
Imitation Learning with Behavior
Cloning

Deep Reinforcement Learning and Control

Instructors:
Katerina Fragkiadaki
Russ Salakhutdinov

Carnegie Mellon

School of Computer Science

Fall 2021, CMU 10-703

• The agent should have the chance to try (and fail) MANY times
• This is hard when safety is a concern: we cannot afford to fail
• This is also quite hard in general in real life where each interaction takes time (in

contrast to simulation)

Limitations of Learning by Interaction

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010

Crusher robot

Imitation Learning (a.k.a. Learning from Demonstrations)

kinesthetic imitation

• The teacher takes over the end-
effectors of the agent.

• Demonstrated actions are in the action
space of the imitator and can be
imitated directly)

The actions of the teacher need to be
inferred from visual sensory input and
mapped to the action space of the
agent.
Two challenges:
1) visual understanding
2) action mapping, especially when the

agent and the teacher do not have
the same action space

visual imitation

(later lecture) this lecture

Notation

actions �
states �
rewards �
dynamics �
observations �

at
st

rt
p(st+1 |st, at)

ot

actions �
states �
costs �
dynamics �

ut
xt

c(xt, ut)
p(xt+1 |xt, ut)

Diagram from Sergey Levine

Imitation learning VS Sequence labelling

1. run away
2. ignore
3. pet

Terminology & notation

Sequence labelling

y1 y2

� which product was purchased at frame t (if any)yt :

y3

Training data:
o1

1 , y1
1 , o1

2 , y1
2 , o1

3 , y1
3 ,

o2
1 , y2

1 , o2
2 , y2

2 , o2
3 , y2

3 ,

o3
1 , y3

1 , o3
2 , y3

2 , o3
3 , y3

3 ,

� the observation at time tot : � the state at time txt :

1. run away
2. ignore
3. pet

Terminology & notation

Imitation learning

� the action at time tut : � the observation at time tot : � the state at time txt :

Training data:
o1

1 , u1
1 , o1

2 , u 1
2 , o1

3 , u1
3 ,

o2
1 , u2

1 , o2
2 , u 2

2 , o2
3 , u2

3 ,

o3
1 , u3

1 , o3
2 , u3

2 , o3
3 , u3

3 ,

Imitation learning VS Sequence labelling

1. run away
2. ignore
3. pet

Terminology & notation

Imitation learning

1. run away
2. ignore
3. pet

Terminology & notation

Training data:
o1

1 , y1
1 , o1

2 , y1
2 , o1

3 , y1
3 ,

o2
1 , y2

1 , o2
2 , y2

2 , o2
3 , y2

3 ,

o3
1 , y3

1 , o3
2 , y3

2 , o3
3 , y3

3 ,

Sequence labelling

y1 y2 y3

� which product was purchased at frame t (if any)yt :

� the action at time tut :

Training data:
o1

1 , u1
1 , o1

2 , u 1
2 , o1

3 , u1
3 ,

o2
1 , u2

1 , o2
2 , u 2

2 , o2
3 , u2

3 ,

o3
1 , u3

1 , o3
2 , u3

2 , o3
3 , u3

3 ,

� the observation at time tot : � the state at time txt :

� the observation at time tot : � the state at time txt :

Imitation learning VS Sequence labelling

1. run away
2. ignore
3. pet

Terminology & notation

Imitation learning

1. run away
2. ignore
3. pet

Terminology & notation

Training data:
o1

1 , y1
1 , o1

2 , y1
2 , o1

3 , y1
3 ,

o2
1 , y2

1 , o2
2 , y2

2 , o2
3 , y2

3 ,

o3
1 , y3

1 , o3
2 , y3

2 , o3
3 , y3

3 ,

Sequence labelling

y1 y2 y3

� which product was purchased at frame t (if any)yt :

� the action at time tut :

Training data:
o1

1 , u1
1 , o1

2 , u 1
2 , o1

3 , u1
3 ,

o2
1 , u2

1 , o2
2 , u 2

2 , o2
3 , u2

3 ,

o3
1 , u3

1 , o3
2 , u3

2 , o3
3 , u3

3 ,

� the observation at time tot : � the state at time txt :

• In RL, our actions will
influence our future state,
and thus our future data.

• In sequence labelling, our
labels won’t influence the
future frames.

• Assume action labels in an annotated video are i.i.d. (independent and identically
distributed).

