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Last lecture

* Behaviour clonlng for imitation learning. Assumes access to a set of

trajectories 7 = {0, {,Oé, aé, Oé,aé, .. 0] aJ,j = 1...T}. Trains a policy

by minimizing a standard supervised learning objectlve.

L5cl0,T) = Egyupyes |lla] = mfsHIB|



Maximum Likelihood

0+ = arg m@ax ~X~Data lOg pmodel(x ‘ (9)

N
0~ = arg mgax Z 10g Pmoder(X; | 6)
=1



Maximum Likelihood

0% =argmaxk, , logp,,..(X[0)

explicit density



Maximum Conditional Likelihood

0" = arg m@ax ~X~Data IOg prnodel(X ‘ 99 )

explicit density



Maximum Conditional Likelihood

Dy (PIQ) = Z P(x)log (g((x;>

0" = arg m@ax ~X~Data lOg pmodel(X ‘ 6’ )

equiv. to
0* = ar g mein DKL (pdataHpmodel(X | 0, ))




Maximum Likelihood-Gaussian with fixed covariance

0 = arg mglx ~X~Ddata lOg P model(X | 0, )

1
2x)~2det(T)"2

pmodel(X | ‘99 ) — CXp <_%(X _ //t((g, ))Tz—l(x _ /4((9, ))> ’ where X =1



Maximum Likelihood-Gaussian with fixed covariance

1
2r)~>det(X)~2

PrmodelX 16, ) = exp (—%(X — 10, 0) T (x — (o, ))> ,where ¥ =1

0 = arg m@ax ~X~Ddata lOg pmodel(X ‘ 9’ )

mglx E.p, 108D 040(X[0,¢)  equiv.to m@in E.p, |Ix—u@, 1B

e.g. behavior cloning with continuous actions

L5cl0,T) = Eyapsr |l = 7)1



BC Maximizes Conditional Likelihood

e

ZLpc0,T) = Ey g [Ha{ — 7 )||%]




BC Maximizes Conditional Likelihood

Lpc0.9) = Equps |l = 2 DI

Expert trajectory

Learned Policy
—
":“““
No data on /
how to recover ("-\I

 Makes the expert actions most likely in the states of the expert trajectories.
 But what about the states not on the expert trajectories? There the actions
are unconstrained!



Distribution mismatch (distribution shift)

P ﬂ*(Oz) 75 P ][Q(Ot)

Expert trajectory




State-action distribution matching objective

e The state-action distribution from the expert
trajectories and the state-action distribution
that the agent visits by deploying the policy
iIn the environment need to match.

 New solution to the compounding error problem of BC.
e Let's see how we can optimize this distribution matching objective.



Adversarial Nets Framework
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(Goodfellow 2016)



mgn max V(D,G) =E,., llogD]+E,,llog(1-D(G(2)))]

Discriminator D

Generator G

(Goodfellow 2016)
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Figure 3: (a) Updating the discriminator. (b) Updating the generator.



A Generator network (DCGAN)

Most “deconvs”’ are batch normalized
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Training Procedure

o Use SGD-like algorithm of choice (Adam) on two
minibatches simultaneously:

A minibatch of training examples
e A minibatch of generated samples

e Optional: run £ steps of one player for every step of
the other player.

(Goodfellow 2016)
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Questions:

 What if the generator maps all noise vectors to a single super
photorealistic image?
 What if we train the discriminator till convergence (it is just a supervised

classifier...) and becomes perfect in distinguishing real from generated
Images?



