
Introduction

Deep Reinforcement Learning and Control

Instructors:
Katerina Fragkiadaki
Russ Salakhutdinov

Carnegie Mellon

School of Computer Science

Fall 2021, CMU 10-703

• Course website: https://cmudeeprl.github.io/703website_f21/ all you
need to know

• Grading:

• 4 Homework assignments: implementation and question/answering
many optional and extra grade questions - 60%

• 3 quizzes - 40%

• Resources: AWS for those that do not have access to GPUs

• People can audit the course

• The readings on the schedule are required unless noted otherwise

Course Logistics

https://cmudeeprl.github.io/703website_f21/

• Goal of the course / why it is important

• What is reinforcement learning

• What is representation learning (and how it helps reinforcement
learning and behavior learning in general)

• Reinforcement learning versus supervised learning

• AI’s paradox: what is hard and what is easy in behavior learning

Overview for today

• Goal of the course / why it is important

• What is reinforcement learning

• What is representation learning (and how it helps reinforcement
learning and behavior learning in general)

• Reinforcement learning versus supervised learning

• AI’s paradox: what is hard and what is easy in behavior learning

Overview for today

Goal of the course: Learning to act

Building agents that learn to act
and accomplish goals in dynamic
environments

Building agents that learn to act
and accomplish goals in dynamic
environments

…as opposed to agents that execute
pre-programmed behaviors in static
environments…

Goal of the course: Learning to act

Motion and Action are important

“The brain evolved, not to think or feel, but to control movement.”
 Daniel Wolpert

https://www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains?language=en

https://www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains?language=en

Motion and Action are important

Sea squirts digest their own brain when they decide not to move
anymore

“The brain evolved, not to think or feel, but to control movement.”
 Daniel Wolpert

Learning to act

• It is considered the most biologically plausible objective for learning
• It addresses the full problem of making artificial agents that act in the

world, so it is driven by the right end goal

…in contrast to, for example,
making artificial agents that label
pixels in images

How far are we?

Here the robot is tele-operated: it does not actually
operate on its own.

How far are we?

Here the robot operates on its own.

How far are we?

Here the robot operates on its own.

• Discovering a behavior through trial-and-error guided
by rewards.

• Generalizing/transferring a behavior across different
scenarios (camera viewpoints, object identities,
objects arrangements) E.g., you show me how to open one
door, and I now need to learn how to open other similar doors

Questions/tasks the course aims to
answer/address

Questions/tasks the course aims to
answer/address

• Discovering a behavior through trial-and-error guided
by rewards.
• Many algorithm here start tabula rasa: no previous knowledge of

anything.
• Environment doesn’t change (camera and objects).

• Generalizing/transferring a behavior across different
scenarios (camera viewpoints, object identities,
objects arrangements) E.g., you show me how to open one
door, and I now need to learn how to open all other doors

• Discovering a behavior through trial-and-error guided
by rewards. E.g., today I discovered how to avoid the ads in
y2mate.com, and I also discovered how (many times I need) to turn the
key to open the door in the apt.

• Generalizing/transferring a behavior across different
scenarios (camera viewpoints, object identities,
objects arrangements) E.g., you show me how to open one
door, and I now need to learn how to open all other doors
• We do not start tabula rasa: we have knowledge which we enrich

with trial-and-error. Our accomplishments are added to this
knowledge with the goal to transfer faster in the future

Questions/tasks the course aims to
answer/address

http://y2mate.com

• Goal of the course / why it is important

• What is reinforcement learning

• What is representation learning (and how it helps reinforcement
learning and behavior learning in general)

• Reinforcement learning versus supervised learning

• AI’s paradox: what is hard and what is easy in behavior learning

Overview for today

Reinforcement Learning (RL): How behaviors are shaped

• behaviors that result in praise/pleasure tend to repeat,
• behaviors that result in punishment/pain tend to  

become extinct.

Behavior is primarily shaped by
reinforcement rather than free-will.

B.F. Skinner
1904-1990

Harvard psychology

B.F. Skinner
1904-1990

Harvard psychology

https://www.youtube.com/watch?v=yhvaSEJtOV8

Reinforcement Learning (RL): How behaviors are shaped

Interesting finding: Pigeons become addicted to pecking under variable
(non-consistent) rewarding

Q: Is the pigeon here
transferring or
discovering?

https://www.youtube.com/watch?v=yhvaSEJtOV8

Reinforcement learning = trial-and-error learning

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3.

