

- Let $\mu(S)$ denote how much time we spend in each state s under policy π, then:

$$
J(w)=\sum_{n=1}^{|\mathcal{S}|} \mu(S)\left[v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right]^{2} \quad \sum_{s \in \mathcal{S}} \mu(S)=1
$$

- Very important choice: it is OK if we cannot learn the value of states we visit very few times, there are too many states, I should focus on the ones that matter: the RL solution to curse of dimensionality.

Our objective

- Goal: find parameter vector w minimizing mean-squared error between the true value function $v_{\pi}(S)$ and its approximation $\hat{v}(S, \mathbf{w})$:

$$
J(\mathbf{w})=\mathbb{E}_{\pi}\left[\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right)^{2}\right]
$$

- Let $\mu(S)$ denote how much time we spend in each state s under policy π, then:

$$
J(w)=\sum_{n=1}^{|\mathcal{S}|} \mu(S)\left[v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right]^{2} \quad \sum_{s \in \mathcal{S}} \mu(S)=1
$$

- In contrast to:

$$
J_{2}(w)=\frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}}\left[v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right]^{2}
$$

On-policy state distribution

Let $h(s)$ be the initial state distribution, i.e, the probability that an episode starts at state s.

Then the un-normalized on-policy state probability satisfies the following recursions:

$$
\begin{gathered}
\eta(s)=h(s)+\sum_{\bar{s}} \eta(\bar{s}) \sum_{a} \pi(a \mid \bar{s}) p(s \mid \bar{s}, a), \forall s \in \delta \\
\mu(s)=\frac{\eta(s)}{\sum_{s^{\prime}} \eta\left(s^{\prime}\right)}, \quad \forall s \in \mathcal{S}
\end{gathered}
$$

Our objective

- Goal: find parameter vector w minimizing mean-squared error between the true value function $v_{\pi}(S)$ and its approximation $\hat{v}(S, \mathbf{w})$:

$$
\begin{aligned}
J(\mathbf{w}) & =\mathbb{E}_{\pi}\left[\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right)^{2}\right] \\
\Delta \mathbf{w} & =-\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w}) \\
& =\alpha \mathbb{E}_{\pi}\left[\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})\right]
\end{aligned}
$$

Our objective

- Goal: find parameter vector w minimizing mean-squared error between the true value function $v_{\pi}(S)$ and its approximation $\hat{v}(S, \mathbf{w})$:

$$
\begin{aligned}
J(\mathbf{w}) & =\mathbb{E}_{\pi}\left[\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right)^{2}\right] \\
\Delta \mathbf{w} & =-\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w}) \\
& =\alpha \mathbb{E}_{\pi}\left[\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})\right]
\end{aligned}
$$

- Starting from a guess w_{0}

Our objective

- Goal: find parameter vector w minimizing mean-squared error between the true value function $v_{\pi}(S)$ and its approximation $\hat{v}(S, \mathbf{w})$:

$$
\begin{aligned}
J(\mathbf{w}) & =\mathbb{E}_{\pi}\left[\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right)^{2}\right] \\
\Delta \mathbf{w} & =-\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w}) \\
& =\alpha \mathbb{E}_{\pi}\left[\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})\right]
\end{aligned}
$$

- Starting from a guess w_{0}
- We consider the sequence $w_{0}, w_{1}, w_{2}, \ldots$ s.t. : $w_{n+1}=w_{n}-\frac{1}{2} \alpha \nabla_{w} J\left(w_{n}\right)$
- We then have $J\left(w_{0}\right) \geq J\left(w_{1}\right) \geq J\left(w_{2}\right) \geq \ldots$

Gradient Descent

- Goal: find parameter vector w minimizing mean-squared error between the true value function $v_{\pi}(S)$ and its approximation $\hat{v}(S, \mathbf{w})$:

$$
J(\mathbf{w})=\mathbb{E}_{\pi}\left[\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right)^{2}\right]
$$

- Gradient descent finds a local minimum:

$$
\begin{aligned}
\Delta \mathbf{w} & =-\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w}) \\
& =\alpha \mathbb{E}_{\pi}\left[\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})\right]
\end{aligned}
$$

Gradient Descent

- Goal: find parameter vector w minimizing mean-squared error between the true value function $v_{\pi}(S)$ and its approximation $\hat{v}(S, \mathbf{w})$:

$$
J(\mathbf{w})=\mathbb{E}_{\pi}\left[\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right)^{2}\right]
$$

- Gradient descent finds a local minimum:

$$
\begin{aligned}
\Delta \mathbf{w} & =-\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w}) \\
& =\alpha \mathbb{E}_{\pi}\left[\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})\right]
\end{aligned}
$$

- Stochastic gradient descent (SGD) samples the gradient:

$$
\Delta \mathbf{w}=\alpha\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})
$$