A minimax game

mén max V(D,G) =E,., wllogDX)]+E,,llog(1-D(G(2)))]




A better cost function

mgn max V(ID,G) =E,., wllogDX)]+E,,llog(l1-D(G(2)))]

: - B Gradients not informative
mén ZNPZ(Z)[IOg(l D(G(2)] when D close to 0

:
‘ S log,(x) log,(x)

IIllIl [EZNPZ(Z)[_IOg(D(G(Z)))] 1: | log, 5()

G A
e X

max E,., llogDx)]+E,,[log(1-D(G(2)))]

\ 4
v wll0g(1=DON] + E,_,, o, [1og(D(G(2)))]

min [E
D




Optimal discriminator strategy

mén max V(D,G) =E,., wllogDX)]+E,,llog(1-D(G(2)))]

V(D,G) = | Pgaa(¥)log D(x)dx + J p(2)log(1-D(G(2)))dz

Jx Z




Optimal discriminator strategy

mén max V(D,G) =E,., wllogDX)]+E,,llog(1-D(G(2)))]

V(D,G) = | Pgaa(¥)log D(x)dx + J p(2)log(1-D(G(2)))dz

Jx Z

Pdaa(0)10g D(x)dx + J p)log(1-D(x))dx

v X X



Optimal discriminator strategy

min max V(D, G) =

G D

V(D, G)

v X

Pdata(X)10g D(x)

" dam(x)[k)g D(x)] + "ZNpZ(Z)[IOg(l_D(G(Z)))]

Pdata(¥)10g D(x)dx + J p(2)log(1-D(G(2)))dz

v X

| Pdaa(0)10g D(x)dx + J p)log(1-D(x))dx

v X

4

X

Pc(0)log(1—D(x))dx



Optimal discriminator strategy

V(D, G) = J Pdata(X)10g D(x)+p(x)log(1—D(x))dx

X

The discriminator assigns values D(x) to each image x. Let’s take the
derivative to see where the optimum is attained.



Optimal discriminator strategy

V(D, G) = J Pdata(X)10g D(x)+p(x)log(1—D(x))dx

X

dD(x) (pdata(x)log D(X)+pG(x)log(1 — D(X)) — 0



Optimal discriminator strategy

V(D, G) = J Pdata(X)10g D(x)+p(x)log(1—D(x))dx

X

dD(x) (pdata(x)log D(X)+pG(x)log(1 — D(X)) — 0

0

1
<=>pdata(x) D(x) pG(x)l — D) —



Optimal discriminator strategy

V(D, G) = J Pdata(X)10g D(x)+p(x)log(1—D(x))dx

X

(Paara(®l0g DX)+pe(x)log(l — D(x)) =0

dD(x)
1
< pdata(x) D(x) pG(x) 1 — D(x) =0
1
< pdata(x) 4 G(x)

D(x) 1 — D(x)



Optimal discriminator strategy

V(D, G) = J Pdata(X)10g D(x)+p(x)log(1—D(x))dx

X

(Paara(®l0g DX)+pe(x)log(l — D(x)) =0

dD(x)
1
< pdata(x) D(x) pG(x) 1 — D(x) =0
1
< pdata(x) D(x) — pG(x) I — D(x)

S PaaaX)(1 = D(X)) = p(x)D(x)



Optimal discriminator strategy

V(D, G) = J Pdata(X)10g D(x)+p(x)log(1—D(x))dx

X

dD(x) (pdata(x)log D(X)+pG(x)log(1 — D(X)) — 0

0

1
<=>pdata(x) D(x) pG(x)l — D) —

S Pgata(X) DY) = pg(x) T ; )
S Paaa(1 — D(x)) = p(x)D(x)
Pdata(X)
Pdata®) + Pg(x)

S D*(x) =




Optimal generator strategy

C(G) = max V(G, D)
D



Optimal generator strategy

C(G) = max V(G, D)
D

= Ereppuatol108 DE)] + [EZNPZ(Z)[IOg(l — Dg(G)]



Optimal generator strategy

C(G) = max V(G, D)
D

- [Eprdata(x)[log D g(x)] + [EZNPZ(Z)[IOg(l - D g(G(Z))]
— [Ex~pdam(x)[10g DEX;()C)] + [EprG(x)[log(l _ DEX;(X)]



Optimal generator strategy

C(G) = max V(G, D)
D

- [Eprdata(x)[log D g(x)] + [EZNPZ(Z)[IOg(l - D é(G(Z))]
— [Ex~pdam(x)[10g DEX;()C)] + [EprG(x)[log(l _ DEX;(X)]
p data(x) p data(x)

+E,., ollog(l—
Paata®) +pG<x>] wpoe 1O Paaa®) + Po(x) .

