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Exploration: It’s all about modeling our uncertainty

• Exploration: trying out new things (new behaviours), with the hope 
of discovering higher rewards 

• Exploitation: doing what you know so far will yield the highest 
reward



Exploration with ϵ − greedy

• Are we exploring by adding random noise to our actions? 
• Imagine what would happen if you go to a new museum and you try 

to explore its exhibits. What would be your strategy for efficient 
exploration?   



Exploration is all you need: no reward RL

• Exploration: trying out new things (new behaviors), with the hope of 
discovering higher rewards 

• We explore efficiently once we know what we do not know, and 
target our exploration to the unknown part of the space.  

• My goal is to maximize my learning progress, i.e., learn most about 
the world



Motivation

Motivation: “Forces” that energize an organism to act and that direct 
its activity 
• Extrinsic Motivation: being moved to do something because of some 

external reward ($$, a prize, etc.).  
• Problem: such rewards are sparse.. 

• Intrinsic Motivation: being moved to do something because it is 
inherently enjoyable (curiosity, exploration, novelty, surprise, 
incongruity, complexity…) 

• Gain: Task independent! Free of human supervision, no need to 
code up reward functions to incentivize the agent. A general 
loss functions that drives learning. 



Curiosity VS Survival

“As knowledge accumulated about the conditions that 
govern exploratory behavior and about how quickly it 
appears after birth, it seemed less and less likely that this 
behavior could be a deriva2ve of hunger, thirst, sexual 
appe2te, pain, fear of pain, and the like, or that stimuli 
sought through exploration are welcomed because they 
have previously accompanied satisfaction of these drives.” 

D. E. Berlyne, Curiosity and Explora2on, Science, 1966

Intrinsic Motivation different than Intrinsic Necessity: being moved to 
do something because it is necessary (eat, drink, find shelter from 
rain…) 



Curiosity and Never-ending Learning

Why should we care? 
• Because curiosity is a general, task-independent cost function, that 

if we successfully incorporate to our learning machines, it may result 
in agents that (want to)  improve with experience, like people do. 

• Those intelligent agents would not require supervision by coding up 
reward functions for every little task, they would learn (almost) 
autonomously 

• Curiosity-driven motivation is beyond satisfaction of hunger, thirst, 
and other biological activities (which arguably would be harder to 
code up in artificial agents..)



Curiosity-driven exploration

Seek novelty/surprise: 

•Visit novel states s 

•Observe novel state transi2ons  (s, a) → s′ 

Q: How can we computationally formalize that? 
A: Many answers provided in this lecture 



Curiosity-driven exploration

•Ensembles of Q functions: modeling uncertainty of Q values 

•State counting: the lower the count of the state the higher the 
exploration bonus 

•Model prediction error: the higher the prediction error the higher 
the curiosity 

•Reachability: the least reachable a state from a set of already 
reached states in my memory, the higher the exploration bonus 

•Non-parametric memory of states and their transitions 
(reachability) of one to the other. Explore by maximizing coverage. 



Curiosity-driven exploration

•Ensembles of Q functions: modeling uncertainty of Q values 

•State counting: the lower the count of the state the higher the 
exploration bonus 

•Model prediction error: the higher the prediction error the higher 
the curiosity 

•Reachability: the least reachable a state from a set of already 
reached states in my memory, the higher the exploration bonus 

•Non-parametric memory of states and their transitions 
(reachability) of one to the other. Explore by maximizing coverage. 

We will be using a standard model-free or model-based RL method 
and add exploration-based rewards in addition to the external 
environment rewards



Curiosity-driven exploration

•Ensembles of Q functions: modeling uncertainty of Q values 

•State counting: the lower the count of the state the higher the 
exploration bonus 

•Model prediction error: the higher the prediction error the higher 
the curiosity 

•Reachability: the least reachable a state from a set of already 
reached states in my memory, the higher the exploration bonus 

•Non-parametric memory of states and their transitions 
(reachability) of one to the other. Explore by maximizing coverage. 