SGD with Experience Replay

- Given experience consisting of 〈state, value〉 pairs

$$
\mathrm{D}=\left\{\left\langle s_{1}, v_{1}^{\pi}\right\rangle,\left\langle s_{2}, v_{2}^{\pi}\right\rangle, \ldots,\left\langle s_{T}, v_{T}^{\pi}\right\rangle\right\}
$$

- Repeat
- Sample state, value from experience

$$
\left\langle s, v^{\pi}\right\rangle \sim \mathrm{D}
$$

- Apply stochastic gradient descent update

$$
\Delta \mathbf{w}=\alpha\left(v^{\pi}-\hat{v}(s, \mathbf{w})\right) \nabla_{\mathbf{w}} \hat{v}(s, \mathbf{w})
$$

- Converges to least squares solution

Feature Vectors

- Represent state by a feature vector

$$
\mathbf{x}(S)=\left(\begin{array}{c}
\mathbf{x}_{1}(S) \\
\vdots \\
\mathbf{x}_{n}(S)
\end{array}\right)
$$

- For example
- Distance of robot from landmarks
- Trends in the stock market
- Piece and pawn configurations in chess

Linear Value Function Approximation (VFA)

- Represent value function by a linear combination of features

$$
\hat{v}(S, \mathbf{w})=\mathbf{x}(S)^{\top} \mathbf{w}=\sum_{j=1}^{n} \mathbf{x}_{j}(S) \mathbf{w}_{j}
$$

- Objective function is quadratic in parameters w

$$
J(\mathbf{w})=\mathbb{E}_{\pi}\left[\left(v_{\pi}(S)-\mathbf{x}(S)^{\top} \mathbf{w}\right)^{2}\right]
$$

- Update rule is particularly simple

$$
\begin{aligned}
\nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) & =\mathbf{x}(S) \\
\Delta \mathbf{w} & =\alpha\left(v_{\pi}(S)-\hat{v}(S, \mathbf{w})\right) \mathbf{x}(S)
\end{aligned}
$$

- Update $=$ step-size \times prediction error \times feature value
- Later, we will look at the neural networks as function approximators.

Incremental Prediction Algorithms

- We have assumed the true value function $v_{\pi}(s)$ is given by a supervisor
- But in RL there is no supervisor, only rewards
- In practice, we substitute a target for $v_{\pi}(s)$
- For MC, the target is the return G_{t}

$$
\Delta \mathbf{w}=\alpha\left(G_{t}-\hat{v}\left(S_{t}, \mathbf{w}\right)\right) \nabla_{\mathbf{w}} \hat{v}\left(S_{t}, \mathbf{w}\right)
$$

- For TD(0), the target is the TD target: $R_{t+1}+\gamma \hat{v}\left(S_{t+1}, \mathbf{w}\right)$

$$
\Delta \mathbf{w}=\alpha\left(R_{t+1}+\gamma \hat{v}\left(S_{t+1}, \mathbf{w}\right)-\hat{v}\left(S_{t}, \mathbf{w}\right)\right) \nabla_{\mathbf{w}} \hat{v}\left(S_{t}, \mathbf{w}\right)
$$

Monte Carlo with VFA

- Return G_{t} is an unbiased, noisy sample of true value $v_{\pi}\left(S_{t}\right)$
- Can therefore apply supervised learning to "training data":

$$
\left\langle S_{1}, G_{1}\right\rangle,\left\langle S_{2}, G_{2}\right\rangle, \ldots,\left\langle S_{T}, G_{T}\right\rangle
$$

- For example, using linear Monte-Carlo policy evaluation:

$$
\Delta \mathbf{w}=\alpha\left(G_{t}-\hat{v}\left(S_{t}, \mathbf{w}\right)\right) \nabla_{\mathbf{w}} \hat{v}\left(S_{t}, \mathbf{w}\right)
$$

- Monte-Carlo evaluation converges to a local optimum

Monte Carlo with VFA

Gradient Monte Carlo Algorithm for Approximating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated
Input: a differentiable function $\hat{v}: \mathcal{S} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$
Initialize value-function weights $\boldsymbol{\theta}$ as appropriate (e.g., $\boldsymbol{\theta}=\mathbf{0}$) Repeat forever:

Generate an episode $S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, \ldots, R_{T}, S_{T}$ using π For $t=0,1, \ldots, T-1$:

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha\left[G_{t}-\hat{v}\left(S_{t}, \boldsymbol{\theta}\right)\right] \nabla \hat{v}\left(S_{t}, \boldsymbol{\theta}\right)
$$

TD Learning with VFA

- The TD-target $R_{t+1}+\gamma \hat{v}\left(S_{t+1}, \mathbf{w}\right)$ is a biased sample of true value $v_{\pi}\left(S_{t}\right)$
- Can still apply supervised learning to "training data":

$$
\left\langle S_{1}, R_{2}+\gamma \hat{v}\left(S_{2}, \mathbf{w}\right)\right\rangle,\left\langle S_{2}, R_{3}+\gamma \hat{v}\left(S_{3}, \mathbf{w}\right)\right\rangle, \ldots,\left\langle S_{T-1}, R_{T}\right\rangle
$$

- For example, using linear TD(0):

$$
\Delta \mathbf{w}=\alpha\left(R+\gamma \hat{v}\left(S^{\prime}, \mathbf{w}\right)-\hat{v}(S, \mathbf{w})\right) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})
$$

We ignore the dependence of the target on w !

