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• Input: video demonstra+ons (without rewards). 
• Self-supervised visual representa+on learning to bridge the domain gap 

between YouTube video demonstra+ons of people playing the game, 
with the frames the game emits 

• Given one video demo, use visual similarity encoded as frame 
embedding distance as imita+on reward, to be added (op+onally) to 
environment rewards. 

Review: Visual Imita+on of Atari from YouTube

Aytar*, Pfaff* et al., Playing Hard Exploration Games by Watching YouTube, NeurIPS 2018.

Input:  
• a set of video demonstra+ons in the form of RGB video 

sequences  
• an environment that emits task related rewards. 



Learning acroba+cs from watching YouTube

Peng et al., SFV: Reinforcement Learning of Physical Skills from Videos, SIGGRAPH Asia 2018 
Blog post: https://bair.berkeley.edu/blog/2018/10/09/sfv/

(Not by engineering the robot’s ac+ons) 
Like the prior work, learn from YouTube videos.



Learning acroba+cs from watching YouTube

Our agent has a pre-defined 
mapping between its body joints 
and the human body joints

We’ll discuss each of these 3 major components now.



The Pipeline



[1]: Wei et al., Convolutional Pose Machines, CVPR 2016.  
[2]: Kanazawa et al., End-to-end Recovery of Human Shape and Pose, CVPR 2018.

Approach relies on es+ma+ng 2D and 3D poses

• For 2D, build upon OpenPose [1], 
outputs 2D poses as joint 
coordinates in pixel space. 

• For 3D, build upon Human Mesh 
Recovery [2], directly predict 3D 
pose/shape of human mesh. 

• Train 2D and 3D pose es+mators 
independently to every frame.



Example of 3D Pose Es+mates



SMPL [M. Loper et al.]: a low-parametric model 
learned from aligning high-resolu+on 3D scans.  

ShapePose

3D mesh
SMPL(  ,  )θ β

Aside: SMPL, a 3D human shape model

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, Michael J. Black,  
SMPL: A Skinned Multi-Person Linear Model (SIGGRAPH Asia 2015)

θ β

(This is what "3D poses” mean in SFV.) 



The Pipeline



Temporal Smoothing

High-level idea: 
•Consolidate / improve previously collected 2D and 3D pose estimates. 
•For 3D, we have latent states at each time, can “reproject” to 3D and 

compare pose positions with the 2D pose estimator (this is why there’s 
both 2D and 3D pose estimates), and optimize over latents. 

•Enforce smoothness loss of 3D joint positions among adjacent frames.



Reference Motion 

ܽ ܽଵ ܽଶ ܽଷ ܽସ 

Result: A (Smooth) Reference Mo+on



The Pipeline



Ques+on: why do we need RL?
• Why do we not just do behavioral cloning to imitate the reference mo+on 

sequence? 
• The method predicts keypoints (human body parts) from video frames. 

• Cannot "copy and paste” keypoints from 2D frames into 2D frames of the 
simulator, because the agent controls its joints through (simulated) motor 
torques. 

• The agent has to learn how to control itself in the simulator, accoun+ng for 
gravity and other forces. (Also, no simulator is exactly the same as reality.) 

• While this might seem like a subtle / arcane technical point, it’s important 
to clarify if RL is the right "tool" to use.
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State + Ac+on
State + Action 

State: 
� link positions 
� link velocities 
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The reference trajectory, constructed from the 
pose es+mator with temporal smoothing. 

rt = exp (−2 ̂qt − qt
2)

Reward 

Imitation Objective Task Objective 

Imita+on Objec+ve

This reward considers the differences in joint orientations, joint (angular) velocities, 
end-effector positions, and center-of-mass.



Schulman et al., Proximal Policy Optimization Algorithms, arXiv 2017. 
See also: https://spinningup.openai.com/en/latest/algorithms/ppo.html

Proximal Policy Optimization (PPO) 

[Schulman et al. 2017] 

https://spinningup.openai.com/en/latest/algorithms/ppo.html


Why might PPO be a reasonable option? 
• Generally a good / easy RL algorithm, and we have dense rewards. 
• In simulation, we can get on-policy samples quickly, so data collection might be 

less of a time bottleneck (contrast this with real-world robots).

