Deep Reinforcement Learning and Control

Determinist PG, Re-parametrized PG

Fall 2021, CMU 10-703

Instructors: Katerina Fragkiadaki Russ Salakhutdinov

Advantage Actor-Critic

- 0. Initialize policy parameters heta and critic parameters ϕ .
- 1. Sample trajectories $\{\tau_i = \{s_t^i, a_t^i\}_{i=0}^T\}$ by deploying the current policy $\pi_{\theta}(a_t | s_t)$.
- 2. Fit value function $V_{\phi}^{\pi}(s)$ by MC or TD estimation (update ϕ)
- 3. Compute action advantages $A^{\pi}(s_t^i, a_t^i) = R(s_t^i, a_t^i) + \gamma V_{\phi}^{\pi}(s_{t+1}^i) V_{\phi}^{\pi}(s_t^i)$

4.
$$\nabla_{\theta} U(\theta) \approx \hat{g} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{i} | s_{t}^{i}) A^{\pi}(s_{t}^{i}, a_{t}^{i})$$

$$5.\theta \leftarrow \theta + \alpha \nabla_{\theta} U(\theta)$$

Policy gradients so far

Policy objective:

$$\max_{\theta} . \ \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right]$$

Advantage actor critic policy gradient:

$$\mathbb{E}_{s \sim d^{\pi_{\theta}}(s), \ a \sim \pi_{\theta}(a|s)} \nabla_{\theta} \log \pi_{\theta}(a|s) [A(s, a; \phi))]$$

Another policy objective

Previous policy objective:

$$\max_{\theta} . \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right]$$

New policy objective:

$$\max_{\theta} \cdot \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\sum_{t=1}^{T} Q(s_t, a_t) \right]$$

Qs:

- Can we backpropagate through the Q function approximator?
- If the policy is deterministic we already know how to do it via the chain rule!

$$\mathbb{E}\sum_{t}\frac{dQ(s_{t},a_{t})}{d\theta} = \mathbb{E}\sum_{t}\frac{dQ(s_{t},a_{t})}{da_{t}}\frac{da_{t}}{d\theta}$$

deterministic node: the value is a deterministic function of its input

stochastic node: the value is sampled based on its input (which parametrizes the distribution to sample from)

$$a = \pi_{\theta}(s)$$

$$\mathbb{E} \sum_{t} \frac{dQ(s_t, a_t)}{d\theta} = \mathbb{E} \sum_{t=1}^{T} \frac{dQ(s_t, a_t)}{da_t} \frac{da_t}{d\theta}$$

The computational graph:

We are following a stochastic behavior policy to collect data. DDPG: Deep Q learning for continuous actions

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process N for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$ Fitting the Q function

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^\mu + (1 - \tau)\theta^{\mu'}$$

end for end for

Another policy objective

Previous policy objective:

$$\max_{\theta} . \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right]$$

New policy objective:

$$\max_{\theta} \cdot \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\sum_{t=1}^{T} Q(s_t, a_t) \right]$$

Qs:

- Can we backpropagate through the Q function approximator?
- If the policy is deterministic we already know how to do it via the chain rule!
- What if the policy is a parametrized Gaussian distribution?

Imagine we knew the reward function $\rho(s, a)$

Deterministic policy

$$a = \pi_{\theta}(s)$$

I want to learn θ to maximize the average reward obtained.

$$\max_{\theta}$$
. $\rho(s_0, a)$

I can compute the gradient with the chain rule.

$$\nabla_{\theta} \rho(s, a) = \frac{d\rho}{da} \frac{da}{d\theta}$$

Stochastic policy

I want to learn θ to maximize the average reward obtained.

$$\max_{\theta}$$
. $\mathbb{E}_a \rho(s_0, a)$

$$\nabla_{\theta} \mathbb{E}_a \rho(s_0, a)$$

Stochastic policy

I want to learn θ to maximize the average reward obtained.