= [Eprdata(x) [log



Optimal generator strategy

C(G) = max V(G, D)
D

- [Eprdata(x)[log D g(x)] + [EZNPZ(Z)[IOg(l - D é(G(Z))]
— [Ex~pdam(x)[10g DEX;()C)] + [EprG(x)[log(l _ DEX;(X)]

Paata®) PdataX)
— [EXN X [log ] + [EXN X [log(l — )]
pdata( ) pdata(x) _I_ pG(x) pG( ) pdata(x) + pG(x)
Pda a(x) P G(x)
= E,p ollog —2 0 L E g )

PdataX) + pg(x) Pdata(X) + pg(x)



Optimal generator strategy

C(G) = max V(G, D)
D

- [Eprdata(x)[log D g(x)] + [EZNPZ(Z)[IOg(l - D é(G(Z))]
— [Ex~pdam(x)[10g DEX;()C)] + [EprG(x)[log(l _ DEX;(X)]

Paata®) PdataX)
=E._ . log 1+ E,., wllog(l - )]
pdata( ) pdata(x) + pG(x) pG( ) pdata(x) -+ pG(x)
pdata(x) p G(x)
= [EXN ¥ [lOg ] + [Ex~ X [lOg( )]
Pdara() Pdata*) + pe(x) Po() Pdata(*) + Pe(x)
Paaa®) P69
_ [Eprdam(x)[log data ]+ [ExNPG(x) [log( G )] —log4 + log 4

pdata(x) + P G(x) pdata(x) + P G(x)



Optimal generator strategy

C(G) = max V(G, D)
D

- [Eprdata(x)[log D g(x)] + [EZNPZ(Z)[IOg(l - D é(G(Z))]
— [Ex~pdam(x)[10g DEX;(.XI)] + [EprG(x)[log(l _ DEX;(X)]
pdata(x)

PdataX) + pc(x)
P data(')C )

= Eropaollog I+ Eyopoeollog(l —

P data(x )
Pdata(¥) + pg(x)
Pg(x)

=E,., (ollog 1+ E,., llog(
Pt paa®) + po@) A

P data(x )

Pdata®) + p(x)
PG(X)

= E,.,,oll0g 1+, ollog(
PdatadX) pdata(x) + PG(X) Pc(x)

2]7 data(x )

)] —log4 + log 4
pdata(x) + pG(x)

2pg(x)

= Brvppuuol108 I+ Bopgenllog(

Pdata®) + pg(x)

—log4
Pdata®) + p(x) )1 log



Optimal generator strategy

C(G) = max V(G, D)
D

- [Eprdata(x)[log D g(x)] + [EZNPZ(Z)[IOg(l - D é(G(Z))]
— [Ex~pdam(x)[10g DEX;(.XI)] + [EprG(x)[log(l _ DEX;(X)]

= B 108
=Evopumllog
= Eyopumllog
= Evpral108

= Eprdata(x) [log

P data(x )

PdataX) + pc(x)
P data(x )

Pdata(X) + pc(x)
P data(x )

pdata(x) + pG(x)
2]7 data(x)

Pdata®) + p(X)
P data(x )

E
Pdata®) + pe(x) I+

2

|+ E
|+ E

1+ E, o ollogl

x~pg(x) [log Pdata(¥) + Pe(x)

P data(x )

|+ [EprG(x)[log(l — )]

PdataX) + pc(x)
Pg(x)
Pel) [log(pdata(x) + po(x) .
Pg(x)
PdataX) + pg(x)
2pg(x)
Pdata®) + p(x)
Pc(x)

s~y LOE( )] —log4 +log4

)] —log4

] —log4

2



Optimal generator strategy

C(G) = max V(G, D)
D

- [Eprdata(x)[log D g(x)] + [EZNPZ(Z)[IOg(l - D é(G(Z))]
— [Ex~pdam(x)[10g DEX;(.XI)] + [EprG(x)[log(l _ DEX;(X)]