We call it semi-gradient methods

TD Learning with VFA

Semi-gradient $\operatorname{TD}(0)$ for estimating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated
Input: a differentiable function $\hat{v}: \mathcal{S}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\hat{v}($ terminal, $\cdot)=0$
Initialize value-function weights $\boldsymbol{\theta}$ arbitrarily (e.g., $\boldsymbol{\theta}=\mathbf{0}$)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose $A \sim \pi(\cdot \mid S)$
Take action A, observe R, S^{\prime}
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha\left[R+\gamma \hat{v}\left(S^{\prime}, \boldsymbol{\theta}\right)-\hat{v}(S, \boldsymbol{\theta})\right] \nabla \hat{v}(S, \boldsymbol{\theta})$
$S \leftarrow S^{\prime}$
until S^{\prime} is terminal

Control with VFA

- Policy evaluation Approximate policy evaluation: $\hat{q}(\cdot, \cdot, \mathbf{w}) \approx q_{\pi}$
- Policy improvement ε-greedy policy improvement

Action-Value Function Approximation

- Approximate the action-value function

$$
\hat{q}(S, A, \mathbf{w}) \approx q_{\pi}(S, A)
$$

- Minimize mean-squared error between the true action-value function $q_{\pi}(S, A)$ and the approximate action-value function:

$$
J(\mathbf{w})=\mathbb{E}_{\pi}\left[\left(q_{\pi}(S, A)-\hat{q}(S, A, \mathbf{w})\right)^{2}\right]
$$

- Use stochastic gradient descent to find a local minimum

$$
\begin{aligned}
-\frac{1}{2} \nabla_{\mathbf{w}} J(\mathbf{w}) & =\left(q_{\pi}(S, A)-\hat{q}(S, A, \mathbf{w})\right) \nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w}) \\
\Delta \mathbf{w} & =\alpha\left(q_{\pi}(S, A)-\hat{q}(S, A, \mathbf{w})\right) \nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w})
\end{aligned}
$$

Linear Action-Value Function Approximation

- Represent state and action by a feature vector

$$
\mathbf{x}(S, A)=\left(\begin{array}{c}
\mathbf{x}_{1}(S, A) \\
\vdots \\
\mathbf{x}_{n}(S, A)
\end{array}\right)
$$

- Represent action-value function by linear combination of features

$$
\hat{q}(S, A, \mathbf{w})=\mathbf{x}(S, A)^{\top} \mathbf{w}=\sum_{j=1}^{n} \mathbf{x}_{j}(S, A) \mathbf{w}_{j}
$$

- Stochastic gradient descent update

$$
\begin{aligned}
\nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w}) & =\mathbf{x}(S, A) \\
\Delta \mathbf{w} & =\alpha\left(q_{\pi}(S, A)-\hat{q}(S, A, \mathbf{w})\right) \mathbf{x}(S, A)
\end{aligned}
$$

Incremental Control Algorithms

- Like prediction, we must substitute a target for $q_{\pi}(S, A)$
- For MC, the target is the return G_{t}

$$
\Delta \mathbf{w}=\alpha\left(G_{t}-\hat{q}\left(S_{t}, A_{t}, \mathbf{w}\right)\right) \nabla_{\mathbf{w}} \hat{q}\left(S_{t}, A_{t}, \mathbf{w}\right)
$$

- For TD(0), the target is the TD target: $R_{t+1}+\gamma Q\left(S_{t+1}, A_{t+1}\right)$

$$
\Delta \mathbf{w}=\alpha\left(R_{t+1}+\gamma \hat{q}\left(S_{t+1}, A_{t+1}, \mathbf{w}\right)-\hat{q}\left(S_{t}, A_{t}, \mathbf{w}\right)\right) \nabla_{\mathbf{w}} \hat{q}\left(S_{t}, A_{t}, \mathbf{w}\right)
$$