$$\max_{\theta}$$
. $\mathbb{E}_a \rho(s_0, a)$

Likelihood ratio estimator, works for both continuous and discrete actions

$$\mathbb{E}_a \nabla_{\theta} \log \pi_{\theta}(s) \rho(s_0, a)$$

Example: Gaussian policy

I want to learn θ to maximize the average reward obtained.

$$\max_{\theta}$$
. $\mathbb{E}_a \rho(s_0, a)$

Likelihood ratio estimator, works for both continuous and discrete actions

$$\mathbb{E}_a \nabla_{\theta} \log \pi_{\theta}(s) \rho(s_0, a)$$

If σ^2 is constant:

$$\nabla_{\theta} \log \pi_{\theta}(s, a) = \frac{(a - \mu(s; \theta)) \frac{\partial \mu(s; \theta)}{\partial \theta}}{\sigma^{2}}$$

Example: Gaussian policy

- Assume σ fixed (not learned)
- Learn $\sigma(s,\theta)$ one value for all action coordinates (spherical or isotropic Gaussian)
- Learn $\sigma^l(s,\theta), i=1\cdots n$ (diagonal covariance)
- Learn a full covariance matrix $\Sigma(s, \theta)$

Example: Gaussian policy

- Assume σ fixed (not learned)
- Learn $\sigma(s, \theta)$ one value for all action coordinates (spherical or isotropic Gaussian)
- Learn $\sigma^i(s,\theta)$, $i=1\cdots n$ (diagonal covariance)
- Learn a full covariance matrix $\Sigma(s, \theta)$

Instead of: $a \sim \mathcal{N}(\mu(s, \theta), \Sigma(s, \theta))$

We can write: $a = \mu(s, \theta) + z\sigma(s, \theta)$ $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{n \times n})$

Because:
$$\mathbb{E}_{z}(\mu(s,\theta) + z\sigma(s,\theta)) = \mu(s,\theta)$$

 $\operatorname{Var}_{z}(\mu(s,\theta) + z\sigma(s,\theta)) = \sigma(s,\theta)^{2}\mathbf{I}_{n\times n}$

Qs:

- $\max_{\theta} \cdot \mathbb{E}_{a} \rho(s_{0}, a)$
- \max_{a} . $\mathbb{E}_{z}\rho(s_{0},a(z))$

- Does a depend on θ ?
- Does z depend on θ ?

Instead of: $a \sim \mathcal{N}(\mu(s, \theta), \Sigma(s, \theta))$

We can write: $a = \mu(s, \theta) + z\sigma(s, \theta)$ $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{n \times n})$

What do we gain?

$$\nabla_{\theta} \mathbb{E}_{z} \left[\rho \left(a(\theta, z), s \right) \right] = \mathbb{E}_{z} \frac{d\rho \left(a(\theta, z), s \right)}{da} \frac{da(\theta, z)}{d\theta}$$

$$\frac{da(\theta, z)}{d\theta} = \frac{d\mu(s, \theta)}{d\theta} + z \frac{d\sigma(s, \theta)}{d\theta}$$

$$\max_{\theta} \cdot \mathbb{E}_{a} \rho(s_{0}, a)$$

 \max_{θ} . $\mathbb{E}_{z}\rho(s_{0}, a(z))$

Instead of: $a \sim \mathcal{N}(\mu(s, \theta), \Sigma(s, \theta))$

We can write: $a = \mu(s, \theta) + z\sigma(s, \theta)$ $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{n \times n})$

What do we gain?

$$\nabla_{\theta} \mathbb{E}_{z} \left[\rho \left(a(\theta, z), s \right) \right] = \mathbb{E}_{z} \frac{d\rho \left(a(\theta, z), s \right)}{da} \frac{da(\theta, z)}{d\theta}$$

$$\frac{da(\theta, z)}{d\theta} = \frac{d\mu(s, \theta)}{d\theta} + z \frac{d\sigma(s, \theta)}{d\theta}$$

$$\max_{\theta}$$
. $\mathbb{E}_a \rho(s_0, a)$

max.