We will use the non-parametric model of the environment that we 
built to win the hardest RL environment, simply by methodic 
exploration: remembering where I have been and searching further 
towards places I have not been.



Uncertainty-driven exploration

•Ensembles of Q functions: modeling uncertainty of Q values 

•State counting: the lower the count of the state the higher the 
exploration bonus 

•Model prediction error: the higher the prediction error the higher 
the curiosity 

•Reachability: the least reachable a state from a set of already 
reached states in my memory, the higher the exploration bonus 

•Non-parametric memory of states and their transitions 
(reachability) of one to the other. Explore by maximizing coverage. 



Exploration in Bandits

Thompson Sampling

Represent a posterior distribu;on of mean rewards  
of the arms, as opposed to point es;mates.



1. Sample from it:  θ1, θ2, ⋯, θk ∼ ̂p(θ1, θ2⋯θk)

Represent a posterior distribu;on of mean rewards  
of the arms, as opposed to point es;mates.

Thompson Sampling

Exploration in Bandits



1. Sample from it:   

2. Choose action:  

θ1, θ2, ⋯, θk ∼ ̂p(θ1, θ2⋯θk)
a = arg max

a
𝔼θ[r(a)]

Represent a posterior distribu;on of mean rewards  
of the arms, as opposed to point es;mates.

Thompson Sampling

Exploration in Bandits



1. Sample from it:   

2. Choose action:  

θ1, θ2, ⋯, θk ∼ ̂p(θ1, θ2⋯θk)
a = arg max

a
𝔼θ[r(a)]

Represent a posterior distribu;on of mean rewards  
of the arms, as opposed to point es;mates.

Thompson Sampling

Play the red arm!

Exploration in Bandits



1. Sample from it:   

2. Choose action:   

3. Play action, observe reward

θ1, θ2, ⋯, θk ∼ ̂p(θ1, θ2⋯θk)
a = arg max

a
𝔼θ[r(a)]

Represent a posterior distribu;on of mean rewards  
of the arms, as opposed to point es;mates.

Thompson Sampling

0.8!

Exploration in Bandits



1. Sample from it:   

2. Choose action:   

3. Play action, observe reward 
4. Update the mean reward distribution

θ1, θ2, ⋯, θk ∼ ̂p(θ1, θ2⋯θk)
a = arg max

a
𝔼θ[r(a)]

Represent a posterior distribu;on of mean rewards  
of the arms, as opposed to point es;mates.

Thompson Sampling

•Can I do something like that for general MDPs?  
•What is the equivalent of mean rewards for geenral MDP?

Exploration in Bandits



Exploration via Posterior Sampling of Q functions

Represent a posterior distribution of  functions,  instead of a point 
estimate. 

Q

Then we do not need -greedy for exploration! Better exploration by 

representing uncertainty over .

ϵ
Q

But how can we learn a distribution of  functions  if  function 
is a deep neural network?

Q P(Q) Q

1. Sample from :  

2. Choose actions according to this  for one episode: 

 

3. Update the  distribution using the collected experience tuples 

P(Q) Q ∼ P(Q)
Q

a = arg max
a

Q(a, s)

Q



Exploration via Posterior Sampling of Q-functions

1. Bayesian neural networks. Estimate posteriors for the neural 
weights, as opposed to point estimates. We just saw that..
2. Neural network ensembles. Train multiple Q-function 
approximations each on using different subset of the data. A 
reasonable approximation to 1.

Bootstrap

Osband et al. “Deep Exploration via Bootstrapped DQN”

3. Neural network ensembles with shared backbone. Only the heads 
are trained with different subset of the data. A reasonable 
approximation to 2 with less computation.

4. Ensembling by dropout.  Randomly mask-out (zero out)neural 
network weights, to create different neural nets, both at train and test 
time. reasonable approximation to 2.



Exploration via Posterior Sampling of Q-functions

Deep exploration with bootstrapped DQN, Osband et al.

1. Bayesian neural networks. Estimate posteriors for the neural 
weights, as opposed to point estimates.
2. Neural network ensembles. Train multiple Q-function 
approximations each on using different subset of the data. A 
reasonable approximation to 1.