Agent and environment interact at discrete time steps: t = 0,1, 2,K
 Agent observes state at step t: St ∈
 produces action at step t : At ∈ (St)
 gets resulting reward: Rt+1 ∈

 and resulting next state: St+1 ∈

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt

1

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

Learning policies that maximize a reward function by interacting with the
world

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Reinforcement learning
Rewards can be intrinsic, i.e., generated by the agent and guided by its
curiosity as opposed to the external environment.

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3.

Agent and environment interact at discrete time steps: t = 0,1, 2,K
 Agent observes state at step t: St ∈
 produces action at step t : At ∈ (St)
 gets resulting reward: Rt+1 ∈

 and resulting next state: St+1 ∈

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt

1

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

Reinforcement learning
Rewards can be intrinsic, i.e., generated by the agent and guided by its
curiosity as opposed to the external environment.

https://youtu.be/8vNxjwt2AqY

No food shows up but the baby keeps exploring

https://youtu.be/8vNxjwt2AqY

Agent
An entity that is equipped with
• sensors, in order to sense the environment,
• end-effectors in order to act in the environment, and
• goals that she wants to achieve

They are used by the agent to interact with the world:

• Play song with title “Imagine” / lower the lights / increase the volume /
call grandma etc..

• Display advertisement , suggest song / movie etc..
• Go straight / turn k degrees / brake etc..
• Robot torques
• Desired gripper translation, rotation, opening

Actions

• A state captures whatever information is available to the agent at step t
about its environment.

• The state can include immediate observations, highly processed
observations, and structures built up over time from sequences of
sensations, memories etc.

States

• An observation a.k.a. sensation: the (raw) input of the agent’s sensors,
images, tactile signal, waveforms, etc.

Observations

A mapping function from states to actions of the end effectors.
�π(a ∣ s) = ℙ[At = a ∣ St = s]

Policy

A mapping function from states to actions of the end effectors.
�

It can be a shallow or a deep function mapping

π(a ∣ s) = ℙ[At = a ∣ St = s]

Policy

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

A mapping function from states to actions of the end effectors.
�

It can be a shallow or a deep function mapping

or it can be as complicated as involving a tree look-ahead search

π(a ∣ s) = ℙ[At = a ∣ St = s]

Policy

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Imagine an agent that wants to pick up an object and has a policy that
predicts what the actions should be for the next 2 secs ahead.
This means, for the next 2 secs we switch off the sensors, and just
execute the predicted actions. In the next second, due to imperfect
sensing, the object is about to fall!

Closed loop sensing and acting

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Sensing is always imperfect. Our excellent motor skills are due to
continuous sensing and updating of the actions, a.k.a. servoing. So the
perception-action loop is in fact extremely short in time.

Closed loop sensing and acting

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Rt

They are scalar values provided provided to the agent that indicate
whether goals have been achieved, e.g., 1 if goal is achieved, 0
otherwise, or -1 for overtime step the goal is not achieved

Rewards

• Rewards specify what the agent needs to achieve, not how to achieve it.
• The simplest and cheapest form of supervision, and surprisingly general:

All of what we mean by goals and purposes can be encoded
mathematically as the maximization of the cumulative sum of a received
scalar signal (reward)

Goal-seeking behavior of an agent can be formalized as the behavior that
seeks maximization of the expected value of the cumulative sum of
(potentially time discounted) rewards, we call it return.

We want to maximize returns.

Returns

Gt = Rt+1 + Rt+2 + ⋯ + RT

• States: Configurations of the playing board (≈1020)
• Actions: Moves
• Rewards:

• win: +1
• lose: –1
• else: 0

Example: Backgammon

• States: Road traffic, weather, time of day
• Actions: steering wheel, break
• Rewards:

• +1 reaching goal not over-tired
• -1: honking from surrounding drivers
• -100: collision

Example: Driving

• States: Joint configurations ?
• Actions: Torques on joints
• Rewards: Penalize jerky motions, reaching target pose

Example: Peg in Hole Insertion

• States: Joint configurations ?
• Actions: Torques on joints
• Rewards: Penalize jerky motions, reaching target pose

Example: Peg in Hole Insertion

• How the states and rewards change given the actions of the agent:

�

• Transition function or next step function:

�

p(s′�, r |s, a) = ℙ{St = s′�, Rt = r |St−1 = s, At−1 = a}

T(s′ �|s, a) = p(s′ �|s, a) = ℙ{St = s′�|St−1 = s, At−1 = a} = ∑
r∈ℝ

p(s′�, r |s, a)

Dynamics a.k.a. the World Model

• Encodes the results of the actions of the agent.