= B 108
=Evopumllog
= Eyopumllog
= Evpral108

= Eprdata(x) [log

= DKL <pdata(x) | |

P data(x )

PdataX) + pc(x)
P data(x )

Pdata(X) + pc(x)
P data(x )

pdata(x) + pG(x)
2]7 data(x)

Pdata®) + p(X)
P data(x )

Pdata®) + pe(x)
2

|+ Lk
|+ E
1+ E, o ollogl

|+ |Exrva(X)[log Pdata®) + (%)

Paata*) + pg(x) >

P data(x )

|+ [EprG(x)[log(l — )]

PdataX) + pc(x)
Pg(x)
Pel) [log(pdata(x) + po(x) .
Pg(x)
PdataX) + pg(x)
2pg(x)
Pdata®) + p(x)
Pc(x)

s~y LOE( )] —log4 +log4

)] —log4

] —log4

2

+ Dk, (PG(X) |

P data(x) + pG(x) >
> — log 4



Optimal generator strategy

C(G) = max V(G, D)
D

- [Eprdata(x)[log D g(x)] + [EZNPZ(Z)[IOg(l - D é(G(Z))]
— [Ex~pdam(x)[10g DEX;(.XI)] + [EprG(x)[log(l _ DEX;(X)]

= B 108
=Evopumllog
= Eyopumllog
= Evpral108

= Eprdata(x) [log

= DKL <pdata(x) | |

= 2Dygp (pdata(x) | |PG(X)) —log4

P data(x )
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Optimal generator strategy

C(G) = max V(G, D)
D

P data(x ) P G(x )
=E,.  llog I1+E,., llog( )]
pdata( ) pdata(x) +pG(x) pG( ) pdata(x) —|—pG(X)

— 2I)JSD (pdata(x) | |pG(x)> _ 10g4

Since Dygp > 0, C(G) > —log4
By setting Ps(x) = pgqa(X) IN the equation above, we get:

1 1
C(G) = [Eprdata(x) log 5 + [EprG(x) log 5 = — log4

Thus generator achieves the optimum when Ps(x) = pga(X) -



Next Video Frame Prediction

Groundtruth Max. Likelihood Adversarial

(Lotter et al 2016)



Maybe an explanation of why GANs work

q° = argmin, D1 (pl|q) q" = argmin, D1 (q|/p)

Probability Density
Probability Density

Maximum likelihood Reverse KL



Generative Adversarial Imitation learning

The policy network will be our generator, that conditions on the state:

7y(s) = a



Generative Adversarial Imitation learning

Find a policy 7, that makes it impossible for a discriminator network to
distinguish between state-action pairs from the expert demonstrations and state-

action pairs visited by the agent’s policy 7

min -(S,a)Nﬂe[—log(Dg/,(S, a))]

7o

Hll)i(pn |E(s,az)NDemo[log(1_l)qb(s’ Cl))] + [E(S,Q)Nﬂe[log(Déb(S’ a))]

The reward for the policy optimization is how well | matched the demonstrator’s
trajectory distribution, else, how well | confused the discriminator.

r(s,a) = logD¢(S, a), (s,a) ~ my



Generative Adversarial Imitation learning

Input: Expert trajectories, initial policy parameters ¢, and initial discriminator
weights ¢,,.

Fori=0,1,2,3...do
1. Sample agent trajectories 7; ~ Ty
2. Update the discriminator parameters with the gradient:

E (5.0)~Demol V plog(1=D(s, a))] + Esael V »10g(D (s, a))]

3. Update the policy using a policy gradient computed with the rewards, e.g., the
REINFORCE policy gradient would be:

[E(S,a)efi[ V,log mylog D¢i+1(s, a)]

end for



Generative Adversarial Imitation learning
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e GAIL: areinforcement learning method with a reward based on trajectory
distribution matching between the agent and an expert.

e BC:reduces imitation learning to supervised learning for individual actions.

e GAIL performs better than behaviour cloning but it requires MORE
interactions with the environment.

e Q:Can BC or GAIL outperform the expert?