• Train a classifier to map observations to labels at each time step of the trajectory

Video sequence labelling

ot

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learningyt

fθ(yt |ot)

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

“picking up chicken A”

Action labelling: a mapping from states/observations to action labels

fθ(yt |ot)

Policy: a mapping from observations to actions

Imitation Learning
Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

• Assume actions in the expert trajectories are i.i.d. (independent and identically
distributed)

• Train a function to map observations/states to actions at each time step of the
trajectory

Imitation learning - Challenges

• Compounding errors
Fix: data augmentation

• Non-Markovian observations
Fix: observation concatenation or recurrent models

• Lack of generalization
Fix: Self-supervised visual feature learning

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learningImitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

• Compounding errors
Fix: data augmentation

Imitation learning - Challenges

Independent in time errors

error at time t with probability ε
E[Total errors] ≲ εT, T the length of the trajectory

This means that at each time step t, the agent wakes up on a state drawn from the
state distribution of the expert trajectories, and executes an action.

Compounding Errors

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

error at time t with probability ε

E[Total errors] ≲ ε(T + (T-1) + (T-2) + …+ 1) ∝ εT2

This means that at each time step t, the agent wakes up on a state drawn from the
state distribution resulting from executing the action the learned policy suggested in
the previous time step.

Distribution mismatch (distribution shift)

4 CHAPTER 1. INTRODUCTION

Expert trajectory
Learned Policy

No data on
how to recover

Figure 1.1: Mismatch between the distribution of training and test inputs in a driving
scenario.

many state-of-the-art software system that we use everyday. Systems based on super-

vised learning already translate our documents, recommend what we should read (Yue

and Guestrin, 2011), watch (Toscher et al., 2009) or buy, read our handwriting (Daumé

III et al., 2009) and filter spam from our emails (Weinberger et al., 2009), just to name a

few. Many subfields of artificial intelligence, such as natural language processing (the un-

derstanding of natural language by computers) and computer vision (the understanding

of visual input by computers), now deeply integrate machine learning.

Despite this widespread proliferation and success of machine learning in various fields

and applications, machine learning has had a much more limited success when applied

in control applications, e.g. learning to drive from demonstrations by human drivers.

One of the main reason behind this limited success is that control problems exhibit

fundamentally di↵erent issues that are not typically addressed by standard supervised

learning techniques.

In particular, much of the theory and algorithms for supervised learning are based on

the fundamental assumption that inputs/observations perceived by the predictor to make

its predictions are independent and always coming from the same underlying distribution

during both training and testing (Hastie et al., 2001). This ensures that after seeing

enough training examples, we will be able to predict well on new examples (at least

in expectation). However, this assumption is clearly violated in control tasks as these

are inherently dynamic and sequential : one must perform a sequence of actions over

time that have consequences on future inputs or observations of the system, to achieve a

goal or successfully perform the task. As predicting actions to execute influence future

inputs, this can lead to a large mismatch between the inputs observed under training

demonstrations, and those observed during test executions of the learned behavior. This

is illustrated schematically in Figure 1.1.

This problem has been observed in previous work. Pomerleau (1989), who trained a

Pπ*(ot) ≠ Pπθ
(ot)

supervised learning supervised learning +
control (NAIVE)

train (x,y) ~ D

test (x,y) ~ D

Supervised learning succeeds when training and test data distributions match,
that is a fundamental assumption.

Distribution mismatch (distribution shift)

ot ∼ Pπ*(ot)

ot ∼ Pπθ
(ot)

Change � by augmenting the expert demonstration trajectories.
This means: add examples in expert demonstration trajectories to cover the
states/observations points where the agent will land when trying out its own
policy. How?

1. By generating synthetic data in simulation
2. By collecting additional data via clever hardware
3. By interactively querying the experts in additional datapoints

Pπ*(ot)

Solution: data augmentations

Change � by augmenting the expert demonstration trajectories.
Add examples in expert demonstration trajectories to cover the states/
observations points where the agent will land when trying out its own policy.
How?

1. By generating synthetic data in simulation
2. By collecting additional data via clever hardware
3. By interactively querying the experts in additional datapoints

Pπ*(ot)

Solution: data augmentations

Demonstration Augmentation: ALVINN 1989

Demonstration Augmentation: ALVINN 1989

“In addition, the network must not solely be shown
examples of accurate driving, but also how to recover (i.e.
return to the road center) once a mistake has been made.
Partial initial training on a variety of simulated road images
should help eliminate these difficulties and facilitate better
performance.”
ALVINN: An autonomous Land vehicle in a neural
Network”, Pomerleau 1989

Demonstration Augmentation: ALVINN 1989

• Use of image simulator to generate images of how the road looks like
when the vehicle deviates slightly from its trajectory.

• Simulating the images too longer than training the network

Change � by augmenting the expert demonstration trajectories.
Add examples in expert demonstration trajectories to cover the states/
observations points where the agent will land when trying out its own policy.
How?

1. By generating synthetic data in simulation
2. By collecting additional data via clever hardware
3. By interactively querying the experts in additional datapoints

Pπ*(ot)

Solution: data augmentations

Learning to Drive a Car: Supervised Learning

End to End Learning for Self-Driving Cars, NVIDIA, 2016

Demonstration Augmentation: NVIDIA 2016

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous
Land Vehicle in a Neural Network (ALVINN) system. Training with data from only the human driver
is not sufficient. The network must learn how to recover from mistakes. …”
 
End to End Learning for Self-Driving Cars , Bojarski et al. 2016

Why did that work?