Proximal Policy Optimization (PPO) 

[Schulman et al. 2017] 



Adap+ve State Ini+aliza+on(ASI)

Can be interpreted as a form of "curriculum learning,” with similar ideas in: 
• Florensa et al., Reverse Curriculum Generation for RL, CoRL 2017. 
• Florensa*, Held*, Geng*, et al., Automatic Goal Generation for RL, ICML 2018.

• PPO alone may s+ll struggle, but there is another trick: in simula+on, we 
can reset the agent to start at a variety of ini+al states. 

• Approach: learn the ini+al state distribu+on! 

• Formulate as coopera+ve mul+-agent RL. 
• First agent: the policy. 
• Second agent: proposes ini+al state that the policy begins each episode. 

• Can s+ll use policy gradients for this (see paper for deriva+on).



Recap / Summary of Approach





Adap+ng a skill through RL to novel environments

In order for the agent to match keypoints from the video, it must necessarily avoid falling down!



Failure modes

(Notice the motion of the simulated agent’s hands.)



Summary and Takeaways

• Can use knowledge of humans to use prior computer vision work to get 
good human pose es+mates. 

• We s+ll need RL here (cannot just do BC). 
• We can use RL with a dense reward from imita+on. 
• Combines IL and RL — the line between the techniques is blurry. 
• Can result in acroba+c skills from just raw video!
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Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker,
Jonathan Chien, Maria Attarian, Travis Armstrong, Ivan Krasin,
Dan Duong, Vikas Sindhwani, Johnny Lee

Conference on Robot Learning (CoRL) 2020
transporternets.github.io

Transporter Networks
Rearranging the Visual World for Robotic Manipulation

Slides adapted from Andy Zeng et al.

Note: not to be confused with the “Transporter” introduced in “Unsupervised 
Learning of Object Keypoints for Perception and Control” by Kulkarni*, Gupta*, et 
al., NeurIPS 2019.



Transporter Networks: Rearranging the Visual World for Robotic Manipulation
Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria 
Attarian, Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, Johnny Lee
transporternets.github.io



Object-Centric Representations

-    Explicitly define “objects”
-    Specialized data collection
-    Unseen objects or piles?

Poses

Zeng et al. ICRA ‘17

DescriptorsKeypoints

Manuelli et al. ISRR ‘19

+    Improves sample efficiency 

End-to-End Models

Actions

Pixels

-    Explicitly define “objects”
-    Specialized data collection
-    Unseen objects or piles?

Structure to improve sample efficiency without objectness?

-    Require massive amounts of data
Florence et al. CoRL ‘18



Spatial Structure of Manipulation

Manipulation Rearranging 
objects

3D space

=

Infer displacements by rearranging visual input

Poses

Keypoints
Descriptors



Infer its spatial displacement Localize a region of interest

δx, δy

Transporter Networks

Correlation map

Just a convolution!

1 2
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1 2

Intuition: why is this a reasonable approach? 
• Consider a convolutional neural network on 2D images. The “transporting” operation 

is sliding a window of features around the images. 
• Higher “dot product” means higher correlations, and more likely to match features. 
• Brute force search means we can find all possible actions! Hence, action-centric. 
• But how do we get the features … ?



Transporter Networks

ResNet-43

ResNet-43

Pick Place
argmax argmaxRotations SE(2)Crops can be any size

Large receptive fields Equivariance

• Can compute these deep features via Fully Convolutional Neural Networks! 
• Rotate the input crop, then these images are combined in the same minibatch. 
• Important that the images are orthographic (not perspective), preserves spatial structure. 
• Equivariance: 



Transporter Networks for Pick and Place

Pick-Conditioned PlacingPicking1 2

• Heat maps show a distribution of picking and (pick-conditioned) placing points. These might 
be multi-modal and/or non-Gaussian! 

• Uses implicit models, shown to be more robust than explicit models, see results for details 
and also follow-up work by Florence et al., Implicit Behavioral Cloning at CoRL 2021. 

• FCNs are fast (one forward pass) and induces equivariance (helps data augmentation).