Prediction

slide borrowed from Sergey
Levine

“the idea that we predict the consequences of our motor
commands has emerged as an important theoretical

concept in all aspects of sensorimotor control”

Dynamics a.k.a. the World Model

Planning

Planning: unrolling (querying) a model forward in time and selecting the
best action sequence that satisfies a specific goal
Plan: a sequence of actions

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1 The Model

Is planning learning or not?

Why deep reinforcement learning?

Because the policy, the model and the value functions (expected returns)
will often be represented by some form of a deep neural network.

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

• Can we think of goal directed behavior learning problems that cannot
be modeled or are not meaningful using the trial-and-error
reinforcement learning framework?

• The agent should have the chance to try (and fail) enough times
• This is impossible if episode takes too long, e.g., reward=“obtain a

great Ph.D.”
• This is impossible when safety is a concern: we can’t learn to drive

via reinforcement learning in the real world, failure cannot be
tolerated

Limitations of Reinforcement Learning

Q: what other forms of supervision humans use to learn to act in the world?

1. Learning from rewards

2. Learning from demonstrations

3. Learning from specifications of optimal behavior

Other forms of supervision for learning behaviors?

Behavior: High Jump

• Learning from rewards
• Reward: jump as high as possible: It took years for athletes to find the right

behavior to achieve this
• Learning from demonstrations

• It was way easier for athletes to perfection the jump, once someone showed
the right general trajectory

• Learning from specifications of optimal behavior
• For novices, it is much easier to replicate a behavior if additional guidance is

provided in natural language: where to place the foot, how to time yourself,
etc. .

scissors Fosbury flop

• Goal of the course / why it is important

• What is reinforcement learning

• What is representation learning (and how it helps reinforcement
learning and behavior learning in general)

• Reinforcement learning versus supervised learning

• AI’s paradox: what is hard and what is easy in behavior learning

Overview for today

• Assuming we know everything about the world (object locations, 3D
shapes, physical properties) and world dynamics. Use planners to
search for the action sequence to achieve a desired goal.

State estimation - Two extremes

Rearrangement Planning via Heuristic Search, Jennifer E. King, Siddhartha S. Srinivasa

• Assuming we know everything about the world (object locations, 3D
shapes, physical properties). Use planners to search for the action
sequence to achieve a desired goal.

• Assuming we know nothing about the world. Learn to map pixels
directly to actions while optimizing for your end task, i.e., not
crashing and obeying the traffic signs, or, imitating human
demonstrations.

State estimation - Two extremes

End-to-End Learning for Self-Driving Cars, NVIDIA

In practice: A lot of domain knowledge for going from
observations to states

• Q: should the location of the trees and their fruits be part of the state for driving?

• Q: should the location of the trees and their fruits be part of the state for apple picking?

•

Representation learning helps learning to act
• Representation learning: mapping raw observations to features and

structures from which the mapping to actions or to semantic labels is
easier to infer.

• Remember what the computer sees

Representation learning

• Remember what the computer sees

Representation learning

• Remember what the computer sees

Representation learning

Representation learning

Representation learning

(Visual) Representation learning helps learning to act

• Despite these images have very different pixel values, actions required to achieve the goal of
switching on the device are similar.

• Visual perception is instrumental to learning to act, in transforming raw pixels to action-relevant
feature vectors and structures.

• Having pre-trained our visual representations with auxiliary tasks is
likely to dramatically decrease the number of interactions with the
environment we need to learn to press buttons.

• Q: What are reasonable auxiliary tasks?

• Supervised: object detection, image classification, pixel labelling.