Bojarski et al. ‘16, NVIDIA

Additional, left and right cameras
with automatic ground-truth labels
to recover from mistakes

Data Augmentation (2): NVIDIA 2016

add Nvidia video

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous Land Vehicle in a Neural
Network (ALVINN) system. Training with data from only the human driver is not sufficient. The network must learn how to
recover from mistakes. …”, End to End Learning for Self-Driving Cars , Bojarski et al. 2016

Data Augmentation (3): Trails 2015

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots. Giusti et al.

Data Augmentation (3): Trails 2015

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots. Giusti et al.

Change � by augmenting the expert demonstration trajectories.
Add examples in expert demonstration trajectories to cover the states/
observations points where the agent will land when trying out its own policy.
How?

1. By generating synthetic data in simulation
2. By collecting additional data via clever hardware
3. By interactively querying the experts in additional datapoints

Pπ*(ot)

Solution: data augmentations

Learning to Drive a Car: Supervised Learning

Learning to Drive a Car: Supervised Learning

Learning to Drive a Car: Supervised Learning

Learning to Drive a Car: Supervised Learning

Learning to Drive a Car: Supervised Learning

Learning to Drive a Car: Supervised Learning

Learning to Race a Car : Interactive learning-DAGGer

Learning to Race a Car : Interactive learning-DAGGer

Learning to Race a Car : Interactive learning-DAGGer

Learning to Race a Car : Interactive learning-DAGGer

Learning to Race a Car : Interactive learning-DAGGer

This assumes you can actively access an expert during training!

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online
Learning Stephane Ross, Geoffrey J. Gordon, J. Andrew Bagnell

https://arxiv.org/find/cs/1/au:+Ross_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Gordon_G/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Bagnell_J/0/1/0/all/0/1

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer by
labelling additional data points resulting from applying the current policy.

DAGGER (in simulation)

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 69

Execute current policy and Query Expert
New Data

Supervised Learning

All previous data
Aggregate
Dataset

Steering
from expert

New
Policy

Figure 3.5: Depiction of the DAGGER procedure for imitation learning in a driving
scenario.

Test
Execu*on

Collect
Data

No‐Regret
Online Learner

Expert

Learned
Policy Done?

yes no
iπ̂

Best
Policy

iπ̂

e.g. Gradient
Descent

Figure 3.6: Diagram of the DAGGER algorithm with a general online learner for imita-
tion learning.

policies, with relatively few data points, may make many more mistakes and visit states

that are irrelevant as the policy improves. We will typically use �1 = 1 so that we do

not have to specify an initial policy ⇡̂1 before getting data from the expert’s behavior.

Then we could choose �i = pi�1 to have a probability of using the expert that decays

exponentially as in SMILE and SEARN. The only requirement is that {�i} be a sequence

such that �N = 1
N

P
N

i=1 �i ! 0 as N ! 1. The simple, parameter-free version of the

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer by
(asking human experts to provide) labelling additional data points resulting from
applying the current policy
1. Train � from human data �
2. Run � to get dataset �
3. Ask human to label � with actions �
4. Aggregate: �
5. GOTO step 1.

πθ(ut |ot) 𝒟π* = {o1, u1, . . . oN, uN}
πθ(ut |ot) 𝒟π = {o1, . . . , oM}

𝒟π ut
𝒟π* ← 𝒟π* ∪ 𝒟π

DAGGER (in simulation)

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

Problems:
• execute an unsafe/partially trained policy
• repeatedly query the expert

3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 69

Execute current policy and Query Expert
New Data

Supervised Learning

All previous data
Aggregate
Dataset

Steering
from expert

New
Policy

Figure 3.5: Depiction of the DAGGER procedure for imitation learning in a driving
scenario.

Test
Execu*on

Collect
Data

No‐Regret
Online Learner

Expert

Learned
Policy Done?

yes no
iπ̂

Best
Policy

iπ̂

e.g. Gradient
Descent

Figure 3.6: Diagram of the DAGGER algorithm with a general online learner for imita-
tion learning.

policies, with relatively few data points, may make many more mistakes and visit states

that are irrelevant as the policy improves. We will typically use �1 = 1 so that we do

not have to specify an initial policy ⇡̂1 before getting data from the expert’s behavior.

