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Last lecture
• Behaviour cloning for imitation learning. Assumes access to a set of 

trajectories . Trains a policy 

by minimizing a standard supervised learning objective:

𝒯 = {oj
1, aj

1, oj
2, aj

2, oj
3, aj

3, . . . , oj
T, aj

T, j = 1...T}

2

ℒBC(θ, 𝒯) = 𝔼(s j
t ,aj

t)∼𝒯 [∥aj
t − πθ(sj

t )∥
2
2]



θ * = arg max
θ

𝔼x∼pdata
log pmodel(x |θ)

Maximum Likelihood

Goodfellow, 2016
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θ * = arg max
θ

𝔼x∼pdata
log pmodel(x |θ, c)

extra conditioning information

Maximum Conditional Likelihood

explicit density
(Goodfellow 2016)

Maximum Likelihood

BRIEF ARTICLE

THE AUTHOR

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

1



θ * = arg max
θ

𝔼x∼pdata
log pmodel(x |θ, c)

Maximum Conditional Likelihood
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θ * = arg max
θ

𝔼x∼pdata
log pmodel(x |θ)
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log pmodel(x |θ, c)
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(x − μ(θ, c))⊤Σ−1(x − μ(θ, c))), where Σ = I

Maximum Likelihood-Gaussian with fixed covariance

(Goodfellow 2016)
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θ * = arg max
θ

𝔼x∼pdata
log pmodel(x |θ)

θ * = arg max
θ
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log pmodel(x |θ, c)

Maximum Likelihood-Gaussian with fixed covariance
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e.g. behavior cloning with continuous actions
(Goodfellow 2016)
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BC Maximizes Conditional Likelihood

(Goodfellow 2016)
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BC Maximizes Conditional Likelihood

• Makes the expert actions most likely in the states of the expert trajectories. 
• But what about the states not on the expert trajectories? There the actions 

are unconstrained!
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Figure 1.1: Mismatch between the distribution of training and test inputs in a driving
scenario.

many state-of-the-art software system that we use everyday. Systems based on super-

vised learning already translate our documents, recommend what we should read (Yue

and Guestrin, 2011), watch (Toscher et al., 2009) or buy, read our handwriting (Daumé

III et al., 2009) and filter spam from our emails (Weinberger et al., 2009), just to name a

few. Many subfields of artificial intelligence, such as natural language processing (the un-

derstanding of natural language by computers) and computer vision (the understanding

of visual input by computers), now deeply integrate machine learning.

Despite this widespread proliferation and success of machine learning in various fields

and applications, machine learning has had a much more limited success when applied

in control applications, e.g. learning to drive from demonstrations by human drivers.

One of the main reason behind this limited success is that control problems exhibit

fundamentally di↵erent issues that are not typically addressed by standard supervised

learning techniques.

In particular, much of the theory and algorithms for supervised learning are based on

the fundamental assumption that inputs/observations perceived by the predictor to make

its predictions are independent and always coming from the same underlying distribution

during both training and testing (Hastie et al., 2001). This ensures that after seeing

enough training examples, we will be able to predict well on new examples (at least

in expectation). However, this assumption is clearly violated in control tasks as these

are inherently dynamic and sequential : one must perform a sequence of actions over

time that have consequences on future inputs or observations of the system, to achieve a

goal or successfully perform the task. As predicting actions to execute influence future

inputs, this can lead to a large mismatch between the inputs observed under training

demonstrations, and those observed during test executions of the learned behavior. This

is illustrated schematically in Figure 1.1.

This problem has been observed in previous work. Pomerleau (1989), who trained a
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4 CHAPTER 1. INTRODUCTION

Expert trajectory
Learned Policy

No data on 
how to recover

Figure 1.1: Mismatch between the distribution of training and test inputs in a driving
scenario.

many state-of-the-art software system that we use everyday. Systems based on super-

vised learning already translate our documents, recommend what we should read (Yue

and Guestrin, 2011), watch (Toscher et al., 2009) or buy, read our handwriting (Daumé
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State-action distribution matching objective

• The state-action distribution from the expert 
trajectories and the state-action distribution 
that the agent visits by deploying the policy 
in the environment need to match.