• Unsupervised: open research problem

(Visual) Representation learning helps learning to act

• Goal of the course / why it is important

• What is reinforcement learning

• What is representation learning (and how it helps reinforcement
learning and behavior learning in general)

• Reinforcement learning versus supervised learning

• AI’s paradox: what is hard and what is easy in behavior learning

Overview for today

• RL is a form of active learning:
• the agent gets the chance to collect her own data by acting in the

world, querying humans, and so on.
• the data changes over time, it depends on the policy of the agent.
• To query the environment effectively, the agent needs to keep

track of its uncertainty: what she knows and what she does not,
and thus needs to explore next.

• Supervised learning is a form of passive learning:
• the data does not depend on the agent in anyway, it is provided

by external labellers.
• the data is static throughout learning.

Reinforcement learning Versus supervised learning

• In RL, we often cannot use gradient-based optimization:
• e.g., when the agent does not know neither the world model to

unroll nor the reward function to maximize.
• In supervised learning, we usually can use gradient-based

optimization:
• E.g., we consider a parametric form for our regressor or classifier

and optimize it via stochastic gradient descent (SGD).

Reinforcement learning Versus supervised learning

• RL can be time consuming. Actions take time to carry out in the real
world, i.e., each interaction has a non-negligible cost. Our goal is the
agent to minimize the amount of interactions with the environment
while succeeding in the task.

Reinforcement learning Versus supervised learning

• RL can be time consuming. Actions take time to carry out in the real
world, i.e., each interaction has a non-negligible cost. Our goal is the
agent to minimize the amount of interactions with the environment
while succeeding in the task.

• We can use simulated experience and tackle the SIM2REAL
(simulation to reality) transfer.

Reinforcement learning Versus supervised learning

• RL can be time consuming. Actions take time to carry out in the real
world, i.e., each interaction has a non-negligible cost. Our goal is the
agent to minimize the amount of interactions with the environment
while succeeding in the task.

• We can use simulated experience and tackle the SIM2REAL
(simulation to reality) transfer.

Reinforcement learning Versus supervised learning

• RL can be time consuming. Actions take time to carry out in the real
world, i.e., each query has a non-negligible cost. Our goal is the
agent to minimize the amount of interactions with the environment
while succeeding in the task.

• We can use simulated experience and tackle the SIM2REAL
(simulation to reality) transfer.

• We can have robots working 24/7

Reinforcement learning Versus supervised learning

• RL can be time consuming. Actions take time to carry out in the real
world, i.e., each query has a non-negligible cost. Our goal is the
agent to minimize the amount of interactions with the environment
while succeeding in the task.

• We can use simulated experience and tackle the SIM2REAL
(simulation to reality) transfer.

• We can have robots working 24/7
• We can buy many robots

Reinforcement learning Versus supervised learning

Google’s Robot Farm

Given a dataset of state, action, reward sequences
� :
• learning a dynamics model, i.e., mapping of state and actions to next state,

is a reinforcement learning problem.
• learning a dynamics model, i.e., mapping of state and actions to next state,

is a supervised learning problem.
• for learning a dynamics model, i.e., mapping of state and actions to next

state, I can use gradient information.

Given a dataset of state, action, reward sequences
� from an expert interacting with the
environment:
• for learning the expert policy, i.e., mapping of states to expert actions, is a

supervised learning problem.
• for learning the expert policy, i.e., mapping of states to expert actions, I do

not need to use the rewards.

(s1, a1, r1, s2, a2, r2, s3, a3, r3, . . .)

(s1, a1, r1, s2, a2, r2, s3, a3, r3, . . .)

True or False

Deep Blue

A big search with heuristics: manual development of a board evaluation
function.

Backgammon

Backgammon

High branching factor due to dice roll prohibits brute force
deep searches such as in chess

Neuro-Gammon

• Developed by Gerald Tesauro in
1989 in IBM’s research center

• Trained to mimic expert
demonstrations using supervised
learning

• Achieved intermediate-level
human player

TD-Gammon

• Developed by Gerald Tesauro in
1992 in IBM’s research center

• A neural network that trains itself
to be an evaluation function by
playing against itself starting from
random weights

• Achieved performance close to
top human players of its time

Neuro-Gammon

• Developed by Gerald Tesauro in
1989 in IBM’s research center

• Trained to mimic expert
demonstrations using supervised
learning

• Achieved intermediate-level
human player

Evaluation function
TD-Gammon

A neural net with only 80 hidden units..

