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Monte Carlo 



Monte Carlo (MC)
Update Rule: Incremental Update:

where return is the sum of discounted rewards:

DP (Value/Policy Iteration):    Monte Carlo Learning:
- Iterate through all possibilities + Collect samples from episodes

What does this 
assume?- assumes full knowledge of env

- mean return: unbiased- One step bootstrap: biased estimate
Pro or con?



DP vs MC



Monte Carlo (MC)

How would you modify the 
above to also generate a policy?

Q(St , At) ← average(Returns(St , At ))

π(St) ← argmaxaQ(St , a)

Every-visit also exists… different convergence property 

Aggregate backwards



Temporal Difference Learning



Temporal Difference Learning 

+ Can learn before reaching a terminal state
+ Much more memory and computation-efficient than MC
- Using value in the target introduces bias

New update rule: 



Motivation for TD learning and N-step returns  

Approximate with v

MC estimate

Less reliance on vN-step returns

TD(0) N-step returns



N-step returns 



Q-learning: Off-policy TD Learning

● Key benefit: off-policy!
● Only require state, action, reward, and next state drawn from the MDP
● Doesn’t depend on the policy anywhere!
● Is foundation for many sample-efficient RL methods

1-step Q-learning update:



● What happens if the state space and action space are too large?
○ Use function approximation to approximate the Q-values!

● Use gradient descent to take a step towards minimizing the Bellman error:

Deep Q-learning

Tabular

Function Approximation

Target value Prediction



Target Networks

● One problem with deep Q-learning: nonstationary targets
○ Updating the network weights changes the target value, which requires more updates
○ Unintended generalization to other states S’ can lead to error propagation

● Solution: calculate target values with a network that’s updated every T 
gradient steps

○ Network has more time to fit targets accurately before they change 
○ Slows down training, but not too many alternatives (recently: functional regularization)

Target value Prediction



Experience Replay
● Problem #1: neural networks undergo catastrophic forgetting if they 

haven’t been trained on a (similar) sample recently
● Problem #2: online samples tend to be very correlated, which leads to 

unstable optimization 
● Solution: keep large history of transitions in a “replay buffer,” then optimize 

the Bellman error wrt random minibatches 



Monte Carlo Tree Search 



Problem: Large State-Action Space
Trying to estimate the value at every state (solving the full MDP) is often 
infeasible

MC and TD still try to estimate Q/V value function for every state or 
state-action visited

- Too much memory for tabular (10^48 states for chess)
- NN may be undefined at unseen states, “similar” states may have 

completely different values and optimal paths



Online Planning
- Use internal model to simulate trajectories at current state, find the best 

one

Monte Carlo Tree Search (MCTS):

- Only estimate value function for relevant part of state space
- Consider only part of the full MDP at a given step



MCTS
node = state
edge = action

- Tree: Stores Q-values for only a subset of all state-actions 
- MC  method: require episode termination to update values



Selection
Given:

- current state of agent = root node
- Empty or existing tree with Q-values

Steps:

- keep executing UCB repeatedly until you reach frontier of tree (state that is 
not a node)

“children” = actions, don’t know all 
possible (s,a) → s’ transitions

s

a1

a1

s1 s2

a2



Expansion
Given:

- at a new state s not part of the tree

Steps:

- Based on some rule, possibly add this new state to the tree
- ex: if depth of this state < max depth

- Take random action a (since no Q-values available), receive reward r if 
available

- G = Simulation(s, a)
- Store Q(s, a) = gamma*G + r
- return gamma*G + r  to  propagate return to parent node

Why not store all nodes and Q values?



Simulation 
Given:

- at a new state s not part of the tree

Steps:

- If at terminal state, return reward
- use very fast policy to determine action a to take

- ex: random policy
- G = Simulation(s, a)
- return gamma*G + r     (Do Not store Q-value)



Backup
- Propagate return from the recursive calls
- Calculate return  at each state



MCTS Overall
- For the current state of agent, repeatedly perform the previous steps until 

some criteria
- ex: time limit
- ex: Q-value convergence within some threshold

- Execute the best action
- Reuse the subtree of the successor state and repeat!

What scenarios would you use MCTS 
as opposed to learning? 

-  available time
- internal model

- size or dynamic nature of 
state-action space 