Bootstrap

Osband et al. “Deep Exploration via Bootstrapped DQN”

3. Neural network ensembles with shared backbone. Only the heads 
are trained with different subset of the data. A reasonable 
approximation to 2 with less computation.

4. Ensembling by dropout.  Randomly mask-out (zero out)neural 
network weights, to create different neural nets, both at train and test 
time. Reasonable approximation to 2.



Exploration via Posterior Sampling of Q-functions

Deep exploration with bootstrapped DQN, Osband et al.

Bootstrap

Osband et al. “Deep Exploration via Bootstrapped DQN”

With ensembles we achieve similar things as with Bayesian nets:  
• The entropy of predictions of the network (obtained by sampling 

different heads) is high in the no data regime. Thus, Q function values will 
have high entropy there and encourage exploration.  

• When Q values have low entropy, i exploit, i do not explore.

1. Sample from :  

2. Choose actions according to this  for  

one episode:  

3. Update the  distribution using the  
collected experience tuples 

P(Q) Q ∼ P(Q)
Q

a = arg max
a

Q(a, s)

Q



Why does this work?

Osband et al. “Deep Exploration via Bootstrapped DQN”

Exploring with random actions (e.g., epsilon-greedy): random 
walk pattern, in general Ω 𝑁 steps to visit N states. 

Exploring with random Q-functions: commit to a randomized 
but internally consistent strategy for an entire episode

+ no change to original reward function
- very good bonuses often do better

Exploration via Posterior Sampling of Q-functions

Deep exploration with bootstrapped DQN, Osband et al.



Curiosity-driven exploration-one way to do it

We will add exploration reward bonuses to the extrinsic (task-related) 
rewards: 

Rt(s, a, s′ ) = r(s, a, s′ )

extrinsic

+ ℬt(s, a, s′ )

intrinsic

Independent of the task in hand!

We would then be using rewards  in our favorite RL method.Rt(s, a, s′ )



Curiosity-driven exploration-one way to do it

We will add exploration reward bonuses to the extrinsic (task-related) 
rewards in our favorite model free RL method. 

Rt(s, a, s′ ) = r(s, a, s′ )

extrinsic

+ ℬt(s, a, s′ )

intrinsic

Independent of the task in hand

Exploration reward bonuses are non stationary: as the agent interacts with 
the environment, what is now new and novel, becomes old and known.



Curiosity-driven exploration

•Ensembles of Q functions: modeling uncertainty of Q values 

•State counting: the lower the count of the state the higher the 
exploration bonus 

•Model prediction error: the higher the prediction error the higher 
the curiosity 

•Reachability: the least reachable a state from a set of already 
reached states in my memory, the higher the exploration bonus 

•Non-parametric memory of states and their transitions 
(reachability) of one to the other. Explore by maximizing coverage. 



State Counting with DeepHashing

Exploration- A Study of Count-Based Exploration for Deep Reinforcement Learning, Tang et al.

Counting with hashes
What if we still count states, but in a different space?

Tang et al. “#Exploration: A Study of Count-Based Exploration”

• We count states (images) but not in pixel space, but in latent 
compressed space. 

• Compress s into a latent code, then count occurrences of the code. 
• How do we get the image encoding? E.g, using autoencoders. 

• Note: There is no guarantee such reconstruction loss will capture 
the important things that make two states to be similar or not policy 
wise..



Exploration rewards

Add exploration reward bonuses that encourage policies to visit states 
with smaller counts:

Rt(s, a, s′ ) = r(s, a, s′ )

extrinsic

+ ℬt(ϕ(s))

intrinsic

Counting with hashes
What if we still count states, but in a different space?

Tang et al. “#Exploration: A Study of Count-Based Exploration”



State Counting with DeepHash

Counting with hashes
What if we still count states, but in a different space?

Tang et al. “#Exploration: A Study of Count-Based Exploration”

• We still count states (images) but not in pixel space, but in latent 
compressed space. 

