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LL: Reinforcement Learning

max
θ

. U(θ) = 𝔼τ∼πθ [R(τ) |πθ, μ0(s0)]

Given	an	initial	state	distribution	� ,	estimate	parameters	� 	of	a	policy	� 	so	that,	
the	trajectories	� 	sampled	from	this	policy	have	maximum	returns,	i.e.,	sum	of	
rewards	� .

μ0(s0) θ πθ
τ

R(τ)

π(a |s, θ)

τ : s0, a0, r0, s1, a1, r1, s2, a2, r2, . . . sT, aT, rT

�  trajectory, a sequence of state, action, rewards, a game fragment or a full 
game:
τ :

R(τ) =
T

∑
t=1

rt

�  reward of a trajectory: (discounted) sum of the rewards of the individual 
state/actions 
R(τ) :



Learning to act in a non-sequential (single action) setups: 

• Each action results in an immediate reward.

• We want to choose actions that maximize our immediate reward in 
expectation.

This lecture - Motivation

• Q: Why in expectation?

• A: Because rewards are not deterministic. 

• For example, displaying an advertisement can generate 
different click rates in different days.  Actions: the 
advertisements to be displayed, Rewards: the user click 
rate. We want to pick the advertisement that maximizes the 
click rate on average



One-armed bandit= Slot machine (English slang)

What is Multi-Armed Bandit?

One-Armed Bandit = Slot Machine (English slang)

source: infoslotmachine.com
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Multi-Armed bandit = Multiple Slot Machine

What is Multi-Armed Bandit?

Multi-Armed Bandit = Multiple Slot Machine

Objective: maximize reward in a casino

source: Microsoft Research
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Multi-Armed Bandits

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Agent and environment interact at discrete time steps:  t = 0,1, 2,K
     Agent observes state at step t:    St ∈
     produces action at step t :   At ∈ (St )
     gets resulting reward:    Rt+1 ∈

     and resulting next state:  St+1 ∈

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

St

At, Rt+1, At+1, Rt+2, At+2, At+3, Rt+3, . . .

The state does not change! (a.k.a. stateless)



At each timestep �  the agent chooses one of the K arms and plays it.

The �  th arm produces reward �   when played at timestep �  .

The rewards �  are drawn from a probability distribution �  with mean  �  .

The agent does not know neither the full arm reward distributions neither their means.

Agent’s Objective: Maximize cumulative rewards (over a finite or infinite horizon). 

I can maximize cumulative rewards over a finite or infinite horizon if i just play the arm 
with the highest mean reward � each time.  (but i do not know those..)

t

k rk,t t

rk,t 𝒫k μk

μk

Problem Setting (Stochastic Bandit)

The reward ri ,t follows the probability distribution Pi , with mean µi

Here, the agent should find the arm with the highest µi

source: Pandey et al.’s slide

Today, we will only consider the stochastic bandit
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Multi-Armed Bandit Problem

Definition: The action-value for action �  (here arm k) is its mean reward: α
q⇤(a)

.
= E[Rt|At = a] , 8a 2 {1, . . . , k}



The Exploration/Exploitation Dilemma

Qt(a) ⇡ q⇤(a), 8a action-value estimates

• Suppose you form estimates



A⇤
t
.
= argmax

a
Qt(a)

• Suppose you form estimates

• Define the greedy action at time t as

The Exploration/Exploitation Dilemma

Qt(a) ⇡ q⇤(a), 8a action-value estimates



A⇤
t
.
= argmax

a
Qt(a)

• Suppose you form estimates

• Define the greedy action at time t as

• If  �  then you are exploiting  
If   �  then you are exploring

At = At *
At ≠ At *
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• Suppose you form estimates

• Define the greedy action at time t as

• If  �  then you are exploiting  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• You can’t do both, but you need to do both

At = At *
At ≠ At *
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A⇤
t
.
= argmax

a
Qt(a)

• Suppose you form estimates

• Define the greedy action at time t as

• If  �  then you are exploiting  
If   �  then you are exploring

• You can’t do both, but you need to do both

• You can never stop exploring, but maybe you should explore less with 
time.