Imitation learning for diverse goals

e Pushing to diverse locations

e Pouring to different bottles

e Driving to different destinations

We need a way to communicate the goal during learning of the policy




Multi-goal Imitation learning and RL

Often times we care to learn policies that achieve many related goals
For example: push object A to (10,10,10) and to (10,12,10)

The two policies should have many things in common

Training such policies jointly may be beneficial



Universal value function approximators

V(is;0) = V(s,g;0)

n(s;0) =

n(s,g;0) s,g €S

e The experience tuples should contain the goal.

(s,a,r,s’) = (S, g,a,r, S’)

Universal Value Function Approximators, Schaul et al.



Universal value function approximators

V(is;0) = V(s,g;0)

n(s;0) =P

n(s,g;0) s,g €S

What should be my goal representation?

The goal representation is usually the same as your state representation.
Usually one of the two:

- Manual/oracle: 3d centroids of objects, robot joint angles and velocities,
3d location of the gripper, etc.

- Learnt: Some feature encoding over images directly



Goal conditioned behavior cloning

e Assumes access to a set of trajectories

g ={0o, a{, Oé, aé, Oé, aé, e OJT, a]T, ¢/, j = 1...T}. Trains a policy by minimizing

a standard supervised learning objective:

Lel0.7) = Eqg 7 [la] = ms] &) ]



Goal relabelling for jointly learning diverse goals

|dea: use failed executions under one goal g, as successful executions under
an alternative goal g’ (which is where we ended at the end of the episode).

/ Goal g’
/ @
e No reward :-( reward :-)
Goal g Ourreacher at the end of the Our reacher at the end of the episode

episode (S, g, a,O,S’) (s, o.a,l, s’)



Hindsight Experience Replay

Marcin Andrychowicz*, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel’, Wojciech Zaremba'
OpenAl

|dea: use failed executions under one goal g, as successful executions under
an alternative goal g’ (which is where we ended at the end of the episode).




RL with goal relabelling

Algorithm 1 Hindsight Experience Replay (HER)

Given:
e an off-policy RL algorithm A, >e.g. DQN, DDPG, NAF, SDQN
e astrategy S for sampling goals for replay, >e.g S(sg,...,s7) =m(sr)
e areward functionr: S x A x G — R. >e.g. r(s,a,g9) = —[fy(s) =0]
Initialize A > e.g. initialize neural networks

Initialize replay buffer R
for episode=1, M do
Sample a goal g and an initial state sy.
fort = 0,7 —1do
Sample an action a; using the behavioral policy from A:
a; < mp(5¢]|9) > || denotes concatenation
Execute the action a; and observe a new state s; 1
end for
fort = 0,7 —1do
re = 1(5¢, at, g)

Store the transition (s¢||g, a¢, r¢, Si+1/lg) in R > standard experience replay
Sample a set of additional goals for replay G := S(current episode) o
for ¢’ € G do G : the states of the current episode
r' = 1r(s,ar,9')
Store the transition (s;||¢’, a¢, v, s¢v1l|g’) in R > HER
end for
end for \Jsually as additional goal
fort = 1, N do we pick the goal that this

Sample a minibatch B from the replay buffer R
Perform one step of optimization using A and minibatch B
end for
end for

episode achieved, and the
reward becomes non zero




How to select states for relabelling

- = no HER = final —&— random —&— episode
pushing sliding
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* Final: for each state, use the last state reached in the episode as a goal

 Future: for each state, use random 4 states (observed after the state) in

the same episode as a goal



How to select states for relabelling

- = no HER = final —&— random —&— episode —&— future
pushing sliding pick-and-place
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number of additional goals used to replay each transition with

Above 8, the relabelled data are way more than real data, performance
degrades.



How to select states for relabelling

- = DDPG - DDPG+count-based exploration = DDPG+HER - DDPG+HER (version from Sec. 4.5)]
pushing sliding pick-and-place
100% 100% 100%
80% 80% 80%
9
T 60% 60% 60%
8 40% 40% 40%
?
20% 20% 20%
0% 0% 0%
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

epoch number (every epoch = 800 episodes = 800x50 timesteps)



Goal relabelling for jointly learning diverse goals

|dea: use failed executions under one goal g, as successful executions under
an alternative goal g’ (which is where we ended at the end of the episode).