• Compress s into a latent code, then count occurrences of the code. 
• How do we get the image encoding? E.g, using autoencoders. 

Exploration- A Study of Count-Based Exploration for Deep Reinforcement Learning, Tang et al.



Curiosity-driven exploration

•Ensembles of Q functions: modeling uncertainty of Q values 

•State counting: the lower the count of the state the higher the 
exploration bonus 

•Model prediction error: the higher the prediction error the higher 
the curiosity 

•Reachability: the least reachable a state from a set of already 
reached states in my memory, the higher the exploration bonus 

•Non-parametric memory of states and their transitions 
(reachability) of one to the other. Explore by maximizing coverage. 



Exploration rewards

Add exploration reward bonuses that encourage policies to visit states 
that will cause the prediction model to fail.

Rt(s, a, s′ ) = r(s, a, s′ )

extrinsic

+ ℬt(∥T(s, a; θ) − s′ ∥)

intrinsic

Note: we will be using  to denote the dynamics (transition) 
function.

T(s, a; θ)

model error!



Computational Curiosity

Jurgen Schmidhuber, 1991, 1991, 1997 

• “The direct goal of curiosity and boredom is to improve 
the world model. The indirect goal is to ease the learning 
of new goal-directed action sequences.” 

• “The same complex mechanism which is used for ‘normal’ 
goal-directed learning is used for implementing curiosity 
and boredom. There is no need for devising a separate 
system which aims at improving the world model.” 

• “Curiosity Unit”: reward is a function of the mismatch 
between model’s current predictions and actuality. There 
is positive reinforcement whenever the system fails to 
correctly predict the environment. 

• “Thus the usual credit assignment process ... encourages 
certain past actions in order to repeat situations similar to 
the mismatch situation.” (planning to make your (internal) 
world model to fail) 



Computational Curiosity

In other words: 
• Model learning and model improvement can be cast as the 

goals of goal-seeking behaviour.  
• My goal is not to beat Atari but to improve my Atari 

model.  
• OK. What is my reward then that trying to maximize that 

reward will lead to fast model learning?



Learning Visual Dynamics

min
θ

. ∥T(s, a; θ) − s′ ∥
s

a

s′ 

Rt(s, a, s′ ) = r(s, a, s′ )

extrinsic

+ ℬt(s, a, s′ )

intrinsic

Here we predict the visual observation!

Exploration reward bonus ℬt(s, a, s′ ) = ∥T(s, a; θ) − s′ ∥



Predicting Raw Sensory Input (Pixels)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′ ; ϕ)∥

Should our prediction model be predicting the input observations? 
• Observation prediction is difficult especially for high dimensional 

observations.  
• Observation contains a lot of information unnecessary for planning, 

e.g., dynamically changing backgrounds that the agent cannot control 
and/or are irrelevant to the reward.  



Learning Visual Dynamics

What is the problem with this optimization problem?

There is a trivial solution :-(

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′ ; ϕ)∥T(E(s; ϕ); θ)
E(s; ϕ)

E(s′ ; ϕ)

s

s′ 

a

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′ ; ϕ)∥

Exploration reward bonus ℬt(s, a, s′ ) = ∥T(E(s; ϕ), a; θ) − E(s′ ; ϕ)∥



• Let’s learn image encoding using autoencoders (to avoid the trivial 
solution) 

• …and suffer the problems of autoencoding reconstruction loss that has 
little to do with our task

T(E(s; ϕ); θ)
E(s; ϕ)

E(s′ ; ϕ)

s

s′ 

a

Learning Visual Dynamics

Incentivizing exploration in RL with deep predictive models, Stadie et al.

s

E(s; ϕ)

s

Autoencoding loss: min
ϕ

. ∥D(E(s; ϕ), ω) − s∥

̂s = D(E(s; ϕ), ω)

min
θ

. ∥T(E(s; ϕ), a; θ) − E(s′ ; ϕ)∥

Exploration reward bonus ℬt(s, a, s′ ) = ∥T(E(s; ϕ), a; θ) − E(s′ ; ϕ)∥



• Let’s couple forward and inverse models (to avoid the trivial 
solution) 

• …then we will only predict things that the agent can control

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′ ; ϕ)∥ + ∥Inv(E(s; ϕ), E(s; ϕ); ψ) − a∥

T(E(s; ϕ); θ)
E(s; ϕ)

E(s′ ; ϕ)

s

s′ 

a

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′ ; ϕ)∥
E(s; ϕ)s

a

Learning Visual Dynamics

Curiosity driven exploration with self-supervised prediction, Pathak et al.