At = At *
At ≠ At *

The Exploration/Exploitation Dilemma

Qt(a) ⇡ q⇤(a), 8a action-value estimates



Exploration vs Exploitation Dilemma 

• Online decision-making involves a fundamental choice:

• Exploitation: Make the best decision given current information 

• Exploration: Gather more information  

• The best long-term strategy may involve short-term sacrifices 

• Gather enough information to make the best overall decisions 



Exploration vs Exploitation Dilemma 

• Online decision-making involves a fundamental choice:

• Exploitation: Make the best decision given current information 

• Exploration: Gather more information  

• The best long-term strategy may involve short-term sacrifices 

• Gather enough information to make the best overall decisions 

• The exploration/exploitation dilemma is not a problem encountered in 
computational RL or deep RL: It is a fundamental problem in decision 
making of any intelligent agent.



• Restaurant Selection
• Exploitation: Go to your favorite restaurant 
• Exploration: Try a new restaurant 

• Oil Drilling
• Exploitation: Drill at the best known location 
• Exploration: Drill at a new location 

• Game Playing 
• Exploitation: Play the move you believe is best 
• Exploration: Play an experimental move 

Exploration vs. Exploitation Dilemma 



Problem Setting (Stochastic Bandit)

The reward ri ,t follows the probability distribution Pi , with mean µi

Here, the agent should find the arm with the highest µi

source: Pandey et al.’s slide

Today, we will only consider the stochastic bandit
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Example: Bernoulli Bandits

win 0.6 
of time

win 0.4 
of time

win 0.45 
of time

• Each action (arm when played) results in success or failure, rewards are binary. 
• Mean reward for each arm represents the probability of success.
• Action (arm) �  produces a success with probability � .k ∈ {1...K} θk ∈ [0,1]

Recall: The Bernoulli distribution is the discrete probability distribution of a random variable which takes the 
value 1 with probability p and the value 0 with probability  q=1-p, that is, the probability distribution of any 
single experiment that asks a yes–no question.

θ1 θ2 θ3



Real Motivation
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Real world motivation: content presentation
We	have	two	variations	of	content	of	a	webpage,	A	and	B,	and	we	want	to	
decide	which	one	to	display	to	engage	more	users.	
• Two	arm	bandits:	each	arm	corresponds	to	a	content	variation	shown	to	users	
(not	necessarily	the	same	user).	

• Reward:	1	if	the	user	clicks,	0	otherwise.	
• Mean	reward	(success	probability)	for	each	invitation:	the	click-through-rate,	
the	percentage	of	users	that	would	click	on	it

Real Motivation
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For a particular movie, we want to decide what image to show (to all the 
NEFLIX users)
• Actions: uploading one of the K images to a user’s home screen 
• Reward:	1	if	the	user	clicks	and	watches,	0	otherwise.	
• Mean reward (success probability) for each image: the percentage of users 

that clicked and watched  (quality engagement, not clickbait)

Netflix	Artwork

Real world motivation: NETFLIX artwork

https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76


Example: Gaussian Bandits
• Each action (arm when played) results in a real number. 
• Action (arm) �  produces on average reward equal to the mean of its Gaussian distribution.k ∈ {1...K}

1 2 63 54 7 8 9 10

0

1

2

3

-3

-2

-1

q⇤(1)

q⇤(2)

q⇤(3)

q⇤(4)

q⇤(5)

q⇤(6)

q⇤(7)

q⇤(8)

q⇤(9)

q⇤(10)
Reward

distribution

Action

-4

4

Rk,t ∼ 𝒩(μk,1)



Regret 

• Maximize cumulative expected reward = minimize total regret 

• The action-value is the mean reward for action a, 

q⇤(a)
.
= E[Rt|At = a] , 8a 2 {1, . . . , k}

• The optimal value is

v* = q(a*) = max
a∈𝒜

q*(a)

• The regret is the opportunity loss for one step. For an algorithm that 
selects action �  at timestep t it reads:at

reward = − regretIt = 𝔼[v* − q*(at)]

• The total regret is the total opportunity loss 

LT = 𝔼 [
T

∑
t=1

v* − q*(at)]



Regret 
• The count � : the number of times that action a has been selected 

prior to time �  
Nt(a)

t

• The gap �  is the difference in value between action �  and optimal 
action � : �  

Δa a
a* Δa = v* − q*(a)

• Regret is a function of gaps and the counts 

LT = 𝔼 [
T

∑
t=1

v* − q*(at)]
= ∑

a∈𝒜

𝔼[Nt(a)](v* − q*(a))

= ∑
a∈𝒜

𝔼[Nt(a)]Δa



• To simplify notation, let us focus on one action

• We consider only its rewards, and its estimate after n-1 rewards:

• How can we do this incrementally (without storing all the rewards)?