Then we could choose �i = pi�1 to have a probability of using the expert that decays

exponentially as in SMILE and SEARN. The only requirement is that {�i} be a sequence

such that �N = 1
N

P
N

i=1 �i ! 0 as N ! 1. The simple, parameter-free version of the

Application on drones: given RGB from the drone camera predict steering angles

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013

DAGGER (on a real platform)

Application on drones : given RGB from the drone camera predict steering angle
Caveats:
1. It is hard for the expert to provide the right magnitude for the turn without

feedback of his own actions! Solution: provide him with visual feedback

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013

DAGGER (on a real platform)

Caveats:

1. Is hard for the expert to provide the right magnitude for the turn without feedback of his own
actions! Solution: provide him with his visual feedback

2. The expert’s reaction time to the drone’s behavior is large, this causes imperfect actions to be
commanded. Solution: play-back in slow motion offline and record their actions.

3. Executing an imperfect policy causes accidents, crashes into obstacles. Solution: safety measures
which make again the data distribution matching imperfect between train and test, but good
enough..

DAGGER (on a real platform)

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013

Caveats:

1. Is hard for the expert to provide the right magnitude for the turn without feedback of his own
actions! Solution: provide him with his visual feedback

2. The expert’s reaction time to the drone’s behavior is large, this causes imperfect actions to be
commanded. Solution: play-back in slow motion offline and record their actions.

3. Executing an imperfect policy causes accidents, crashes into obstacles. Solution: safety measures
which make again the data distribution matching imperfect between train and test, but good
enough..

DAGGER (on a real platform)

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013

• Experts do not need to be humans.
• Machinery that we develop in this lecture can be used for imitating expert

policies found through (easier) optimization in a constrained smaller part of
the state space.

• Imitation then means distilling knowledge of expert constrained policies into a
general policy that can do well in all scenarios the simpler policies do well.

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

End to End Learning for Self-Driving Cars, Bojarski et al. 2016

• Non-markovian observations
Fix: observation concatenation or recurrent models

Imitation learning - Challenges

A stochastic process has the Markov property if the conditional probability
distribution of future states of the process (conditional on both past and present
states) depends only upon the present state, not on the sequence of events that
preceded it

Markov property

P[Rt+1 = r, St+1 = s0|S0, A0, R1, ..., St�1, At�1, Rt, St, At] = P[Rt+1 = r, St+1 = s0|St, At]

 for all � and all historiess′� ∈ 𝒮, r ∈ ℛ

Why might we fail to fit the expert?

1. Non-Markovian behavior
2. Multimodal behavior

behavior depends only
on current observation

If we see the same thing
twice, we do the same thing
twice, regardless of what
happened before

Often very unnatural for
human demonstrators

behavior depends on
all past observations

Non-Markovian observationsImitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

utut

How can we use the whole history?

variable number of frames,
too many weights

Fix 1: concatenate observations

How can we use the whole history?

RNN state

RNN state

RNN state

shared weights

Typically, LSTM cells work better here

Fix 2: use recurrent networks

Diagram from Sergey Levine

• RNNs tie the weights at each time step
• Condition the neural network on all previous inputs

Recurrent Neural Networks (RNNs)
Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

Diagram from Richard Socher

Given list of vectors:
At a single time step:

Recurrent Neural Network (single hidden layer)Recurrent	Neural	Network	language	model

4/21/16Richard	Socher10

Given	list	of	word	vectors:

At	a	single	time	step:

xt ht

ßà

x1, ..., xt�1, xt, xt+1, ..., xT

ht = �
�
W (hh)ht�1 +W (hx)x[t]

�

ŷt = softmax
�
W (S)ht

�

(in case of discrete labels)

Diagram from Richard Socher

Given list of vectors:
At a single time step:

Recurrent Neural Network (single hidden layer)Recurrent	Neural	Network	language	model

4/21/16Richard	Socher10

Given	list	of	word	vectors:

At	a	single	time	step:

xt ht

ßà

x1, ..., xt�1, xt, xt+1, ..., xT

ht = �
�
W (hh)ht�1 +W (hx)x[t]

�

ŷt = softmax
�
W (S)ht

�

(in case of discrete labels)

Diagram from Richard Socher

• Usually much more structure is needed in the latent state than a vanilla LSTM can
provide, e.g., detections and trackless of objects.

• We will discuss later in the course structured recurrent neural networks for video
perception.

Fix 2: use recurrent networks

Learning by Cheating

DAGGER: from a privileged teaching agent to an agent that
drives from images.

privileged agent sensorimotor agent

Privileged Agent cheats: drives with
the internal state of the simulator

it predicts future waypoints for the car to follow

Sensorimotor Agent drives from images

it predicts future waypoints for the car to follow

Waypoints are translated to steering
commands with a low-level controller

Learning by Cheating

DAGGER: from a privileged teaching agent to an agent that
drives from images.

trained with imitation learning
from human experts

trained with imitation learning
from the privileged agent

privileged agent sensorimotor agent

But why learning from simplified input
helps?
It is the same supervised learning problem!

The privileged agent can augment its data!

Results

- high level
command
- controller error
- lack of temporal
reasoning