/ Goal g’
/ @
e No reward :-( reward :-)
Goal g Ourreacher at the end of the Our reacher at the end of the episode

episode (S, g, a,O,S’) (s, o.a,l, s’)

In which of the tasks you think goal relabelling will help the most?
* Picking an object up?

e Reaching?

 Pushing an object to a location?

o All of the above considered jointly?




Goal-conditioned Imitation Learning

Yiming Ding*
Department of Computer Science
University of California, Berkeley

dingyiming0427@berkeley.edu

Mariano Phielipp
Intel Al Labs
mariano.j.phielipp@intel.com

Three ideas:

« Goal-conditioned GAIL

Carlos Florensa*®
Department of Computer Science
University of California, Berkeley

florensa@berkeley.edu

Pieter Abbeel
Department of Computer Science
University of California, Berkeley

pabbeel@berkeley.edu

- Combining RL and imitation rewards

- Goal relabelling in both agent and expert trajectories



Goal GAIL

Input: Expert trajectories, initial policy parameters ¢, and initial discriminator
weights ¢,,.

Fori=0,1,2,3...do

1. Sample agent trajectories 7; ~ 7 (for each trajectory, we sample a goal and then

run the goal conditioned policy in the environment)
2. Update the discriminator parameters with the gradient:

[E(s,a,g)NDemo[ V¢10g(1—D¢(S, a, g))] + [E(s,a,g)ETi[ V¢10g(D¢(Sa a, g))]

3. Update the policy using a policy gradient computed with the rewards, e.g., the
REINFORCE policy gradient would be:

E(S,a,g)ETi[ Velog Ty lOg ngl.ﬂ(sa a, g)]

end for



Combining imitation and task rewards

r(s,a) = Arga(s,a) + (1 = Dr, 4 (s,a), 1 €[0,1].



Relabelling expert trajectories

If (SJ aJ sJ o g/) is in a demonstration trajectory, we also add (SJ a] SJ L g = Si+k)

Data augmentation on demonstrations!



Relabelling expert trajectories

If (SJ af sf 1 g’) is in a demonstration trajectory, we also add (S] a] SJ T g = Si+k)

Data augmentation on demonstrations!
Relabelling can be used in GCBC, GCBC+HER, GoalGAIL,

Green means the policy visited these goals
VoJ = % ZVaQ¢(a 5,9)Voma(s, 9) policy g

=1
VoLscl0 T) = Vs |a] = molsls 8D

BC

BC with goal relabelling




Algorithm 1 Goal-conditioned GAIL with Hindsight: goal GAIL

1: Input: Demonstrations D = {(sg, al, s, ...,gj)}fzo, replay buffer R = {}, policy m4(s, g).

discount «y, hindsight probability p

while not done do
# Sample rollout
g ~ Uniform(S)
R < R U (sg,ap, S1,...) sampled using 7 (-, g)
# Sample from expert buffer and replay bujfer
{(Sg,ag,stﬂ, } ~ D, {(st,at,stH,g )} ~R
# Relabel agent transitions

9: for each 2, with probability p do

A A ol

10: g' < St g k~Unif{t+1,...,T"}

11: end for

12: # Relabel expert transitions

13: gJ<—st+k,, k' ~ Unif{t +1,...,T7}

14: ’I’? — ]l [st+l —_— gh]

15: 1 « miny Lgarr(Dy, D, R) (Eq.|3)

16: 1= (1—=0dcarL)rl + dcarrlog Dy(al, sk, g")

17: = Fit Q

18: yh =rh + 7Q¢(7r(st+l, g"), st 1, 9" > Use target networks (4 for stability
19: ¢ < ming >, ||Qs(al, sk, g") — yl||

20: # Update Poltcy

21: 0+ =aV,J (Eq.2)