• Could store a running sum and count (and divide), or equivalently:

• This is a standard form for learning/update rules:

Qn+1 = Qn +
1

n

h
Rn �Qn

i
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where here R1, . . . , RNt(a) are all the rewards received following all selections of action
a prior to play t. A problem with this straightforward implementation is that its
memory and computational requirements grow over time without bound. That is,
each additional reward following a selection of action a requires more memory to
store it and results in more computation being required to determine Qt(a).

As you might suspect, this is not really necessary. It is easy to devise incremental
update formulas for computing averages with small, constant computation required
to process each new reward. For some action, let Qn denote the estimate for its nth
reward, that is, the average of its first n� 1 rewards. Given this average and a nth
reward for the action, Rn, then the average of all n rewards can be computed by

Qn+1
.
=

1

n

nX

i=1

Ri

=
1

n

 
Rn +

n�1X

i=1

Ri

!

=
1

n

⇣
Rn + (n� 1)Qn + Qn �Qn

⌘

=
1

n

⇣
Rn + nQn �Qn

⌘

= Qn +
1

n

h
Rn �Qn

i
, (2.3)

which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implementation
requires memory only for Qn and n, and only the small computation (2.3) for each
new reward.

The update rule (2.3) is of a form that occurs frequently throughout this book.
The general form is

NewEstimate OldEstimate + StepSize
h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by

taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.

Note that the step-size parameter (StepSize) used in the incremental method
described above changes from time step to time step. In processing the nth reward
for action a, that method uses a step-size parameter of 1

n
. In this book we denote

the step-size parameter by the symbol ↵ or, more generally, by ↵t(a). We sometimes
use the informal shorthand ↵ = 1

n
to refer to this case, leaving the dependence of n

on the action implicit.
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their chances of recognizing the optimal action. The " = 0.1 method explores more,
and usually finds the optimal action earlier, but never selects it more than 91% of
the time. The " = 0.01 method improves more slowly, but eventually would perform
better than the " = 0.1 method on both performance measures. It is also possible to
reduce " over time to try to get the best of both high and low values.

The advantage of "-greedy over greedy methods depends on the task. For example,
suppose the reward variance had been larger, say 10 instead of 1. With noisier
rewards it takes more exploration to find the optimal action, and "-greedy methods
should fare even better relative to the greedy method. On the other hand, if the
reward variances were zero, then the greedy method would know the true value of
each action after trying it once. In this case the greedy method might actually
perform best because it would soon find the optimal action and then never explore.
But even in the deterministic case, there is a large advantage to exploring if we
weaken some of the other assumptions. For example, suppose the bandit task were
nonstationary, that is, that the true values of the actions changed over time. In this
case exploration is needed even in the deterministic case to make sure one of the
nongreedy actions has not changed to become better than the greedy one. As we
will see in the next few chapters, e↵ective nonstationarity is the case most commonly
encountered in reinforcement learning. Even if the underlying task is stationary and
deterministic, the learner faces a set of banditlike decision tasks each of which changes
over time as learning proceeds and the agent’s policy changes. Reinforcement learning
requires a balance between exploration and exploitation.

Exercise 2.1 In the comparison shown in Figure 2.2, which method will perform best
in the long run in terms of cumulative reward and cumulative probability of selecting
the best action? How much better will it be? Express your answer quantitatively.

2.3 Incremental Implementation

The action-value methods we have discussed so far all estimate action values as
sample averages of observed rewards. We now turn to the question of how these
averages can be computed in a computationally e�cient manner, in particular, with
constant memory and per-time-step computation.

To simplify notation we concentrate on a single action. Let Ri now denote the
reward received after the ith selection of this action, and let Qn denote the estimate
of its action value after it has been selected n � 1 times, which we can now write
simply as

Qn

.
=

R1 + R2 + · · · + Rn�1

n � 1
.

The obvious implementation would be to maintain a record of all the rewards and
then perform this computation whenever the estimated value was needed. However,
in this case the memory and computational requirements would grow over time as
more rewards are seen. Each additional reward would require more memory to store
it and more computation to compute the sum in the numerator.

Forming Action-Value Estimates
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their chances of recognizing the optimal action. The " = 0.1 method explores more,
and usually finds the optimal action earlier, but never selects it more than 91% of
the time. The " = 0.01 method improves more slowly, but eventually would perform
better than the " = 0.1 method on both performance measures. It is also possible to
reduce " over time to try to get the best of both high and low values.