• New solution to the compounding error problem of BC. 
• Let’s see how we can optimize this distribution matching objective.



Title Text

(Goodfellow 2016)

Adversarial Nets Framework

x sampled from 
data

Differentiable 
function D

D(x) tries to be 
near 1

Input noise z

Differentiable 
function G

x sampled from 
model

D

D tries to make 
D(G(z)) near 0,
G tries to make 
D(G(z)) near 1



(Goodfellow 2016)

Adversarial Nets Framework

x sampled from 
data

Differentiable 
function D

D(x) tries to be 
near 1

Input noise z

Differentiable 
function G

x sampled from 
model

D

D tries to make 
D(G(z)) near 0,
G tries to make 
D(G(z)) near 1

Generator G

Discriminator D

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]





(Goodfellow 2016)

DCGAN Architecture

(Radford et al 2015)

Most “deconvs” are batch normalized

A Generator network (DCGAN)



(Goodfellow 2016)

Training Procedure
• Use SGD-like algorithm of choice (Adam) on two 

minibatches simultaneously: 

• A minibatch of training examples 

• A minibatch of generated samples 

• Optional: run k steps of one player for every step of 
the other player.



(Goodfellow 2016)

Adversarial Nets Framework

x sampled from 
data

Differentiable 
function D

D(x) tries to be 
near 1

Input noise z

Differentiable 
function G

x sampled from 
model

D

D tries to make 
D(G(z)) near 0,
G tries to make 
D(G(z)) near 1

Questions: 
• What if the generator maps all noise vectors to a single super 

photorealistic image? 
• What if we train the discriminator till convergence (it is just a supervised 

classifier…) and becomes perfect in distinguishing real from generated 
images? 



A minimax game

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

V(D, G) = ∫x
pdata(x)log D(x)dx + ∫z

pz(z)log(1−D(G(z)))dz

∫x
pdata(x)log D(x)dx + ∫x

pG(x)log(1−D(x))dx

∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx



A better cost function

min
G

𝔼z∼pz(z)[log(1−D(G(z)))]

min
G

𝔼z∼pz(z)[−log(D(G(z)))]

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

max
D

𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

min
D

𝔼x∼pdata(x)[log(1−D(x))] + 𝔼z∼pz(z)[log(D(G(z)))]

Gradients not informative 
when D close to 0
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Optimal discriminator strategy

d
dD(x) (pdata(x)log D(x)+pG(x)log(1 − D(x)) = 0

pdata(x)
1

D(x)
−pG(x)

1
1 − D(x)

= 0

pdata(x)
1

D(x)
= pG(x)

1
1 − D(x)

pdata(x)(1 − D(x)) = pG(x)D(x)

D*(x) =
pdata(x)

pdata(x) + pG(x)

V(D, G) = ∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx

The discriminator assigns values D(x) to each image x. Let’s take the 
derivative to see where the optimum is attained.
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C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼z∼pz(z)[log(1 − D*G(G(z))]
= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼x∼pG(x)[log(1 − D*G(x)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(1 −

pdata(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)] − log 4 + log 4

= 𝔼x∼pdata(x)[log
2pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

2pG(x)
pdata(x) + pG(x)

)] − log 4

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
2

] + 𝔼x∼pG(x)[log
pG(x)

pdata(x) + pG(x)
2

] − log 4

= DKL (pdata(x) | |
pdata(x) + pG(x)

2 ) + DKL (pG(x)∥
pdata(x) + pG(x)

2 ) − log 4

= 2DJSD (pdata(x) | |pG(x)) − log 4

Optimal generator strategy
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Optimal generator strategy

Since DJSD ≥ 0, C(G) ≥ − log 4

C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 2DJSD (pdata(x) | |pG(x)) − log 4

By setting PG(x) = pdata(x) in the equation above, we get:

C(G) = 𝔼x∼pdata(x) log
1
2

+ 𝔼x∼pG(x) log
1
2

= − log 4

Thus generator achieves the optimum when PG(x) = pdata(x) .
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(Goodfellow 2016)