Incremental Control Algorithms

Episodic Semi-gradient Sarsa for Estimating $\hat{q} \approx q_{*}$

Input: a differentiable function $\hat{q}: \mathcal{S} \times \mathcal{A} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$
Initialize value-function weights $\boldsymbol{\theta} \in \mathbb{R}^{n}$ arbitrarily (e.g., $\boldsymbol{\theta}=\mathbf{0}$)
Repeat (for each episode):
$S, A \leftarrow$ initial state and action of episode (e.g., ε-greedy)
Repeat (for each step of episode):
Take action A, observe R, S^{\prime}
If S^{\prime} is terminal:

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha[R-\hat{q}(S, A, \boldsymbol{\theta})] \nabla \hat{q}(S, A, \boldsymbol{\theta})
$$

Go to next episode
Choose A^{\prime} as a function of $\hat{q}\left(S^{\prime}, \cdot, \boldsymbol{\theta}\right)$ (e.g., ε-greedy)
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha\left[R+\gamma \hat{q}\left(S^{\prime}, A^{\prime}, \boldsymbol{\theta}\right)-\hat{q}(S, A, \boldsymbol{\theta})\right] \nabla \hat{q}(S, A, \boldsymbol{\theta})$
$S \leftarrow S^{\prime}$
$A \leftarrow A^{\prime}$

Incremental Control Algorithms

- Like prediction, we must substitute a target for $q_{\pi}(S, A)$
- For MC, the target is the return G_{t}

$$
\Delta \mathbf{w}=\alpha\left(G_{t}-\hat{q}\left(S_{t}, A_{t}, \mathbf{w}\right)\right) \nabla_{\mathbf{w}} \hat{q}\left(S_{t}, A_{t}, \mathbf{w}\right)
$$

- For TD(0), the target is the TD target: $R_{t+1}+\gamma Q\left(S_{t+1}, A_{t+1}\right)$

$$
\Delta \mathbf{w}=\alpha\left(R_{t+1}+\gamma \hat{q}\left(S_{t+1}, A_{t+1}, \mathbf{w}\right)-\hat{q}\left(S_{t}, A_{t}, \mathbf{w}\right)\right) \nabla_{\mathbf{w}} \hat{q}\left(S_{t}, A_{t}, \mathbf{w}\right)
$$

- Can we guess the deep Q learning update rule?

$$
\Delta \mathbf{w}=\alpha\left(R_{t+1}+\gamma \max _{A_{t+1}} \hat{q}\left(S_{t+1}, A_{t+1}, \mathbf{w}\right)-\hat{q}\left(S_{t}, A_{t}, \mathbf{w}\right)\right) \nabla_{\mathbf{w}} \hat{q}\left(S_{t}, A_{t}, \mathbf{w}\right)
$$

Deep Q-Networks (DQNs)

- Represent action-state value function by Q-network with weights w

$$
Q(s, a, \mathbf{w}) \approx Q^{*}(s, a)
$$

When would this be preferred?

Q-Learning with FA

- Minimize MSE loss by stochastic gradient descent

$$
I=\left(r+\gamma \max _{a} Q\left(s^{\prime}, a^{\prime}, \mathbf{w}\right)-Q(s, a, \mathbf{w})\right)^{2}
$$

- Converges to Q* using table lookup representation
- But diverges using neural networks due to:
- Correlations between samples
- Non-stationary targets

Q-Learning

- Minimize MSE loss by stochastic gradient descent

$$
I=\left(r+\gamma \max _{a} Q\left(s^{\prime}, a^{\prime}, \mathbf{w}\right)-Q(s, a, \mathbf{w})\right)^{2}
$$

- Converges to Q* using table lookup representation
- But diverges using neural networks due to:
- Correlations between samples
- Non-stationary targets

Solutions to both problems in:

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

DQN

- To remove correlations, build data-set from agent's own experience

$s_{1}, a_{1}, r_{2}, s_{2}$
$s_{2}, a_{2}, r_{3}, s_{3}$
$s_{3}, a_{3}, r_{4}, s_{4}$
\ldots
$s_{t}, a_{t}, r_{t+1}, s_{t+1}$

- Sample experiences from data-set and apply update

$$
I=\left(r+\gamma \max _{a} Q\left(s^{\prime}, a^{\prime}, \mathbf{w}\right)-Q(s, a, \mathbf{w})\right)^{2}
$$

DQN

- To remove correlations, build data-set from agent's own experience

$s_{1}, a_{1}, r_{2}, s_{2}$
$s_{2}, a_{2}, r_{3}, s_{3}$
$s_{3}, a_{3}, r_{4}, s_{4}$
\ldots
$s_{t}, a_{t}, r_{t+1}, s_{t+1}$

- Sample experiences from data-set and apply update

$$
I=\left(r+\gamma \max _{a} Q\left(s^{\prime}, a^{\prime}, \mathbf{w}-\right)-Q(s, a, \mathbf{w})\right)^{2}
$$