The advantage of "-greedy over greedy methods depends on the task. For example,
suppose the reward variance had been larger, say 10 instead of 1. With noisier
rewards it takes more exploration to find the optimal action, and "-greedy methods
should fare even better relative to the greedy method. On the other hand, if the
reward variances were zero, then the greedy method would know the true value of
each action after trying it once. In this case the greedy method might actually
perform best because it would soon find the optimal action and then never explore.
But even in the deterministic case, there is a large advantage to exploring if we
weaken some of the other assumptions. For example, suppose the bandit task were
nonstationary, that is, that the true values of the actions changed over time. In this
case exploration is needed even in the deterministic case to make sure one of the
nongreedy actions has not changed to become better than the greedy one. As we
will see in the next few chapters, e↵ective nonstationarity is the case most commonly
encountered in reinforcement learning. Even if the underlying task is stationary and
deterministic, the learner faces a set of banditlike decision tasks each of which changes
over time as learning proceeds and the agent’s policy changes. Reinforcement learning
requires a balance between exploration and exploitation.

Exercise 2.1 In the comparison shown in Figure 2.2, which method will perform best
in the long run in terms of cumulative reward and cumulative probability of selecting
the best action? How much better will it be? Express your answer quantitatively.

2.3 Incremental Implementation

The action-value methods we have discussed so far all estimate action values as
sample averages of observed rewards. We now turn to the question of how these
averages can be computed in a computationally e�cient manner, in particular, with
constant memory and per-time-step computation.

To simplify notation we concentrate on a single action. Let Ri now denote the
reward received after the ith selection of this action, and let Qn denote the estimate
of its action value after it has been selected n � 1 times, which we can now write
simply as

Qn

.
=

R1 + R2 + · · · + Rn�1

n � 1
.

The obvious implementation would be to maintain a record of all the rewards and
then perform this computation whenever the estimated value was needed. However,
in this case the memory and computational requirements would grow over time as
more rewards are seen. Each additional reward would require more memory to store
it and more computation to compute the sum in the numerator.

error

Forming Action-Value Estimates



Derivation of incremental update
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To simplify notation we concentrate on a single action. Let Ri now denote the
reward received after the ith selection of this action, and let Qn denote the estimate
of its action value after it has been selected n � 1 times, which we can now write
simply as

Qn

.
=

R1 + R2 + · · · + Rn�1

n � 1
.

The obvious implementation would be to maintain a record of all the rewards and
then perform this computation whenever the estimated value was needed. However,
in this case the memory and computational requirements would grow over time as
more rewards are seen. Each additional reward would require more memory to store
it and more computation to compute the sum in the numerator.

2.3. INCREMENTAL IMPLEMENTATION 31

As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given Qn and the nth reward, Rn, the new average of all n rewards
can be computed by

Qn+1 =
1

n

nX

i=1

Ri

=
1

n

 
Rn +

n�1X

i=1

Ri

!

=
1

n

 
Rn + (n� 1)

1

n� 1

n�1X

i=1

Ri

!

=
1

n

⇣
Rn + (n� 1)Qn

⌘

=
1

n

⇣
Rn + nQn �Qn

⌘

= Qn +
1

n

h
Rn �Qn

i
, (2.3)

which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implemen-
tation requires memory only for Qn and n, and only the small computation (2.3)
for each new reward. Pseudocode for a complete bandit algorithm using incremen-
tally computed sample averages and "-greedy action selection is shown below. The
function bandit(a) is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Repeat forever:

A 
⇢

arg maxa Q(a) with probability 1� " (breaking ties randomly)
a random action with probability "

R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

The update rule (2.3) is of a form that occurs frequently throughout this book.
The general form is

NewEstimate OldEstimate + StepSize
h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by

taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.



• Suppose the true action values change slowly over time

• then we say that the problem is nonstationary

• In this case, sample averages are not a good idea

• Why?

Non-stationary bandits



• Suppose the true action values change slowly over time

• then we say that the problem is nonstationary

• In this case, sample averages are not a good idea

• Better is an “exponential, recency-weighted average”:

Non-stationary bandits

Qn+1
.
= Qn + ↵

h
Rn �Qn

i

= (1� ↵)nQ1 +
nX

i=1

↵(1� ↵)n�iRi,

where ↵ is a constant step-size parameter, ↵ 2 (0, 1]
where	α ∈ (0,1]	and	constant

The smaller the i, the smaller � -> forgetting earlier rewards(1 − a)n−i

Qn+1
.
= Qn + ↵

h
Rn �Qn

i

= (1� ↵)nQ1 +
nX

i=1

↵(1� ↵)n�iRi,

where ↵ is a constant step-size parameter, ↵ 2 (0, 1]