Exploration reward bonus ℬt(s, a, s′ ) = ∥T(E(s; ϕ), a; θ) − E(s′ ; ϕ)∥



• Let’s use random neural networks (networks initialized randomly 
and frozen thereafter)

Learning a Transition function

Large-scale study of Curiosity-Driven Learning, Burda et al.

min
θ

. ∥T(E(s; ϕ), a; θ) − E(s′ ; ϕ)∥

T(E(s; ϕ); θ)
E(s; ϕ)

E(s′ ; ϕ)

s

s′ 

a

Exploration reward bonus ℬt(s, a, s′ ) = ∥T(E(s; ϕ), a; θ) − E(s′ ; ϕ)∥



Task Versus Exploration rewards

R(s, a, s′ ) = r(s, a, s′ )

extrinsic

Only task reward:

Exploration reward bonus ℬt(s, a, s′ ) = ∥T(E(s; ϕ), a; θ) − E(s′ ; ϕ)∥

Rt(s, a, s′ ) = r(s, a, s′ )

extrinsic

+ ℬt(s, a, s′ )

intrinsic

Task+curiosity:

Rt(s, a, s′ ) = rT(s, a, s′ )

extrinsic terminal

+ ℬt(s, a, s′ )

intrinsic

Sparse task + curiosity:



Task Versus Exploration rewards

Curiosity driven exploration with self-supervised prediction, Pathak et al. 
Large-scale study of Curiosity-Driven Learning, Burda et al.

Exploration reward bonus ℬt(s, a, s′ ) = ∥T(E(s; ϕ), a; θ) − E(s′ ; ϕ)∥

Rt(s, a, s′ ) = ℬt(s, a, s′ )

intrinsic
Only curiosity:

Train an A3C agent under only curiosity reward.  
Will it learn to do something useful?

R(s, a, s′ ) = r(s, a, s′ )

extrinsic

Only task reward:

Rt(s, a, s′ ) = r(s, a, s′ )

extrinsic

+ ℬt(s, a, s′ )

intrinsic

Task+curiosity:

Rt(s, a, s′ ) = rT(s, a, s′ )

extrinsic terminal

+ ℬt(s, a, s′ )

intrinsic

Sparse task + curiosity:



Policy Transfer

Large-scale study of Curiosity-Driven Learning, Burda et al.

Trained on Level-1 Testing on Level-2

Policies trained with A3C using only curiosity rewards 
Prediction error using forward/inverse model coupling



• Agent will be rewarded even though the model cannot improve. 

• The agent is attracted forever in the most noisy states, with 
unpredictable outcomes. 

• If we give the agent a TV and a remote, it becomes a couch potato!

Limitation of Prediction Error as Bonus

Large-scale study of Curiosity-Driven Learning, Burda et al.



Curiosity-driven exploration

•Ensembles of Q functions: modeling uncertainty of Q values 

•State counting: the lower the count of the state the higher the 
exploration bonus 

•Model prediction error: the higher the prediction error the higher 
the curiosity 

•Reachability: the least reachable a state from a set of already 
reached states in my memory, the higher the exploration bonus 

•Non-parametric memory of states and their transitions 
(reachability) of one to the other. Explore by maximizing coverage. 



•We will be using augmented rewards as before  

 , where  is a non-parametric 

memory structure populated with embeddings of past image observations. 