Transporter Networks for Pick and Place

Pick-Conditioned PlacingPicking1 2

• How to train? Use behavioral cloning from pick-and-place demonstrations. 
• Each pixel position (+ rotation) is a “class” in the discrete distribution of picking/placing 

points, and can train both networks with the standard cross-entropy loss. 
• No need to have “negative samples” in training!



Data Augmentation

• Source: https://blog.kzakka.com/posts/representation/ 
• Note: while some visuals are square images to simplify presentation, in practice (in the 

paper) the input images are 160x320 RGB(D).

https://blog.kzakka.com/posts/representation/


Visualization

Source: https://transporternets.github.io/



Transporter Nets for Pick and Place

Insert Block into Fixture Align Box to Corner Place Red in Green

• Can do these reliably using as few as ~10 demonstrations. 
• At test time, the same objects are sampled in different positions on the workspace.



Pick-Conditioned Placing

x xxx x
xx xx x
xxxxxxxx

xxxx x
x
x
xx

Jiang et al. IJRR ’12
Gualtieri et al. ICRA ’18
Wu and Yan et al. RSS ‘20



Sequential Multi-Step Tasks

Towers of Hanoi Palletizing Boxes Assembling Kits

Unseen

Stacking Blocks



Pose1
Pose2

Beyond Pick and Place

Two-Pose 
Primitives Sweeping Piles Manipulating Rope

Note: we’ll soon discuss work that explores deformable manipulation in much more detail!



6DoF Block Insertion

Hybrid 6DoF Tasks

Approach: use Transporter Networks to infer SE(2) action, then regress remaining components.



Experiments on Real Robots

Kitting Small Bottles Kitting Wooden 
Pieces

Sweeping Go 
Pieces

98.9%

98.3%



spatial-softmax and a multi-layer perceptron (MLP) – here, we use this to regress the sequence of two267

SE(2) poses. Form2Fit and ConvMLP use the same input images as Transporter Networks, but to get a268

sense of the difficulty of our tasks, we also supply two baselines which consume ground truth state (object269

poses and 3D bounding boxes) as input – i.e., assuming perfect object poses. GT-State MLP is an MLP270

which consumes these and regresses two SE(2) poses, while 2-step GT-State MLP first regresses the first271

SE(2) pose, then adds this to the observation vector and regresses the second SE(2) pose . To represent272

multi-modality, ConvMLP, GT-State MLP, and 2-step GT-State MLP regress mixture densities [39]. All273

methods, including ours, use identical data augmentation, with random SE(2) world-frame transforms.274

Results: Sample Efficiency and Generalization on Benchmark Tasks275

Tab. 2 shows sample efficiency of baselines trained from stochastic demonstrations for each task, and276

evaluated on unseen test settings, with random rotations and translations of objects (including target zones).277

The benchmark is difficult – most baselines, while capable of over-fitting to the demonstration training278

set, generalize poorly with only 1,000 demonstrations. In general, Transporter Networks achieve orders279

of magnitude more sample efficiency than the image-based alternatives, and also provides better sample280

efficiency than multi-layer perceptrons trained with ground truth state. More analysis in the Appendix.281

block-insertion place-red-in-green towers-of-hanoi align-box-corner stack-block-pyramid

Method 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

Transporter Network 100 100 100 100 84.5 100 100 100 73.1 83.9 97.3 98.1 35.0 85.0 97.0 98.3 13.3 42.6 56.2 78.2
Form2Fit [22] 17.0 19.0 23.0 29.0 83.4 100 100 100 3.6 4.4 3.7 7.0 7.0 2.0 5.0 16.0 19.7 17.5 18.5 32.5
Conv. MLP 0.0 5.0 6.0 8.0 0.0 3.0 25.5 31.3 0.0 1.0 1.9 2.1 0.0 2.0 1.0 1.0 0.0 1.8 1.7 1.7
GT-State MLP 4.0 52.0 96.0 99.0 0.0 0.0 3.0 82.2 10.7 10.7 6.1 5.3 47.0 29.0 29.0 59.0 0.0 0.2 1.3 15.3
GT-State MLP 2-Step 6.0 38.0 95.0 100.0 0.0 0.0 19.0 92.8 22.0 6.4 5.6 3.1 49.0 12.0 43.0 55.0 0.0 0.8 12.2 17.5