• Goal of the course / why it is important

• What is reinforcement learning

• What is representation learning (and how it helps reinforcement
learning and behavior learning in general)

• Reinforcement learning versus supervised learning

• AI’s paradox: what is hard and what is easy in behavior learning

Overview for today

GO

AlphaGoZero the program that beat the world champions
with only RL

• Monte Carlo Tree Search with neural nets
• self play

Go Versus the real world

Beating the world champion is easier than moving the Go stones.

vs.

What to move where

vs.

Moving

The complexity of motor control

The difficulty of motor control

From Dan Wolpert

How the world of Alpha Go is different than the real world?

1. Known environment (known entities and dynamics) Vs Unknown
environment (unknown entities and dynamics).

2. Need for behaviors to transfer across environmental variations since the
real world is very diverse

3. Discrete Vs Continuous actions

4. One goal Vs many goals

5. Rewards are provided automatically by an oracle environment VS rewards
need themselves to be detected

6. Interactions take time: we really need intelligent exploration

Reinforcement learning in the real world

How the world of Alpha Go is different than the real world?

1. Known environment (known entities and dynamics) Vs Unknown
environment (unknown entities and dynamics).

2. Need for behaviors to transfer across environmental variations since
the real world is very diverse

Alpha Go Versus the real world

How the world of Alpha Go is different than the real world?

1. Known environment (known entities and dynamics) Vs Unknown
environment (unknown entities and dynamics).

2. Need for behaviors to transfer across environmental variations since
the real world is very diverse

State estimation: To be able to act you need first to be able to see, detect
the objects that you interact with, detect whether you achieved your goal

Alpha Go Versus the real world

"it is comparatively easy to make computers exhibit adult level
performance on intelligence tests or playing checkers, and difficult or
impossible to give them the skills of a one-year-old when it comes to
perception and mobility"

AI’s paradox

Hans Moravec

"we're more aware of simple processes that don't work well than of
complex ones that work flawlessly"

Marvin Minsky

AI’s paradox

“We should expect the difficulty of reverse-engineering any human skill to
be roughly proportional to the amount of time that skill has been evolving
in animals.
The oldest human skills are largely unconscious and so appear to us to
be effortless.
Therefore, we should expect skills that appear effortless to be difficult to
reverse-engineer, but skills that require effort may not necessarily be
difficult to engineer at all.”

Evolutionary explanation

Hans Moravec

Intelligence was "best characterized as the things
that highly educated scientists found challenging",
such as chess, symbolic integration,
proving mathematical theorems and solving
complicated word algebra problems. Rodney Brooks

AI’s paradox

https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Math
https://en.wikipedia.org/wiki/Theorem

Intelligence was "best characterized as the things
that highly educated scientists found challenging",
such as chess, symbolic integration,
proving mathematical theorems and solving
complicated word algebra problems.
"The things that children of four or five years could do
effortlessly, such as visually distinguishing between a
coffee cup and a chair, or walking around on two
legs, or finding their way from their bedroom to the
living room were not thought of as activities requiring
intelligence.”

Rodney Brooks

AI’s paradox

https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Math
https://en.wikipedia.org/wiki/Theorem

Intelligence was "best characterized as the things
that highly educated scientists found challenging",
such as chess, symbolic integration,
proving mathematical theorems and solving
complicated word algebra problems.
"The things that children of four or five years could do
effortlessly, such as visually distinguishing between a
coffee cup and a chair, or walking around on two
legs, or finding their way from their bedroom to the
living room were not thought of as activities requiring
intelligence.”

Rodney Brooks
No cognition. Just sensing and action

AI’s paradox

https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Math
https://en.wikipedia.org/wiki/Theorem

Learning from Babies

• Be multi-modal

• Be incremental

• Be physical

• Explore

• Be social

• Learn a language

The Development of Embodied Cognition: Six Lessons from Babies. Linda Smith, Michael Gasser

Take-aways

• Forms of supervision for learning to act: mapping observations
to actions for a specific goal

• The reinforcement learning problem, terminology, basic
ingredients

• RL vs SL

• Learning to search using evaluation functions

• AI paradox: is hard to learn the abilities of a 2 year old, and
easy to learn to beat GO champions, solve theorems and so
on: a big search at a kind of small (compared to the real world)
state space at the end of the day.

The Development of Embodied Cognition: Six Lessons from Babies. Linda Smith, Michael Gasser