Action selection in multi-armed bandits



1. Allocate a fixed time period to exploration when you try bandits 
uniformly at random

2. Estimate mean rewards for all actions: �

3. Select the action that is optimal for the estimated mean rewards, 
breaking ties at random: �

4. GOTO 2

Qt(a) =
1

Nt(a)

t−1

∑
i=1

ri1(Ai = a)

at = argmax
a∈𝒜

Qt(a)

Fixed exploration period + Greedy 



Fixed exploration period + Greedy 
Problem Setting (Stochastic Bandit)

The reward ri ,t follows the probability distribution Pi , with mean µi

Here, the agent should find the arm with the highest µi

source: Pandey et al.’s slide

Today, we will only consider the stochastic bandit
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Qt(a1) = 0.3 Qt(a2) = 0.5 Qt(a3) = 0.1

Q1: Will the greedy method always pick the second action?

• After the fixed exploration period we have formed the following reward 
estimates

Q2: Can greedy lock onto a suboptimal action forever?
⇒ Greedy has linear total regret 



• In greedy action selection, you always exploit

• In 𝜀-greedy, you are usually greedy, but with probability 𝜀 you instead 
pick an action at random (possibly the greedy action again)

• This is perhaps the simplest way to balance exploration and 
exploitation

ε-Greedy Action Selection
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As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given Qn and the nth reward, Rn, the new average of all n rewards
can be computed by

Qn+1 =
1
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i
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which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implemen-
tation requires memory only for Qn and n, and only the small computation (2.3)
for each new reward. Pseudocode for a complete bandit algorithm using incremen-
tally computed sample averages and "-greedy action selection is shown below. The
function bandit(a) is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Repeat forever:

A 
⇢

arg maxa Q(a) with probability 1� " (breaking ties randomly)
a random action with probability "

R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

The update rule (2.3) is of a form that occurs frequently throughout this book.
The general form is

NewEstimate OldEstimate + StepSize
h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by

taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.

ε-Greedy Action Selection



ε-Greedy Algorithm 

• The ε-greedy algorithm continues to explore forever 

• With probability 1 − ε select 

• With probability ε select a random action (independent of its Q 
estimate) 

• ⇒ ε-greedy has linear total regret 

• Constant ε ensures minimum regret 

at = argmaxa∈𝒜Qt(a)



• If an algorithm forever explores it will have linear total regret

• If an algorithm never explores it will have linear total regret 

Counting Regret 



Average reward for three algorithms 
Average reward for 

three algorithms 
We	sample	10	arm	bandits	
instantiations:

Rt ⇠ N(q⇤(a), 1)
q⇤(a) ⇠ N(0, 1)



Average reward for three algorithms 
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 ! = 0 (greedy)

0

0.5

1

1.5

Average
reward

0 250 500 750 1000

Steps

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 250 500 750 1000

Steps

 
= 0.01

 = 0.1!
!

!

 = 0.1!
= 0.01!

1

1

Q: In the limit (after infinite number of steps), which method will result in the largest 
average reward?

Average reward for 
three algorithms 

We	sample	10	arm	bandits	
instantiations:

Rt ⇠ N(q⇤(a), 1)
q⇤(a) ⇠ N(0, 1)



Optimal action for three algorithms 

Q: Which method will find the optimal action in the limit?

Average reward for 
three algorithms 

We	sample	10	arm	bandits	
instantiations:

Rt ⇠ N(q⇤(a), 1)
q⇤(a) ⇠ N(0, 1)
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Optimal action for three algorithms 

Q: Does the performance of those methods depend on the initialization of the action 
value estimates?

Average reward for 
three algorithms 

We	sample	10	arm	bandits	
instantiations:

Rt ⇠ N(q⇤(a), 1)
q⇤(a) ⇠ N(0, 1)
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• Simple and practical ideas: initialise �  to a high value

• Update action value by incremental Monte-Carlo evaluation

• Starting with � , 

�

• Encourages systematic exploration early on

• But optimistic greedy can still lock onto a suboptimal action if rewards 
are stochastic.

Q(a)

N(a) > 0

Qt (at) = Qt−1 (at) +
1

Nt (at) (rt − Qt−1 (at))

Optimistic Initialization

just an incremental 
estimate of sample mean, 
including one 'hallucinated' 
initial optimistic value



We initialize with the following reward estimates for Bernoulli bandits

Q: When it is possible that greedy action selection will not try out all the 
actions?