palletizing-boxes assembling-kits packing-boxes manipulating-rope sweeping-piles

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

Transporter Network 63.2 77.4 91.7 97.9 28.4 78.6 90.4 94.6 56.8 58.3 72.1 81.3 21.9 73.2 85.4 92.1 52.4 74.4 71.5 96.1
Form2Fit [22] 21.6 42.0 52.1 65.3 3.4 7.6 24.2 37.6 29.9 52.5 62.3 66.8 11.9 38.8 36.7 47.7 13.2 15.6 26.7 38.4
Conv. MLP 31.4 37.4 34.6 32.0 0.0 0.2 0.2 0.0 0.3 9.5 12.6 16.1 3.7 6.6 3.8 10.8 28.2 48.4 44.9 45.1
GT-State MLP 0.6 6.4 30.2 30.1 0.0 0.0 1.2 11.8 7.1 1.4 33.6 56.0 5.5 11.5 43.6 47.4 7.2 20.6 63.2 74.4
GT-State MLP 2-Step 0.6 9.6 32.8 37.5 0.0 0.0 1.6 4.4 4.0 3.5 43.4 57.1 6.0 8.2 41.5 58.7 9.7 21.4 66.2 73.9

Table 2. Baseline comparisons. Task performance (mean %) vs. # of demonstration episodes (1, 10, 100, or 1000) used in training.

Generalizing to Unseen Objects. Three of our benchmark tasks involve generalizing to unseen objects282

(see Tab. 1). In our variant of the kit assembly task with unseen objects, the gap in performance between283

Form2Fit and Transporter Networks is rather large. On a simpler set of unseen objects that have more284

primitive geometries (e.g., circular disks, squares), which reflect the distribution of objects used in the285

original paper [22], Form2Fit achieves 96.3% task success. This suggests that Form2Fit descriptors have286

the capacity to express larger differences in geometry, but are less capable of matching higher resolution287

information than our deep template-matching based model, with the same amount of data.288

Learning Sequential Manipulation with Closed-Loop Visual Feedback. In this work, Transporter Networks289

are stateless models that react only to information presented as visual input during the current timestep.290

However, our experiments show that the models have the capacity to learn visual feedback: they make291

use of contextual visual cues to determine which step of the task they are in, and use that to condition292

action-value predictions. For example, when a stack of blocks falls over, they can re-build the stack of293

blocks as if they had just started the task. If they accidentally push granular media out of the target zone294

during sweeping, they then push it back in (Fig. 4). We hypothesize that equivariance to rotations and295

translations enable them to learn these recovery behaviors even with little data on multi-step tasks (see296

Tab. 1). We show examples of these emerging behaviors in our supplementary video.297

deterministic stochastic

Method 1 10 100 1000 1 10 100 1000

Transporter Network 100 100 100 100 100 100 100 100
Form2Fit [22] 100 100 100 100 100 30.0 45.0 45.0
Conv. MLP 7.0 73.0 81.0 69.0 11.0 31.0 52.0 68.0
GT-State MLP 100 100 100 100 21.0 77.0 100 100
GT-State MLP 2-Step 100 100 100 100 53.0 70.0 100 93.0

Table 3. Simplified 2DoF (no rotation) block-insertion is harder to learn
with demonstrations from a stochastic oracle than a deterministic one.

Sample Complexity in Simplified Environments. Con-298

sider a simplified translation-only block-insertion task299

illustrated in Fig. 2, where no rotations are needed,300

and the block is initialized to the same location, with301

only the fixture location varying between environ-302

ments. We investigate two variants of experts in this303

setting: (a) one that provides deterministic demon-304

strations where Tpick, Tplace are fixed relative to the305

block and fixture respectively, and (b) one that pro-306

vides stochastic demonstrations where Tpick, Tplace are randomly sampled from the distribution of successful307

7



Assembling Kits of 
Unseen Objects

Picking 
Predictions 

Placing 
Predictions

Analysis: Learned Multimodal Actions

• Given one picking point, there may be a distribution of possible (valid) placing spots. 
• The “heat maps" on the images specify the distribution!