22: Anneal dcarr > Ensures outperforming the expert

23: end while

> Use future HER strategy

> Add annealed GAIL reward




Goal GAIL without actions

Input: Expert trajectories, initial policy parameters 6, and initial discriminator
weights ¢,

Fori=0,1,2,3...do

1. Sample agent trajectories 7; ~ 7y

2. Update the discriminator parameters with the gradient:

[E(s,s’,g)NDemo[ V¢10g(1—D¢(S, s, g))] + E(s,s’,g)éri[ V¢10g(D¢(Sa s, g))]

3. Update the policy using a policy gradient computed with the rewards, e.g., the
REINFORCE policy gradient would be:

[E(S,s’,g)efi[ Velog Ty lOg ngl.ﬂ(sa S/a g)]

end for



GoalGAIL outperforms GAIL and HER

Number of Envireesment Steps (x )

(a) Continuous Four rooms (b) Pointmass block pusher (c) Fetch Pick & Place (d) Fetch Stack Two

Experience replay helps ALL methods

BC without ER

BC with ER
BC+HER without ER
BCo+MER WIth ER

— Qoi hout EF
B8C without ER 8C without ER i the gou th £R
BC with ER 0.4 BC with £R : BC with §
' .
BC+MER without ER BC+HER without ER BC+HER without EF
BC4+HER with ER 4 BC+HER with ER BC+MER with §
).Z
QoalGAIL without ER goalGAIL without ER : goalGAIL without ER
QgoalGAIL with ER goalGAIL with ER / QoalGAIL with ER
Number of Envireament Steps (x 10%) Number of Environment Steps (x 1€

(a) Continuous Four rooms (b) Pointmass block pusher (c) Fetch Pick & Place (d) Fetch Stack Two

https://sites.google.com/view/goalconditioned-il/



https://sites.google.com/view/goalconditioned-il/

Reinforcement and Imitation Learning
for Diverse Visuomotor Skills

Yuke Zhu' Ziyu Wang? Josh Merel* Andrei Rusu? Tom Erez? Serkan Cabi?
Saran Tunyasuvunakool* Janos Kramar? Raia Hadsell? Nando de Freitas? Nicolas Heess?

TComputer Science Department, Stanford University, USA
tDeepMind, London, UK

|deas:
- Combine imitation and task rewards.

- Start episodes by setting the world in states of the demonstration
trajectories.

- Asymmetric actor-critic: the value network takes as input the low-dim
state of the system and the policy is trained from pixels.

- Only scene state info to the discriminator
+ Co-train the policy CNN with auxiliary tasks

- SIm2REAL via domain randomization.



Combining imitation and task rewards

r(s,a) = Arga(s,a) + (1 = Dr, 4 (s,a), 1 €[0,1].



Combining imitation and task rewards

mén max V(D,G) =E,., llogDX)]+E,.,log(1-D(G(2)))]

r(s,a) = Arga(s,a) + (1 = Dr, 4 (s,a), 1 €[0,1].

rean (s, a) = —log(l — D(s, a))



Asymmetric actor-critic

e The value network takes as input the low-dim state of the system (3D
object location and velocities and relative distances between objects and
the gripper) and the policy is trained from pixels directly. Why?

e This means we need to have access to such state information at training
time, but not at test time.



deep visuomotor policy

pixel
observation

proprioceptive
feature

object-centric
feature

CNN

MLP

Q

MLP

LSTM

MLP

(3

LSTM

state prediction
auxiliary tasks

joint
velocity

mo(als)

value
function

Vo (s)

'y

GAIL
Discriminator
(MLP)

discriminator
score

Dy (s,a)
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(e) Pouring liquid
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(f) Order fulfillment

Resetting on demonstation states is extremely helpful!
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(a) Ablation study of model components (b) Model sensitivity to A values

e Learning value function from pixels directly is slow

e Not using the GAIL imitation reward but rather using demos just to start
episodes in demo states is slow

e No task reward (just imitation) seems not to work. Why?
e No auxiliary task: not big problem.

e Not masking arm info from the discriminator creates problems