•Curiosity reward will use a comparator neural net, that takes as input two 
images and predicts whether they are close (few actions apart) or far 

•We will plug those rewards into PPO, a model-free RL method

Rt(s, a, s′ ) = r(s, a, s′ )

extrinsic

+ ℬt(s, ℳ)

intrinsic

ℳ



At each time step the agent compares the current observation with the ones in 
memory. If it is novel (takes more steps to reach than a threshold) then agent 
get rewarded, and the novel observation is added into memory.

non-parametric memory structure

comparator network 
trained with temporal 
contrastive learning

ℒϕ(o, o+, o−) = ∥E(o, ϕ) − E(o+, ϕ)∥ + max(0,γ − ∥E(o, ϕ) − E(o−, ϕ)∥)







Structured memory as state connectivity map



Intrinsic Motivation

• Helps, but why doesn’t it work better?



“Detachment”



• Replay buffers

• Should remember in theory, but forget/fail in practice

• replay buffer size must be very large

• but that causes optimization/stability issues

Detachment



• Proposal: explicitly remember

• where promising locations are

• how to get back to them

Detachment



Book-keep an archive of trajectories that—accidentally through exploration— 
reached a particular state in the world and the  state reached. 

We will be updating the archive with: 

• New states reached and the corresponding trajectories 

• Better (shorter) trajectories to reach already archived states 

• We will be resetting ourselves to such states and continue exploring updating 
our state connectivity map. 

Then, we will turn such single trajectories into robust policies. 



• Most RL algorithms: 

• take promising policy, perturb it, hope it explores 

further

• most likely breaks policy!

• especially as length, complexity, & precision of 

sequence increases

“Derailment”



• Insight: First return, then explore

Derailment



• Insight: First return, then explore

• counter: hurt robustness?

Derailment



• Phase 1: First solve

• Phase 2: Then robustify

• pay the cost to robustify only once you 

know what needs to be robustified

Go-Explore Strategy



Go-Explore: Phase 1

• initialization: 

• take random actions, store cells visited



Go-Explore: Phase 1

• Phase 1: explore until solved

A. choose a cell from archive

B. Go back to it

C. Explore from it

D. add newly found cells to archive

• if better, replace old way of reaching cell

Phase 1: explore until solved Phase 2: robustify
(if necessary)

Go to state
Explore

from state
Update 
archive

Run imitation learning
on best trajectory

Select state
from archive



Avoids Detachment 
By Remembering Promising Exploration Stepping Stones

• Intrinsic motivation:

• narrow beam mining intrinsic motivation and 

moving on 

• Go-Explore

• continuously expands sphere of knowledge

We are building a room connectivity map of the house!



Cell Representations

• For large state spaces (e.g. Atari), need conflation

• similar states map to same cell

• interestingly different states map to different cells




Cell Representations

• First attempt: downsampling images

• dumb

• fast

• no game-specific domain knowledge



Choosing Cells

• Prefer cells that are

• led to new states (productive)

• less tested (newer)



Returning to Cells

• resettable & deterministic: reset state (or replay actions)

• stochastic environment: 

• goal-conditioned policy

• e.g. UVFA (Schaul et al. 2015), HER (Andrychowicz et al. 2017)

• other ideas



• save action-sequence trajectories to cells

• open loop

• no neural network!

Returning to Cells



Exploration

• after returning to a cell

• take random actions (k=100)



Montezuma’s Revenge Results: Phase 1

• Solves level 1 65% of runs



Go-Explore 
Separates learning a solution into two phases

no neural networks

(in current work)

produces neural network

robust to stochasticity

Phase 1: explore until solved Phase 2: robustify
(if necessary)

Go to state
Explore

from state
Update 
archive

Run imitation learning
on best trajectory

Select state
from archive

Phase 1: Explore Until Solved Phase 2: Robustify

(if necessary)



Phase 2: Robustify

• Imitation learning can work well with human demonstrations

• including on Montezuma’s Revenge & Pitfall (e.g. Aytar 2018)


• Go-Explore Phase 1 generates solution demonstrations

• automatically

• quickly  

• cheaply

• as many as you want



• Most imitation learning algorithms should work

• We chose the “backward algorithm”

• from Salimans & Chen 2018 (this workshop!)