Next Video Frame PredictionCHAPTER 15. REPRESENTATION LEARNING

Ground Truth MSE Adversarial

Figure 15.6: Predictive generative networks provide an example of the importance of
learning which features are salient. In this example, the predictive generative network
has been trained to predict the appearance of a 3-D model of a human head at a specific
viewing angle. (Left)Ground truth. This is the correct image, that the network should
emit. (Center)Image produced by a predictive generative network trained with mean
squared error alone. Because the ears do not cause an extreme difference in brightness
compared to the neighboring skin, they were not sufficiently salient for the model to learn
to represent them. (Right)Image produced by a model trained with a combination of
mean squared error and adversarial loss. Using this learned cost function, the ears are
salient because they follow a predictable pattern. Learning which underlying causes are
important and relevant enough to model is an important active area of research. Figures
graciously provided by Lotter et al. (2015).

recognizable shape and consistent position means that a feedforward network
can easily learn to detect them, making them highly salient under the generative
adversarial framework. See figure 15.6 for example images. Generative adversarial
networks are only one step toward determining which factors should be represented.
We expect that future research will discover better ways of determining which
factors to represent, and develop mechanisms for representing different factors
depending on the task.

A benefit of learning the underlying causal factors, as pointed out by Schölkopf
et al. (2012), is that if the true generative process has x as an effect and y as
a cause, then modeling p(x | y) is robust to changes in p(y). If the cause-effect
relationship was reversed, this would not be true, since by Bayes’ rule, p(x | y)
would be sensitive to changes in p(y). Very often, when we consider changes in
distribution due to different domains, temporal non-stationarity, or changes in
the nature of the task, the causal mechanisms remain invariant (the laws of the
universe are constant) while the marginal distribution over the underlying causes
can change. Hence, better generalization and robustness to all kinds of changes can
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(Goodfellow 2016)

Is the divergence important?

CHAPTER 3. PROBABILITY AND INFORMATION THEORY
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Figure 3.6: The KL divergence is asymmetric. Suppose we have a distribution p(x) and
wish to approximate it with another distribution q(x). We have the choice of minimizing
either DKL(pkq) or DKL(qkp). We illustrate the effect of this choice using a mixture of
two Gaussians for p, and a single Gaussian for q. The choice of which direction of the
KL divergence to use is problem-dependent. Some applications require an approximation
that usually places high probability anywhere that the true distribution places high
probability, while other applications require an approximation that rarely places high
probability anywhere that the true distribution places low probability. The choice of the
direction of the KL divergence reflects which of these considerations takes priority for each
application. (Left)The effect of minimizing DKL(pkq). In this case, we select a q that has
high probability where p has high probability. When p has multiple modes, q chooses to
blur the modes together, in order to put high probability mass on all of them. (Right)The
effect of minimizing DKL(qkp). In this case, we select a q that has low probability where
p has low probability. When p has multiple modes that are sufficiently widely separated,
as in this figure, the KL divergence is minimized by choosing a single mode, in order to
avoid putting probability mass in the low-probability areas between modes of p. Here, we
illustrate the outcome when q is chosen to emphasize the left mode. We could also have
achieved an equal value of the KL divergence by choosing the right mode. If the modes
are not separated by a sufficiently strong low probability region, then this direction of the
KL divergence can still choose to blur the modes.

76

(Goodfellow et al 2016)

Maximum likelihood Reverse KL

Maybe an explanation of why GANs work



The policy network will be our generator, that conditions on the state:

Generative Adversarial Imitation learning

πθ(s) → a



Find a policy  that makes it impossible for a discriminator network to 
distinguish between state-action pairs from the expert demonstrations and state-

action pairs visited by the agent’s policy :

πθ

πθ

Generative Adversarial Imitation learning

r(s, a) = logDϕ(s, a), (s, a) ∼ πθ

The reward for the policy optimization is how well I matched the demonstrator’s 
trajectory distribution, else, how well I confused the discriminator.

min
πθ

𝔼(s,a)∼πθ
[−log(Dϕ(s, a))]

min
Dϕ

𝔼(s,a)∼Demo[log(1−Dϕ(s, a))] + 𝔼(s,a)∼πθ
[log(Dϕ(s, a))]



Input: Expert trajectories , initial policy parameters   and initial discriminator 

weights . 