- To deal with non-stationarity, target parameters w- are held fixed

Experience Replay

- Given experience consisting of 〈state, value〉, or <state, action/value> pairs

$$
\mathrm{D}=\left\{\left\langle s_{1}, v_{1}^{\pi}\right\rangle,\left\langle s_{2}, v_{2}^{\pi}\right\rangle, \ldots,\left\langle s_{T}, v_{T}^{\pi}\right\rangle\right\}
$$

- Repeat
- Sample state, value from experience

$$
\left\langle s, v^{\pi}\right\rangle \sim \mathscr{D}
$$

- Apply stochastic gradient descent update

$$
\Delta \mathbf{w}=\alpha\left(v^{\pi}-\hat{v}(s, \mathbf{w})\right) \nabla_{\mathbf{w}} \hat{v}(s, \mathbf{w})
$$

DQNs: Experience Replay

- DQN uses experience replay and fixed Q-targets
- Store transition $\left(s_{t}, a_{t}, r_{t+1}, s_{t+1}\right)$ in replay memory D
- Sample random mini-batch of transitions (s, a, r, s^{\prime}) from D
- Compute Q-learning targets w.r.t. old, fixed parameters w-
- Optimize MSE between Q-network and Q-learning targets

$$
\mathscr{L}_{i}\left(w_{i}\right)=\mathbb{E}_{s, a, r, s^{\prime} \sim \mathscr{D}_{i}}[\underbrace{\left(r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime} ; w_{i}^{-}\right)\right.}_{\text {Q-learning target }}-\underbrace{Q\left(s, a ; w_{i}\right)}_{\text {Q-network }})^{2}]
$$

- Use stochastic gradient descent

DQNs in Atari

DQNs in Atari

- End-to-end learning of values $Q(s, a)$ from pixels
- Input observation is stack of raw pixels from last 4 frames
- Output is $Q(s, a)$ for 18 joystick/button positions
- Reward is change in score for that step

- Network architecture and hyperparameters fixed across all games

DQNs in Atari

- End-to-end learning of values $Q(s, a)$ from pixels
- Input observation is stack of raw pixels from last 4 frames
- Output is $Q(s, a)$ for 18 joystick/button positions
- Reward is change in score for that step

- Network architecture and hyperparameters fixed across all games

Extensions

- Double Q-learning for fighting maximization bias
- Prioritized experience replay
- Multistep returns

Maximization Bias

- We often need to maximize over our value estimates. The estimated maxima suffer from maximization bias
- Consider a state for which all ground-truth $q_{*}(s, a)=0$. Our estimates $Q(s, a)$ are uncertain, some are positive and some negative.
- $Q(s, \operatorname{argmax} Q(s, a))>0$ while $q_{*}\left(s, \operatorname{argmax} q_{*}(s, a)\right)=0$. a a
- This is because we use the same estimate Q both to choose the argmax and to evaluate it.

Double Tabular Q-Learning

```
Initialize \(Q_{1}(s, a)\) and \(Q_{2}(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)\), arbitrarily
Initialize \(Q_{1}(\) terminal-state,\(\cdot)=Q_{2}(\) terminal-state,\(\cdot)=0\)
Repeat (for each episode):
    Initialize \(S\)
    Repeat (for each step of episode):
    Choose \(A\) from \(S\) using policy derived from \(Q_{1}\) and \(Q_{2}\) (e.g., \(\varepsilon\)-greedy in \(Q_{1}+Q_{2}\) )
    Take action \(A\), observe \(R, S^{\prime}\)
    With 0.5 probabilility:
        \(Q_{1}(S, A) \leftarrow Q_{1}(S, A)+\alpha\left(R+\gamma Q_{2}\left(S^{\prime}, \arg \max _{a} Q_{1}\left(S^{\prime}, a\right)\right)-Q_{1}(S, A)\right)\)
        else:
        \(Q_{2}(S, A) \leftarrow Q_{2}(S, A)+\alpha\left(R+\gamma Q_{1}\left(S^{\prime}, \arg \max _{a} Q_{2}\left(S^{\prime}, a\right)\right)-Q_{2}(S, A)\right)\)
    \(S \leftarrow S^{\prime} ;\)
until \(S\) is terminal
```


Double Deep Q-Learning

- Current Q-network w is used to select actions
- Older Q-network w- is used to evaluate actions

Action evaluation: w-

Action selection: w

Prioritized Replay

- Weight experience according to "surprise" (or error)
- Store experience in priority queue according to DQN error
- Stochastic Prioritization

$$
\begin{aligned}
& |\underbrace{\left.r+s^{\prime}, a^{\prime}, \mathbf{w}^{-}\right)-Q(s, a, w)}_{\text {ic Prioritization } \underbrace{r+\gamma \max _{\mathrm{i}} \text { is proportion }}_{a^{\prime}} \mathrm{DQN} \text { error }}| \\
& P(i)=\frac{p_{i}^{\alpha}}{\sum_{k} p_{k}^{\alpha}}
\end{aligned}
$$

- α determines how much prioritization is used, with $\alpha=0$ corresponding to the uniform case.