Problem Setting (Stochastic Bandit)

The reward ri ,t follows the probability distribution Pi , with mean µi

Here, the agent should find the arm with the highest µi

source: Pandey et al.’s slide

Today, we will only consider the stochastic bandit

Sangwoo Mo (KAIST) Network Workshop December 23, 2016 10 / 28

Qt(a1) = 1 Qt(a2) = 1 Qt(a3) = 1

Optimistic Initial Values



• Suppose we initialize the action values optimistically (� ), e.g., 
on the 10-armed testbed

Q1(a) = 5

Optimistic Initial Values

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 200 400 600 800 1000

Plays

optimistic, greedy

Q0 = 5,    = 0

realistic, !-greedy

Q0 = 0,    = 0.11

1

Steps

!

!

1

Average reward for 
three algorithms 

Rt ⇠ N(q⇤(a), 1)
q⇤(a) ⇠ N(0, 1)



We need to reason about uncertainty of our action value 
estimates

Achieving sub-linear total regret



Recall: Thompson Sampling

Problem Setting (Stochastic Bandit)

The reward ri ,t follows the probability distribution Pi , with mean µi

Here, the agent should find the arm with the highest µi

source: Pandey et al.’s slide

Today, we will only consider the stochastic bandit
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1000 pulls, 
600 wins 
Q_t(a_1)=0.6

1000 pulls, 
400 wins 
Q_t(a_2)=0.4

10 pulls, 
4 wins 
Q_t(a_1)=0.4

The problem with using mean estimates is that we do not reason about 
uncertainty of those estimates.

2.3. INCREMENTAL IMPLEMENTATION 31

As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given Qn and the nth reward, Rn, the new average of all n rewards
can be computed by

Qn+1 =
1

n

nX

i=1

Ri

=
1

n

 
Rn +

n�1X

i=1

Ri

!

=
1

n
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⌘

=
1

n

⇣
Rn + nQn �Qn

⌘

= Qn +
1

n

h
Rn �Qn

i
, (2.3)

which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implemen-
tation requires memory only for Qn and n, and only the small computation (2.3)
for each new reward. Pseudocode for a complete bandit algorithm using incremen-
tally computed sample averages and "-greedy action selection is shown below. The
function bandit(a) is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Repeat forever:

A 
⇢

arg maxa Q(a) with probability 1� " (breaking ties randomly)
a random action with probability "

R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

The update rule (2.3) is of a form that occurs frequently throughout this book.
The general form is

NewEstimate OldEstimate + StepSize
h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by

taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.

Epsilon-greedy



• Which action should we pick?

• The more uncertain we are about an action-value 

• The more important it is to explore that action 

• It could turn out to be the best action 

Uncertainty guides Exploration



• After picking blue action

• We are then less uncertain about the value 

• And more likely to pick another action 

• Until we converge to the best action 

Uncertainty guides Exploration



Upper Confidence Bounds 
• Estimate an upper confidence Ut(a) for each action value 

• Such that with high probability   

• This upper confidence depends on the number of times action a has 
been selected 
• Small Nt(a) ⇒ large Ut(a) (estimated value is uncertain) 

• Large Nt(a) ⇒ small Ut(a) (estimated value is accurate) 

Estimated mean Estimated Upper 
Confidence

• Select action maximizing Upper Confidence Bound (UCB) 

q*(a) ≤ Qt(a) + Ut(a)

at = argmaxa∈𝒜Qt(a) + Ut(a)



Hoeffding’s Inequality 

Hoeffding's inequality provides an upper bound on the probability that the sum 
of bounded independent random variables deviates from its expected 
value by more than a certain amount.

Let �  be independent random variables in the range [0,1] with 
� . Then for � ,

X1, . . . Xt
𝔼(Xi) = μ u > 0

ℙ ( 1
n

n

∑
i=1

Xi ≥ μ + u) ≤ e−2u2n

ℙ ( 1
n

n

∑
i=1

Xi ≤ μ − u) ≤ e−2u2n

sample	mean

https://en.wikipedia.org/wiki/Upper_bound
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Independent_random_variables
https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Expected_value


Hoeffding’s Inequality 
Let �  be independent random variables in the range [0,1] with 
� . Then for � ,

X1, . . . Xn
𝔼(Xi) = μ u > 0

ℙ ( 1
n

n

∑
i=1

Xi ≥ μ + u) ≤ e−2u2n

• We will apply Hoeffding’s Inequality to the rewards obtained from each 
action (bandit) a:

ℙ (Q̂t(a) ≥ q(a) + Ut(a)) ≤ e−2Ut(a)2Nt(a)