For i=0,1,2,3… do 

1. Sample agent trajectories  

2. Update the discriminator parameters with the gradient:

θ0
ϕ0

τi ∼ πθi

𝔼(s,a)∼Demo[∇ϕlog(1−Dϕ(s, a))] + 𝔼(s,a)∈τi
[∇ϕlog(Dϕ(s, a))]

3.   Update the policy using a policy gradient computed with the rewards, e.g., the 
REINFORCE policy gradient would be: 

𝔼(s,a)∈τi
[∇θlog πθ log Dϕi+1

(s, a)]

end for

Generative Adversarial Imitation learning
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Case Study: Generative Adversarial Imitation Learning

- demonstrations from TRPO-optimized policy 
- use TRPO as a policy optimizer  
- OpenAI gym tasksGenerative Adversarial Imitation learning

• GAIL: a reinforcement learning method with a reward based on trajectory 
distribution matching between the agent and an expert.  

• BC: reduces imitation learning to supervised learning for individual actions. 
• GAIL performs better than behaviour cloning but it requires MORE 

interactions with the environment.  
• Q:Can BC or GAIL outperform the expert?



Imitation learning for diverse goals

• Pushing to diverse locations 
• Pouring to different bottles 
• Driving to different destinations 
We need a way to communicate the goal during learning of the policy



• Often times we care to learn policies that achieve many related goals  
• For example: push object A to (10,10,10) and to (10,12,10) 
• The two policies  should have many things in common   
• Training such policies jointly may be beneficial

Multi-goal Imitation learning and RL



Universal value function approximators

Universal Value Function Approximators, Schaul et al.

V(s; θ) V(s, g; θ)

• The experience tuples should contain the goal.

π(s; θ) π(s, g; θ)

(s, a, r, s′ ) (s, g, a, r, s′ )

s, g ∈ 𝒮



What should be my goal representation?

• Manual/oracle: 3d centroids of objects, robot joint angles and velocities, 
3d location of the gripper, etc.  

• Learnt: Some feature encoding over images directly

The goal representation is usually the same as your state representation. 
Usually one of the two:

Universal value function approximators

V(s; θ) V(s, g; θ)

π(s; θ) π(s, g; θ) s, g ∈ 𝒮



Goal conditioned behavior cloning

• Assumes access to a set of trajectories

. Trains a policy by minimizing 

a standard supervised learning objective:

𝒯 = {oj
1, aj

1, oj
2, aj

2, oj
3, aj

3, . . . , oj
T, aj

T, gj, j = 1...T}

ℒBC(θ, 𝒯) = 𝔼(s j
t ,aj

t ,gj)∼𝒯 [∥aj
t − πθ(sj

t , gj)∥2
2]



No reward :-(

Goal g
Our reacher at the end of the 

episode (s, g, a,0,s′ )

Goal g’

Our reacher at the end of the episode 

(s, g′ , a, 1, s′ )

reward :-)

Goal relabelling for jointly learning diverse goals

Idea: use failed executions under one goal , as successful executions under 

an alternative goal  (which is where we ended at the end of the episode).

g
g′ 



Hindsight Experience Replay

Idea: use failed executions under one goal , as successful executions under 

an alternative goal  (which is where we ended at the end of the episode).

g
g′ 



RL with goal relabelling

Usually as additional goal 
we pick the goal that this 
episode achieved, and the 
reward becomes non zero

 the states of the current episodeG :

The reward here is ∥st − g∥



• Final: for each state, use the last state reached in the episode as a goal

• Future: for each state, use random 4 states (observed after the state) in 

the same episode as a goal 

How to select states for relabelling



Above 8, the relabelled data are way more than real data, performance 
degrades.

How to select states for relabelling



How to select states for relabelling



No reward :-(

Goal g
Our reacher at the end of the 

episode (s, g, a,0,s′ )

Goal g’

Our reacher at the end of the episode 

(s, g′ , a, 1, s′ )

reward :-)

Goal relabelling for jointly learning diverse goals

In which of the tasks you think goal relabelling will help the most? 
• Picking an object up?  
• Reaching?  
• Pushing an object to a location?  
• All of the above considered jointly?