Multistep Returns

- Truncated n-step return from a state s_t: $\quad R_{t}^{(n)}=\sum_{k=0}^{n-1} \gamma_{t}^{(k)} R_{t+k+1}$
- Multistep Q-learning update rule:

$$
I=\left(R_{t}^{(n)}+\gamma_{t}^{(n)} \max _{a} Q\left(S_{t+n}, a^{\prime}, \mathbf{w}\right)-Q(s, a, \mathbf{w})\right)^{2}
$$

- Single step Q-learning update rule:

$$
I=\left(r+\gamma \max _{a} Q\left(s^{\prime}, a^{\prime}, \mathbf{w}\right)-Q(s, a, \mathbf{w})\right)^{2}
$$

n-step TD Returns/Targets

- Monte Carlo: $G_{t} \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots+\gamma^{T-t-1} R_{T}$

n-step TD Returns/Targets

- Monte Carlo: $G_{t} \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots+\gamma^{T-t-1} R_{T}$
- TD: $G_{t}^{(1)} \doteq R_{t+1}+\gamma V_{t}\left(S_{t+1}\right)$
- Use V_t to estimate remaining return

n-step TD Returns/Targets

- Monte Carlo: $G_{t} \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots+\gamma^{T-t-1} R_{T}$
- TD: $G_{t}^{(1)} \doteq R_{t+1}+\gamma V_{t}\left(S_{t+1}\right)$
- Use Vt to estimate remaining return
- n-step TD:
- 2 step return: $G_{t}^{(2)} \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2} V_{t}\left(S_{t+2}\right)$

n-step TD Returns/Targets

- Monte Carlo: $G_{t} \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots+\gamma^{T-t-1} R_{T}$
- TD: $G_{t}^{(1)} \doteq R_{t+1}+\gamma V_{t}\left(S_{t+1}\right)$
- Use Vt to estimate remaining return
- n-step TD:
- 2 step return: $G_{t}^{(2)} \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2} V_{t}\left(S_{t+2}\right)$
- n-step return: $G_{t}^{(n)} \doteq R_{t+1}+\gamma R_{t+2}+\gamma^{2}+\cdots+\gamma^{n-1} R_{t+n}+\gamma^{n} V_{t}\left(S_{t+n}\right)$

$$
\text { with } \quad G_{t}^{(n)} \doteq G_{t} \text { if } t+n \geq T
$$

n-step TD Prediction

n-step TD

- Recall the n-step return:
$G_{t}^{(n)} \doteq R_{t+1}+\gamma R_{t+2}+\cdots+\gamma^{n-1} R_{t+n}+\gamma^{n} V_{t+n-1}\left(S_{t+n}\right), \quad n \geq 1,0 \leq t<T-n$
- Of course, this is not available until time $t+n$
- The natural algorithm is thus to wait until then:

$$
V_{t+n}\left(S_{t}\right) \doteq V_{t+n-1}\left(S_{t}\right)+\alpha\left[G_{t}^{(n)}-V_{t+n-1}\left(S_{t}\right)\right], \quad 0 \leq t<T
$$

- This is called n-step TD

n-step TD for estimating $V \approx v_{\pi}$

Initialize $V(s)$ arbitrarily, $s \in \mathcal{S}$
Parameters: step size $\alpha \in(0,1]$, a positive integer n
All store and access operations (for S_{t} and R_{t}) can take their index $\bmod n$
Repeat (for each episode):
Initialize and store $S_{0} \neq$ terminal $T \leftarrow \infty$
For $t=0,1,2, \ldots$:
If $t<T$, then:
Take an action according to $\pi\left(\cdot \mid S_{t}\right)$
Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
If S_{t+1} is terminal, then $T \leftarrow t+1$
$\tau \leftarrow t-n+1 \quad$ (τ is the time whose state's estimate is being updated) If $\tau \geq 0$:
$G \leftarrow \sum_{i=\tau+1}^{\min (\tau+n, T)} \gamma^{i-\tau-1} R_{i}$
If $\tau+n<T$, then: $G \leftarrow G+\gamma^{n} V\left(S_{\tau+n}\right) \quad\left(G_{\tau}^{(n)}\right)$
$V\left(S_{\tau}\right) \leftarrow V\left(S_{\tau}\right)+\alpha\left[G-V\left(S_{\tau}\right)\right]$
Until $\tau=T-1$

$$
\begin{aligned}
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T}
\end{aligned}
$$