• t: how many times I have played any action,
• � : how many times I have played action a in t interactionsNt(a)

I	made	the	margin	to	depend	on	
the	amount	of	interactions	t



Calculating Upper Confidence Bounds 
• Pick a probability �  that the value estimate deviates from its mean

• Now solve for �

p

Ut(a)

• Reduce p as we play more, e.g. � , �  

• Ensures we select optimal action as t → ∞ 

p = t−c c = 4

e−2Ut(a)2Nt(a) = p

Ut(a) =
−log p
2Nt(a)

Ut(a) =
2 log t
2Nt(a)



• A clever way of reducing exploration over time

• Estimate an upper bound on the true action values

• Select the action with the largest (estimated) upper bound

Upper Confidence Bound (UCB)
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Figure 2.2: The e↵ect of optimistic initial action-value estimates on the 10-armed testbed.
Both methods used a constant step-size parameter, ↵ = 0.1.

example, it is not well suited to nonstationary problems because its drive for ex-
ploration is inherently temporary. If the task changes, creating a renewed need for
exploration, this method cannot help. Indeed, any method that focuses on the initial
state in any special way is unlikely to help with the general nonstationary case. The
beginning of time occurs only once, and thus we should not focus on it too much.
This criticism applies as well to the sample-average methods, which also treat the
beginning of time as a special event, averaging all subsequent rewards with equal
weights. Nevertheless, all of these methods are very simple, and one of them or some
simple combination of them is often adequate in practice. In the rest of this book
we make frequent use of several of these simple exploration techniques.

2.6 Upper-Confidence-Bound Action Selection

Exploration is needed because the estimates of the action values are uncertain. The
greedy actions are those that look best at present, but some of the other actions
may actually be better. "-greedy action selection forces the non-greedy actions to
be tried, but indiscriminately, with no preference for those that are nearly greedy or
particularly uncertain. It would be better to select among the non-greedy actions
according to their potential for actually being optimal, taking into account both how
close their estimates are to being maximal and the uncertainties in those estimates.
One e↵ective way of doing this is to select actions as

At
.
= argmax

a

"
Qt(a) + c

s
log t

Nt(a)

#
, (2.8)

where log t denotes the natural logarithm of t (the number that e ⇡ 2.71828 would
have to be raised to in order to equal t), and the number c > 0 controls the degree
of exploration. If Nt(a) = 0, then a is considered to be a maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-
root term is a measure of the uncertainty or variance in the estimate of a’s value.

• c is a hyper-parameter that trades-off explore/exploit

• the confidence bound grows with the total number of actions we have 
taken t but shrinks with the number of times we have tried this particular 
action � . This ensures each action is tried infinitely often but still 
balances exploration and exploitation.

Nt(a)

UCB1:	Auer,	Cesa-bianchi,	and	Fischer,	Finite-time	analysis	of	the	multiarmed	bandit	problem,	2002



• A clever way of reducing exploration over time

• Estimate an upper bound on the true action values

• Select the action with the largest (estimated) upper bound
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example, it is not well suited to nonstationary problems because its drive for ex-
ploration is inherently temporary. If the task changes, creating a renewed need for
exploration, this method cannot help. Indeed, any method that focuses on the initial
state in any special way is unlikely to help with the general nonstationary case. The
beginning of time occurs only once, and thus we should not focus on it too much.
This criticism applies as well to the sample-average methods, which also treat the
beginning of time as a special event, averaging all subsequent rewards with equal
weights. Nevertheless, all of these methods are very simple, and one of them or some
simple combination of them is often adequate in practice. In the rest of this book
we make frequent use of several of these simple exploration techniques.

2.6 Upper-Confidence-Bound Action Selection

Exploration is needed because the estimates of the action values are uncertain. The
greedy actions are those that look best at present, but some of the other actions
may actually be better. "-greedy action selection forces the non-greedy actions to
be tried, but indiscriminately, with no preference for those that are nearly greedy or
particularly uncertain. It would be better to select among the non-greedy actions
according to their potential for actually being optimal, taking into account both how
close their estimates are to being maximal and the uncertainties in those estimates.
One e↵ective way of doing this is to select actions as

At
.
= argmax

a

"
Qt(a) + c

s
log t

Nt(a)

#
, (2.8)

where log t denotes the natural logarithm of t (the number that e ⇡ 2.71828 would
have to be raised to in order to equal t), and the number c > 0 controls the degree
of exploration. If Nt(a) = 0, then a is considered to be a maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-
root term is a measure of the uncertainty or variance in the estimate of a’s value.

