Recitation 4



Monte Carlo



Monte Carlo (MC)

Update Rule:
V (St) < average(Returns(S:))

Incremental Update:

V(S:) « V(S:) + ﬁ (Gt — V(S:))

where return is the sum of discounted rewards:
Gt = Rit1+YRes2 + ...+ 'Ry

DP (Value/Policy Iteration):
lterate through all possibilities

Do 08, a)|[r+ V()]

assumes full knowledge of env

One step bootstrap: biased estimate

Monte Carlo Learning:

+  Collect samples from episodes

. S(), Ao, R1, Sl, Al, Rz, cooy ST_1, AT_1,R_T
What does this
assume?
- mean return: unbiased
Pro or con?



DP vs MC




Monte Carlo (MC)

Every-visit also exists... different convergence property

First-visit MC prediction, for estimating V =~ v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) < an empty list, for all s € §

Loop forever (for each episode):
Generate an episode following 7: So, Ao, R1,51, A1, Re,...,S7—1,Ar_1, Rr
G ==l
Loop for each step of episode, t = T—1,T—-2,...,0: Aggregate backwards
G < 7G + Riy1
Unless S; appears in Sp, S1,...,S:—1:
Append G to Returns(St)
V (S:) « average(Returns(S:)) Q(St, At) «— average(Returns(St, At))

Gt = Rey1 +YRey2 + .. +7 IRy

m(S,) «— argmax_Q(S,, a)

How would you modify the
above to also generate a policy?



Temporal Difference Learning



Temporal Difference Learning

New update rule:

V(St) - V(St) + | Rusa + 9V (Si41) = V(S1)]
l |

target: an estimate of the return

+ Can learn before reaching a terminal state
+  Much more memory and computation-efficient than MC
- Using value in the target introduces bias



Motivation for TD learning and N-step returns

TD(0)

MC estimate
Vr(s) = E[Ge|Sy = 5]

=K, ZVth+k+1|St — 3]
| k=0

=E; [Ri41 + ’YZ’Vth+k+2|St =S
k=0

= Er [Rit1 4+ y0r (Se41)[Se = 9]

/

Approximate with v

|

N-step returns

vr(s) = IEW[?AS} = 3]

o0
> Y ReyrialS = 8]
| k=0
[ N fo'e)
Z 'Yl_lRt+i + N Z ’Yth+k+N+1 1S = S]
L 1=1 k=0

[ N
ZVi_lRtﬂ' + YN 0r (Seen)|Se = 3]

N

N-step returns Less reliance onv



N-step returns

V(St) < V(St) + o (Rt+1 + ’)’Rt+2 + ’YzV(St_}_z) — V(St))




Q-learning: Off-policy TD Learning

1-step Q-learning update:

Q(St, Ar) < Q(S, Ar) + o [Rt—l—l + Y max Q(St+1,a) — Q(S;, At)]

Key benefit: off-policy!

Only require state, action, reward, and next state drawn from the MDP
Doesn't depend on the policy anywhere!

|s foundation for many sample-efficient RL methods



Deep Q-learning

e \What happens if the state space and action space are too large?
o Use function approximation to approximate the Q-values!

e Use gradient descent to take a step towards minimizing the Bellman error:

2
L= (Sg(Rt—l—l + ’yrf{lax Q(St+17At+17 w)) — CI(SuAt, w))

t41
Target value Prediction

Tabular

Q(St,At) — Q(St,At) + o [Rt+1 -I-’)’HilaXQ(StH,AtH) - q(St,At)]

Function Approximation

W~ W+ o [Rt+1 + fYII}qa’Xq(St‘Fl? At-l-l’ ’LU) - Q(Sta At7 ’lU):| va(St’ At7 ’lU)



Target Networks

2
L= (Sg(Rt—H + 7y max Q(St+1,At+1, w)) — (I(SuAt, 'w))

Aty
Target value Prediction

e One problem with deep Q-learning: nonstationary targets
o Updating the network weights changes the target value, which requires more updates
o Unintended generalization to other states S can lead to error propagation

e Solution: calculate target values with a network that's updated every T

gradient steps

o Network has more time to fit targets accurately before they change
o Slows down training, but not too many alternatives (recently: functional regularization)



Experience Replay

e Problem #1. neural networks undergo catastrophic forgetting if they
haven't been trained on a (similar) sample recently

e Problem #2: online samples tend to be very correlated, which leads to
unstable optimization

e Solution: keep large history of transitions in a “replay buffer,’ then optimize
the Bellman error wrt random minibatches

S1,4d1,12,52

52,d2,I3,53 — S, a, rasl 2

S3, as, I, S4 1= (r+ymaxQ(s’,a’, w—)—0C(s, a, W))
a

Sty dty Ne4+1y St+1




Monte Carlo Tree Search



Problem: Large State-Action Space

Trying to estimate the value at every state (solving the full MDP) is often
infeasible

MC and TD still try to estimate Q/V value function for every state or
state-action visited
- Too much memory for tabular (10748 states for chess)
- NN may be undefined at unseen states, “similar’ states may have
completely different values and optimal paths



Online Planning

- Use internal model to simulate trajectories at current state, find the best
one

Monte Carlo Tree Search (MCTS);

- Only estimate value function for relevant part of state space
- Consider only part of the full MDP at a given step



{ Repeat while time remains I
M CTS L>Selection — Expansion —— Simulation ——— Backup —)

node = state
edge = action /C\/\?E\\ /><£i o\

/O\/O/‘\@ L /

Tree Rollout
Policy Policy
|

X

- Tree: Stores Q-values for only a subset of all state-actions
- MC method: require episode termination to update values



—p Selection —

Selection

Given: A
- current state of agent = root node /\(\
- Empty or existing tree with Q-values
Steps: . . /)\
eps ‘children” = actions, don't know all
function MCTS_sample (node) possible (s,a) — s transitions /O
if all children expanded:fselection l bgt] ¢
A, = argmax, | Qfa) +c
next = UCB sample (node) Nya)

outcome = MCTS sample (next)
- keep executing UCB repeatedly until you reach frontier of tree (state that is
not a node)



—» Expansion —

Expansion
Given:

- at a new state s not part of the tree /\(\
Steps: Why not store all nodes and Q values?

- Based on some rule, possibly add this new state to the tree
- ex if depth of this state < max depth
- Take random action a (since no Q-values available), receive reward r if
available
- G = Simulation(s, a)
- Store Q(s,a) = gamma'G +r
- return gamma’G + r to propagate return to parent node




Simulation

Given:

at a new state s not part of the tree

Steps:

If at terminal state, return reward

use very fast policy to determine action a to take

- ex: random policy
G = Simulation(s, a)
return gamma’G + r

(Do Not store Q-value)

A5
/N

)

|
Rollout
Policy
|

X



Backup —* Backup —

- Propagate return from the recursive calls
- Calculate return at each state

Gt = Ret1 +YRep2 + ... + v IRy



MCTS Overall

- For the current state of agent, repeatedly perform the previous steps until

some criteria
- ex time limit
- ex: Q-value convergence within some threshold
- Execute the best action

- Reuse the subtree of the successor state and repeat!

What scenarios would you use MCTS
as opposed to learning?

- available time
- internal model
- size or dynamic nature of
state-action space