Idea: use failed executions under one goal , as successful executions under 

an alternative goal  (which is where we ended at the end of the episode).

g
g′ 



Three ideas:


• Goal-conditioned GAIL 


• Combining RL and imitation rewards


• Goal relabelling in both agent and expert trajectories




Input: Expert trajectories , initial policy parameters   and initial discriminator 

weights . 
For i=0,1,2,3… do 

1. Sample agent trajectories  (for each trajectory, we sample a goal and then 

run the goal conditioned policy in the environment) 
2. Update the discriminator parameters with the gradient:

θ0
ϕ0

τi ∼ πθi

𝔼(s,a,g)∼Demo[∇ϕlog(1−Dϕ(s, a, g))] + 𝔼(s,a,g)∈τi
[∇ϕlog(Dϕ(s, a, g))]

3.   Update the policy using a policy gradient computed with the rewards, e.g., the 
REINFORCE policy gradient would be: 

𝔼(s,a,g)∈τi
[∇θlog πθ log Dϕi+1

(s, a, g)]

end for

Goal GAIL



Combining imitation and task rewards

r(s, a) = λrGAIL(s, a) + (1 − λ)rtask(s, a), λ ∈ [0,1] .



Relabelling expert trajectories

If  is in a demonstration trajectory, we also add  (sj
t , aj

t , sj
t+1, gj) (sj

t , aj
t , sj

t+1, g′ = sj
t+k)

Data augmentation on demonstrations!



Relabelling expert trajectories

If  is in a demonstration trajectory, we also add  (sj
t , aj

t , sj
t+1, gj) (sj

t , aj
t , sj

t+1, g′ = sj
t+k)

Green means the policy visited these goals

Data augmentation on demonstrations!

Relabelling can be used in GCBC, GCBC+HER, GoalGAIL, 

BC

BC with goal relabelling

∇θℒBC(θ, 𝒯) = ∇θ𝔼(s j
t ,a j

t ,gj)∼𝒯 [∥aj
t − πθ(s j

t , gj)∥2
2]





Input: Expert trajectories , initial policy parameters   and initial discriminator 

weights . 
For i=0,1,2,3… do 

1. Sample agent trajectories  

2. Update the discriminator parameters with the gradient:

θ0
ϕ0

τi ∼ πθi

𝔼(s,s′ ,g)∼Demo[∇ϕlog(1−Dϕ(s, s′ , g))] + 𝔼(s,s′ ,g)∈τi
[∇ϕlog(Dϕ(s, s′ , g))]

3.   Update the policy using a policy gradient computed with the rewards, e.g., the 
REINFORCE policy gradient would be: 

𝔼(s,s′ ,g)∈τi
[∇θlog πθ log Dϕi+1

(s, s′ , g)]

end for

Goal GAIL without actions



GoalGAIL outperforms GAIL and HER

Experience replay helps ALL methods 

https://sites.google.com/view/goalconditioned-il/

https://sites.google.com/view/goalconditioned-il/


Ideas:

• Combine imitation and task rewards.

• Start episodes by setting the world in states of the demonstration 

trajectories. 

• Asymmetric actor-critic: the value network takes as input the low-dim 

state of the system and the policy is trained from pixels.

• Only scene state info to the discriminator

• Co-train the policy CNN with auxiliary tasks

• Sim2REAL via domain randomization.

Start an episod in a state from a demo trajectory



Combining imitation and task rewards

r(s, a) = λrGAIL(s, a) + (1 − λ)rtask(s, a), λ ∈ [0,1] .



Combining imitation and task rewards

r(s, a) = λrGAIL(s, a) + (1 − λ)rtask(s, a), λ ∈ [0,1] .

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

rGAIL(s, a) = − log(1 − D(s, a))

rGAIL(s) = − log(1 − D(s))



Asymmetric actor-critic

• The value network takes as input the low-dim state of the system (3D 
object location and velocities and relative distances between objects and 
the gripper) and the policy is trained from pixels directly. Why? 

• This means we need to have access to such state information at training 
time, but not at test time.





Resetting on demonstation states is extremely helpful!



• Learning value function from pixels directly is slow 

• Not using the GAIL imitation reward but rather using demos just to start 
episodes in demo states is slow 

• No task reward (just imitation) seems not to work. Why? 

• No auxiliary task: not big problem. 

• Not masking arm info from the discriminator creates problems