1

!-greedy  ! = 0.1

UCB  c = 2

Average
reward

Steps

UCB1:	Auer,	Cesa-bianchi,	and	Fischer,	Finite-time	analysis	of	the	multiarmed	bandit	problem,	2002



UCB1 Algorithm  

‣ This leads to the UCB1 algorithm 

UCB1:	Auer,	Cesa-bianchi,	and	Fischer,	Finite-time	analysis	of	the	multiarmed	bandit	problem,	2002



Bayesian Bandits 

• Bayesian bandits exploit prior knowledge of rewards, 

• So far we have made no assumptions about the reward distributions.  

• In UCB we just considered some bounds on rewards

• Use posterior to guide exploration: we simply sample from the 
posterior!

• They compute posterior distribution of rewards  



Step 1: Given �  data, �  write down the 
expression for likelihood:

�

Step 2: Specify a prior: �

Step 3: Compute the posterior:

�

n D = x1...n = {x1, x2, . . . , xn}

p(D |θ)

p(θ)

p(θ |D) =
p(D |θ)p(θ)

p(D)

Bayesian learning for model parameters



Represent a distribution for the mean reward of each bandit as opposed to 
the mean reward estimate alone. At each timestep:

1. Sample from the mean reward distributions: 
�

2. Choose action �  

3. Observe the reward.

4. Update the mean reward posterior distributions: �  

θ̄1 ∼ ̂p(θ1), θ̄2 ∼ ̂p(θ2), ⋯, θ̄k ∼ ̂p(θk)

a = arg max
a

𝔼θ̄[r(a)]

̂p(θ1), ̂p(θ2)⋯ ̂p(θk)

Thompson Sampling

Q:	why	we	use	argmax	in	step	2	and	we	do	not	add	any	noise?



Bernoulli bandits - Prior
Let’s consider a Beta distribution prior over the mean rewards of the 
Bernoulli bandits:

Beta(α, β)

The mean is �  

The larger the �  the more concentrated the distribution

α
α + β
α + β



Bernoulli bandits-Posterior
Let’s consider a Beta distribution prior over the mean rewards of the 
Bernoulli bandits:

The posterior is also a Beta. Because beta is conjugate distribution for 
the Bernoulli distribution. 

A closed form solution for the bayesian update, possible only for 
conjugate distributions.



Greedy VS Thompson for Bernoulli bandits

̂p(θ1, θ2⋯θk)
a = arg max

a
𝔼θ[r(a)]

θ1, θ2, ⋯, θk ∼ ̂p(θ1, θ2⋯θk)

a:	success	
b:	failure



Using	uniform	prior	in	[0,1]	for	the	success	probabilities



• A contextual bandit is a tuple �

• A is a known set of k actions (or “arms”)

• �  is an unknown distribution over states (or “contexts”)

• �  is an unknown probability distribution over rewards

• At each time �

• Environment generates state �

• Agent selects action �

• Environment generates reward �

• The goal is to maximize cumulative reward �

(A, S, R)

𝒮 = ℙ[s]

ℛa
s(r) = ℙ[r |s, a]

t

st ∼ 𝒮

at ∈ 𝒜

rt ∼ ℛat
st

t

∑
τ=1

rτ

Contextual Bandits (a.k.a Associative Search)



Real world motivation: Personalized NETFLIX artwork

Netflix	Artwork:https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76

For a particular title and a particular user, we will use the contextual multi-
armed bandit formulation to decide what image to show per title per user
• Actions: uploading an image (available for this movie title) to a user’s 

home screen 
• Mean rewards (unknown):  the % of NETFLIX users that will click on the 

title and watch the movie 
• Estimated mean rewards: the average click rate (+quality engagement, 

not clickbait)
• Context (s) : user attributes, e.g., language preferences, gender of films 

she has watched, time and day of the week, etc. 

https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76


No, the setup we explored was: given a set of K arms, how do we 
select actions to minimize our cumulative regret.

Q: what would be the learning based equivalent of the multi-armed 
bandit problem?

A: 

• We have a training set of N multi-armed bandit instantiations. 

• Each K-armed bandit is one training example. 

• The agent gets n number of interactions, and obtains a final reward 
(- regret). 

• The agent learns a policy —mapping from its set of actions taken 
thus far and their outcomes, to a probability over what actions to try 
next

We will visit this setup in the meta-learning lecture. 

Question: was there a train and test phase on our multi-
armed bandit algorithms? 