10 Demonstrations
success or failure

Conv. MLP

Analysis: Interpolation and Extrapolation

10 Demonstrations

GT-State MLP Transporter
Networks

10 demonstrations1 demonstration



Limitations

Noisy 3D Data Sparse Control Torque / Force 
Actions?

98.3%
Oaki and Adachi, IFAC ‘12



Learning to Rearrange Deformable 
Cables, Fabrics, and Bags with Goal-

Conditioned Transporter Networks

Daniel Seita, Pete Florence, Jonathan Tompson, 
Erwin Coumans, Vikas Sindhwani, Ken Goldberg, 

Andy Zeng

International Conference on Robotics and Automation 
(ICRA) 2021



Our Starting Motivation: Deformable Manipulation



Main Contributions
● A suite of 12 simulated tasks in PyBullet spanning cables, fabrics, and bags.
● Model architectures for manipulating objects towards desired goal 

configurations, specified with images [might be suited for deformables].
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Tasks with Cables (1D Deformables)

Demonstration 
Data

Each data point 
has a fixed goal 
image in addition 
to current image + 

action.

Demonstrator
Demonstration Data



Tasks with Fabrics (2D Deformables)

Demonstrator
Demonstration Data

Demonstration Data
Each data point has 
a fixed goal image in 

addition to current 
image + action.



Tasks with Bags (3D Deformables)

Demonstrator
Demonstration Data



We Bring Goal Conditioning into Transporter Networks

Highest 
score = 
placing 
spot.

Naive approach: stack current + goal images together channel-wise.



Training Procedure

● For each task, assume we have demonstrations of state-action (s,a) pairs.
● For GCTN, bring the last observation from each episode into the training 

sample as a second observation, (s,a,s’). Note the assumption this makes!



Training Procedure

● Also: script a demonstrator for each task, but for some of the harder ones, filter out 
demonstrations by whether they succeeded or not.

● So we only provide “successful” demos (though they are also slightly stochastic).



Learned Policy: Transporter Network

One item in bag 
(zoomed-in for clarity)

Two items in bag 
(skipping some in-between 

action pauses)



Learned Policy: Transporter with Goal Conditioning

Goal Configuration

Block is 
here



Quantitative Results — Task Success Rates

Tasks with 
Goal

Conditioning

Tasks without 
Goal

Conditioning



Current Limitation

The coarse pick-and-place policy cannot react in real time.



Conclusions and Future Work
● An open-source benchmark for 1D, 2D, and 3D deformable manipulation.
● An image goal-conditioned extension of Transporter Networks.
● Learned pick-and-place policies to manipulate deformables.
● Future work:

○ Extend to physical bagging (some progress here).
○ Go beyond pick-and-place actions, e.g., “stuff and kick”?

Remember when we used to travel 
(regularly)? We used suitcases.

Seita et al., Initial Results on Grasping and Lifting Physical Deformable Bags, IROS workshop 2021.



Extension of Transporter Networks: CLIPort

○ Combines OpenAI’s CLIP with Transporter Networks
○ Can do language-conditioned tasks.

Shridhar et al., CLIPort: What and Where Pathways for Robotic Manipulation, CoRL 2021. 
Radford*, Kim* et al., CLIP: Connecting Text and Images. https://openai.com/blog/clip/



Extension of Transporter Networks: SCTN

○ Sequence-Conditioned Transporter Networks to extend GCTN.
○ Proposes MultiRavens for compositional tasks.

Lim et al., Multi-Task Learning with Sequence-Conditioned Transporter Networks, CoRL 2021.



Lots of Benchmarks to Try!

● Ravens
● DeformableRavens (shown above)
● CLIPort Tasks (“ClipRavens”?)
● MultiRavens

Benchmarks have been important for the development of computer vision and 
NLP, and it’s encouraging to see more benchmarks for robot manipulation.



Open-Source!



Summary and Takeaways

• Introduced Transporter Network and extensions. 
• Formulate robot manipula+on as a sequence of rigid displacements by 

rearranging pixels (3D space). 
• Use an ac+on-centric (not object-centric) approach. 
• Use orthographic images and equivariance for data augmenta+on. 
• Highly sample-efficient robot manipula+on from a few visual (image) 

demonstra+ons. 
• Use implicit models with fast inference from forward pass.