n-step TD for estimating $V \approx v_{\pi}$

Initialize $V(s)$ arbitrarily, $s \in \mathcal{S}$
Parameters: step size $\alpha \in(0,1]$, a positive integer n
All store and access operations (for S_{t} and R_{t}) can take their index $\bmod n$
Repeat (for each episode):
Initialize and store $S_{0} \neq$ terminal $T \leftarrow \infty$
For $t=0,1,2, \ldots$:
If $t<T$, then:
Take an action according to $\pi\left(\cdot \mid S_{t}\right)$
Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
If S_{t+1} is terminal, then $T \leftarrow t+1$
$\tau \leftarrow t-n+1 \quad$ (τ is the time whose state's estimate is being updated) If $\tau \geq 0$:
$G \leftarrow \sum_{i=\tau+1}^{\min (\tau+n, T)} \gamma^{i-\tau-1} R_{i}$
If $\tau+n<T$, then: $G \leftarrow G+\gamma^{n} V\left(S_{\tau+n}\right) \quad\left(G_{\tau}^{(n)}\right)$
$V\left(S_{\tau}\right) \leftarrow V\left(S_{\tau}\right)+\alpha\left[G-V\left(S_{\tau}\right)\right]$
Until $\tau=T-1$

$$
\begin{aligned}
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T}
\end{aligned}
$$

n-step TD for estimating $V \approx v_{\pi}$

Initialize $V(s)$ arbitrarily, $s \in \mathcal{S}$
Parameters: step size $\alpha \in(0,1]$, a positive integer n
All store and access operations (for S_{t} and R_{t}) can take their index $\bmod n$
Repeat (for each episode):
Initialize and store $S_{0} \neq$ terminal $T \leftarrow \infty$
For $t=0,1,2, \ldots$:
If $t<T$, then:
Take an action according to $\pi\left(\cdot \mid S_{t}\right)$
Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
If S_{t+1} is terminal, then $T \leftarrow t+1$
$\tau \leftarrow t-n+1 \quad$ (τ is the time whose state's estimate is being updated) If $\tau \geq 0$:
$G \leftarrow \sum_{i=\tau+1}^{\min (\tau+n, T)} \gamma^{i-\tau-1} R_{i}$
If $\tau+n<T$, then: $G \leftarrow G+\gamma^{n} V\left(S_{\tau+n}\right) \quad\left(G_{\tau}^{(n)}\right)$
$V\left(S_{\tau}\right) \leftarrow V\left(S_{\tau}\right)+\alpha\left[G-V\left(S_{\tau}\right)\right]$
Until $\tau=T-1$

$$
\begin{aligned}
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T}
\end{aligned}
$$

n-step TD for estimating $V \approx v_{\pi}$

Initialize $V(s)$ arbitrarily, $s \in \mathcal{S}$
Parameters: step size $\alpha \in(0,1]$, a positive integer n
All store and access operations (for S_{t} and R_{t}) can take their index $\bmod n$
Repeat (for each episode):
Initialize and store $S_{0} \neq$ terminal $T \leftarrow \infty$
For $t=0,1,2, \ldots$:
If $t<T$, then:
Take an action according to $\pi\left(\cdot \mid S_{t}\right)$
Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
If S_{t+1} is terminal, then $T \leftarrow t+1$
$\tau \leftarrow t-n+1 \quad(\tau$ is the time whose state's estimate is being updated) If $\tau \geq 0$:
$G \leftarrow \sum_{i=\tau+1}^{\min (\tau+n, T)} \gamma^{i-\tau-1} R_{i}$
If $\tau+n<T$, then: $G \leftarrow G+\gamma^{n} V\left(S_{\tau+n}\right) \quad\left(G_{\tau}^{(n)}\right)$
$V\left(S_{\tau}\right) \leftarrow V\left(S_{\tau}\right)+\alpha\left[G-V\left(S_{\tau}\right)\right]$
Until $\tau=T-1$

No value update

$$
\begin{aligned}
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T}
\end{aligned}
$$

Initialize $V(s)$ arbitrarily, $s \in \mathcal{S}$
Parameters: step size $\alpha \in(0,1]$, a positive integer n
All store and access operations (for S_{t} and R_{t}) can take their index mod n
Repeat (for each episode):
Initialize and store $S_{0} \neq$ terminal $T \leftarrow \infty$
For $t=0,1,2, \ldots$:
If $t<T$, then:
Take an action according to $\pi\left(\cdot \mid S_{t}\right)$
Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
If S_{t+1} is terminal, then $T \leftarrow t+1$
$\tau \leftarrow t-n+1 \quad(\tau$ is the time whose state's estimate is being updated) If $\tau \geq 0$:
$G \leftarrow \sum_{i=\tau+1}^{\min (\tau+n, T)} \gamma^{i-\tau-1} R_{i}$
If $\tau+n<T$, then: $G \leftarrow G+\gamma^{n} V\left(S_{\tau+n}\right) \quad\left(G_{\tau}^{(n)}\right)$
$V\left(S_{\tau}\right) \leftarrow V\left(S_{\tau}\right)+\alpha\left[G-V\left(S_{\tau}\right)\right]$
Until $\tau=T-1$

$$
\begin{aligned}
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T}
\end{aligned}
$$