• similar: Backplay from Resnick et al. 2018

Phase 2: Robustify



Many Demonstrations

• Backwards Imitation 
somewhat unreliable 
from one demonstration


• We modified it to learn 
from many

• here, 4


• Add no-ops at beginning

• Success rate: 100%

Example Successful Attempt



From few trajectories to robust 
policies!



• What makes model-free RL hard is distant in time and sparse rewards 

• Insights:  

• Do not imitate the trajectory actions! Just reset from a state along 
the trajectory instead from the initial state.  

• Reset progressively earlier in time. Make the task easier to solve by 
decomposing it into a curriculum of subtasks requiring short action 
sequences.



The hopelessness of learning from distant rewards

Imagine we need 5 steps till the first reward (getting a key).

Taking uniformly random actions (naive exploration) in Montezuma’s 
Revenge only produces a reward about once in every half a million steps. 
This probability decreases  

• as the number of actions increases and  

• the time-horizon till reward increases.



Learning Montezuma’s Revenge from a Single Demonstration, Salimans and Chen

Reset time point 
to earlier in time

reset to a state from the demo

I do not start from scratch! 
I start from the policy 
learnt from the previous 
time segment

Solve the subtask from  
till  with standard model-
free RL

τ
T



Learning Montezuma’s Revenge from a Single Demonstration, Salimans and Chen



Learning Montezuma’s Revenge from a Single Demonstration, Salimans and Chen



Results with Robust Deep Neural Networks
• 3x previous state of the art!

• Robust to stochasticity

• random # no-ops up to 30


• No game-specific domain 
knowledge



Go-Explore created a healthy debate

• When should we require stochasticity?

• test time (only)?

• training time too?



Stochasticity at Test Time

• Classic way: random number up to 30 no-ops



Adding Domain Knowledge

• Go-Explore can add it via cell representation

• Important notes:

• final post-robustification policies still play from pixels only

• do not consume domain knowledge at eval time


• wrote simple code to extract info from pixels (not emulator)

• Montezuma’s Revenge

• unique combinations of: x, y location, room, level, numKeysHeld


• Pitfall

• <x, y> location, room 



Montezuma’s Results with Domain Knowledge 
Phase 1: Exploration (deterministic eval)

• Solves 9 levels on average

• in half the time



• Solves all 3 unique levels

• Levels 3+ nearly identical

• slight timing differences

• score changes state/inputs


• On average

• scores over 469,209!

• solves 29 levels!


• Sticky action eval:

• scores 281,264 

• level 18

Results with Robust Deep Neural Networks



• Increased Gym’s time limits

• Best neural network

• scores over 4 million

• reaches level 295


• Beats human world record

• 1,219,200

• achieves strictest definition of 

“super-human”

Results with Robust Deep Neural Networks



• Even beats previous work 
from human demonstrations

• better demos

• more demos

Results with Robust Deep Neural Networks



Not Expensive!

• Solving Level 1 of Montezuma’s Revenge

• Phase 1: Exploration

• ~1 hour!

• single machine (22 CPUs, 50GB RAM)

• runs produce ~4GB of data


• Phase 2: Robustification

• ~1 day


• 16 GPUS


• All told: ~1 day on modest hardware

• compare to billions of frames, thousands of workers



• Yes, but

1. Go-Explore adds Phase 2: Robustification to handle noise

2. Such algorithms are intractable in raw high-D state space

Similar to graph search? (e.g. breadth-first search)



Similar to graph search? (e.g. breadth-first search)

• Yes, but

1. Go-Explore adds Phase 2: Robustification to handle noise

2. Such algorithms are intractable in raw high-D state space

• Go-Explore insight: run these great graph search algorithms in low-D 

conflated spaces!

• adds many challenges


• which cells can you reach from current cell?  how (have to search)? can’t replace subpaths. etc. 

• requires many algorithmic innovations

• new research area: porting classic graph algorithms to high-D (conflated 

representations): BFS, DFS, Dijkstra’s, A-Star, etc. 