$$\mathbb{E}_z \rho(s_0, a(z))$$

Sample estimate:

$$\nabla_{\theta} \frac{1}{N} \sum_{i=1}^{N} \left[\rho \left(a(\theta, z_i), s \right) \right] = \frac{1}{N} \sum_{i=1}^{N} \frac{d\rho \left(a(\theta, z), s \right)}{da} \frac{da(\theta, z)}{d\theta} \big|_{z=z_i}$$

Likelihood ratio grad estimator:

$$\mathbb{E}_a \nabla_{\theta} \log \pi_{\theta}(s, a) \rho(s, a)$$

Pathwise derivative:

$$\mathbb{E}_{z} \frac{d\rho\left(a(\theta,z),s\right)}{da} \frac{da(\theta,z)}{d\theta}$$

The pathwise derivative uses the derivative of the reward w.r.t. the action!

deterministic node: the value is a deterministic function of its input

stochastic node: the value is sampled based on its input (which parametrizes the distribution to sample from)

$$a = \pi_{\theta}(s)$$

$$\mathbb{E} \sum_{t} \frac{dQ(s_t, a_t)}{d\theta} = \mathbb{E} \sum_{t=1}^{T} \frac{dQ(s_t, a_t)}{da_t} \frac{da_t}{d\theta}$$

Re-parametrized Policy Gradients

stochastic node: the value is sampled based on its input (which parametrizes the distribution to sample from)

$$a = \mu(s; \theta) + z\sigma(s; \theta)$$

Re-parametrized Policy Gradients

stochastic node: the value is sampled based on its input (which parametrizes the distribution to sample from)

• Reparameterize: $a_t = \pi(s_t, z_t, \theta)$. z_t is noise from fixed distribution

$$\mathbb{E}\sum_{t}\frac{dQ(s_t,a_t)}{d\theta} = \mathbb{E}\sum_{t=1}^{T}\frac{dQ(s_t,a_t)}{da_t}\frac{da_t}{d\theta} = \mathbb{E}\sum_{t=1}^{T}\frac{dQ(s_t,a_t)}{da_t}\left(\frac{d\mu(s_t;\theta)}{d\theta} + z_t\frac{d\sigma(s_t;\theta)}{d\theta}\right)$$

Stochastic Value Gradients V0

```
for iteration=1, 2, . . . do 
 Execute policy \pi_{\theta} to collect T timesteps of data 
 Update \pi_{\theta} using g \propto \nabla_{\theta} \sum_{t=1}^{T} Q(s_t, \pi(s_t, z_t; \theta)) 
 Update Q_{\phi} using g \propto \nabla_{\phi} \sum_{t=1}^{T} (Q_{\phi}(s_t, a_t) - \hat{Q}_t)^2, e.g. with \mathsf{TD}(\lambda) end for
```

Computing Gradients of Expectations

When the variable w.r.t. which we are differentiating appears inside the expectation:

$$\nabla_{\theta} \mathbb{E}_{x \sim P(x)} f(x(\theta)) = \mathbb{E}_{x \sim P(x)} \nabla_{\theta} f(x(\theta)) = \mathbb{E}_{x \sim P(x)} \frac{df(x(\theta))}{dx} \frac{dx}{d\theta}$$

• When the variable w.r.t. which we are differentiating appears in the distribution: $\nabla_{\theta} \mathbb{E}_{x \sim P_{\rho}(x)} f(x)$

Likelihood ratio gradient estimator:

$$\mathbb{E}_{x \sim P_{\theta}(x)} \nabla_{\theta} \log P_{\theta}(x) f(x)$$

Re-parametrized gradient for Gaussian distributions:

$$\nabla_{\theta} \mathbb{E}_{z \sim \mathcal{N}(0, I)} f(x(z, \theta)) = \mathbb{E}_{z \sim \mathcal{N}(0, I)} \frac{df}{dx} (\frac{d\mu(\theta)}{d\theta} + z \frac{d\sigma(\theta)}{d\theta})$$