Initialize $V(s)$ arbitrarily, $s \in \mathcal{S}$
Parameters: step size $\alpha \in(0,1]$, a positive integer n
All store and access operations (for S_{t} and R_{t}) can take their index mod n
Repeat (for each episode):
Initialize and store $S_{0} \neq$ terminal $T \leftarrow \infty$
For $t=0,1,2, \ldots$:
If $t<T$, then:
Take an action according to $\pi\left(\cdot \mid S_{t}\right)$
Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
If S_{t+1} is terminal, then $T \leftarrow t+1$
$\tau \leftarrow t-n+1 \quad(\tau$ is the time whose state's estimate is being updated) If $\tau \geq 0$:
$G \leftarrow \sum_{i=\tau+1}^{\min (\tau+n, T)} \gamma^{i-\tau-1} R_{i}$
If $\tau+n<T$, then: $G \leftarrow G+\gamma^{n} V\left(S_{\tau+n}\right) \quad\left(G_{\tau}^{(n)}\right)$
$V\left(S_{\tau}\right) \leftarrow V\left(S_{\tau}\right)+\alpha\left[G-V\left(S_{\tau}\right)\right]$
Until $\tau=T-1$

$$
\begin{aligned}
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T} \\
& S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{3} \rightarrow S_{4} \rightarrow S_{5} \rightarrow S_{6} \rightarrow S_{7} \rightarrow S_{8} \rightarrow S_{9} \rightarrow S_{10} \rightarrow S_{11} \rightarrow S_{12} \ldots S_{T}
\end{aligned}
$$

Random Walk Examples

A Larger Example - 19-state Random Walk

- An intermediate α is best
- An intermediate n is best

It's much the same for action values

On-policy n-step Action-value Methods

- Action-value form of n -step return

$$
G_{t}^{(n)} \doteq R_{t+1}+\gamma R_{t+2}+\cdots+\gamma^{n-1} R_{t+n}+\gamma^{n} \underline{Q_{t+n-1}\left(S_{t+n}, A_{t+n}\right)}
$$

- n-step Sarsa:

$$
Q_{t+n}\left(S_{t}, A_{t}\right) \doteq Q_{t+n-1}\left(S_{t}, A_{t}\right)+\alpha\left[G_{t}^{(n)}-Q_{t+n-1}\left(S_{t}, A_{t}\right)\right]
$$

- n-step Expected Sarsa is the same update with a slightly different n step return:

$$
G_{t}^{(n)} \doteq R_{t+1}+\cdots+\gamma^{n-1} R_{t+n}+\gamma^{n} \sum_{a} \pi\left(a \mid S_{t+n}\right) Q_{t+n-1}\left(S_{t+n}, a\right)
$$

Off-policy n-step Methods by Importance Sampling

- Recall the importance-sampling ratio:

$$
\rho_{t}^{t+n} \doteq \prod_{k=t}^{\min (t+n-1, T-1)} \frac{\pi\left(A_{k} \mid S_{k}\right)}{\mu\left(A_{k} \mid S_{k}\right)}
$$

- We get off-policy methods by weighting updates by this ratio
- Off-policy n-step TD:

$$
V_{t+n}\left(S_{t}\right) \doteq V_{t+n-1}\left(S_{t}\right)+\alpha \rho_{t}^{t+n}\left[G_{t}^{(n)}-V_{t+n-1}\left(S_{t}\right)\right]
$$

- Off-policy n-step Sarsa:

$$
Q_{t+n}\left(S_{t}, A_{t}\right) \doteq Q_{t+n-1}\left(S_{t}, A_{t}\right)+\alpha \rho_{t+1}^{t+n}\left[G_{t}^{(n)}-Q_{t+n-1}\left(S_{t}, A_{t}\right)\right]
$$

- Off-policy n-step Expected Sarsa:

$$
Q_{t+n}\left(S_{t}, A_{t}\right) \doteq Q_{t+n-1}\left(S_{t}, A_{t}\right)+\alpha \rho_{t+1}^{t+n-1}\left[G_{t}^{(n)}-Q_{t+n-1}\left(S_{t}, A_{t}\right)\right]
$$

Conclusions Regarding n-step Methods

- Generalize Temporal-Difference and Monte Carlo learning methods, sliding from one to the other as n increases
- $n=1$ is TD as in Chapter 6
- $n=\infty$ is MC as in Chapter 5
- an intermediate n is often much better than either extreme
- applicable to both continuing and episodic problems
- There is some cost in computation
- need to remember the last n states
- learning is delayed by n steps
- per-step computation is small and uniform, like TD

