Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control

Determinist PG, Re-parametrized PG

Fall 2021, CMU 10-/03

Instructors:
Katerina Fragkiadaki
Russ Salakhutdinov

Advantage Actor-Critic

0. Initialize policy parameters @ and critic parameters ¢ .
1. Sample trajectories {7; = {Sti, ati ,'T=o} by deploying the current policy my(a, | s,) .

2. Fit value function Vg(s) by MC or TD estimation (update ¢)
3. Compute action advantagesA”(Sti, ati) = R(Sti, ati) + }/Vg(stiﬂ) — Vg(sti)
| NI
4.V,UO) ~ § = — Vlog my(al| sHA™(s!, a!
9()8 szege(tlz) (t z)

=1 =1

5.0 — 0+ aV,U(0)

Policy gradients so far

Policy objective:

HAX - Eovpya R(@)

Advantage actor critic policy gradient:

[ESNd”H(S), a~mnpy(als) Vﬁlog 71'9(61 | S) [A(S, a, ¢))]

Another policy objective

Previous policy objective:

HAX - Eovpya R(@)

New policy objective:

T
max . _TNPQ(T) Z Q(St’ at)
=1
Qs:

e Canwe backpropagate through the Q function approximator?
e |f the policy is deterministic we already know how to do it via the chain rule!

- Z dQ(S, a,) Z dQ(st a,) dat

5 4

Deep Deterministic Policy Gradients

ar

dy(s,, a,)
> do

[

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

] Z dQ(s,, a,) da,
da, doO

a = my(s)

=1 !

Deep Deterministic Policy Gradients

The computational graph:

We are following a stochastic behavior policy to collect data.
DDPG :Deep Q learning for continuous actions

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Deep Deterministic Policy Gradients

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|#%) and actor y(s|6*) with weights §< and 6+,
Initialize target network Q' and u/ with weights 9 « 69, 9#° + 9+
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s,
fort=1,Tdo
Select action a; = u(s¢|6*) + N; according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s; 1
Store transition (sy, a;, 74, S¢+1) in R
Sample a random minibatch of N transitions (s;, a;, 7, S;+1) from R
Set y; = r; + YQ' (Siv1, 1 (5i410*)|09) . :
Update critic by minimizing the loss: L = + 3. (y: — Q(s:, a:/09))? Fitting the Q function
Update the actor policy using the sampled policy gradient:

Si

1
VQ#J ~ N ;VCLQ(S) a’loQ)|s=8i,a=u(si)v9”p’(s|0u)

Update the target networks:
09 «— 769 + (1 —7)9°
O — T + (1 — 7)o"

end for
end for

Another policy objective

Previous policy objective:

HAX - Eovpya R(D)]

New policy objective:

T
max . _TNPQ(T) Z Q(St’ at)
=1
Qs:

e Can we backpropagate through the Q function approximator?

e If the policy is deterministic we already know how to do it via the chain rule!
e What if the policy is a parametrized Gaussian distribution?

Imagine we knew the reward function p(s, a)

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

Deterministic policy

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn @ to maximize the average
reward obtained.

max. p(sy, a)
0

| can compute the gradient with the chain rule.

dp da
a = mys) Vop(s,a) = d_ZE

Stochastic policy

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn @ to maximize the average
reward obtained.

max. [E_p(sy, a)
0

VQ[Eap(SOa CZ)

Stochastic policy

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn @ to maximize the average
reward obtained.

max. [E_p(sy, a)
0

Likelihood ratio estimator, works for both
continuous and discrete actions

E, Vglog my(s)p(sy, @)

Example: Gaussian policy

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn @ to maximize the average
reward obtained.

max. [E_p(sy,a)
0

Likelihood ratio estimator, works for both
continuous and discrete actions

E, Volog my(s)p(so, @)

If 62 is constant:
ou(s; 0)
(a — u(s; 0)—

G2

Vglog ﬂ'g(s, (1) —

Example: Gaussian policy

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

We can either:

e Assume o fixed (not learned)

e Learno(s, 8) one value for all action coordinates
(spherical or isotropic Gaussian)

o Learnc'(s,®),i = 1---n (diagonal covariance)

» Learn afull covariance matrix 2(s, 0)

Example: Gaussian policy

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

We can either:

e Assume o fixed (not learned)

e Learno(s, &) one value for all action coordinates
(spherical or isotropic Gaussian)

o Learnc'(s,®),i = 1---n (diagonal covariance)

» Learn afull covariance matrix 2(s, 0)

Re-parametrization for Gaussian

Instead of:a ~ A (u(s, 0), 2(s, 0))

We can write: a = (s, 0) + zo(s,0) z ~ A (0,1)

Because: [E_(u(s, 0) + zo(s, 0)) = u(s, 0)
Var,(u(s, 0) + zo(s, 0)) = o(s, 6’)21

nxn

Qs:

0 3 - Does a depend on 0 ?

max. [E_p(sy, a(z)) - Does zdependon 6 ?

Re-parametrization for Gaussian

Instead of:a ~ A (u(s, 0), 2(s, 0))

We can write: a = u(s, 0) + zo(s,8) z ~ N (0, Inxn)

What do we gain?
V,E. |p (a0, z),s)] —E,

da(0,z) du(s,0) do(s,0)
0 40 T a0

dp (a(0,2),5) da(0,z)
da do

Re-parametrization for Gaussian

Instead of:a ~ A (u(s, 0), 2(s, 0))

We can write: a = u(s, 0) + zo(s,8) z ~ N (0, Inxn)

What do we gain?

_ o (a(6.2)
Vol |p (a(o, Z),S>] = [, p((6.2).5) da(9,2)

da do

da(0,z) du(s,0) | do(s, 0)

= - 2
do do do
max. [E_p(sy,a) Sample estimate:
0
& & 1, dp (a®.2).5) da(o. 2)
Vo 2 P (a(Qz)s]—Ng — e

max. [E_p(sy, a(z)) i=1

Re-parametrization for Gaussian

Likelihood ratio grad estimator:

VA AN

i dp (a(0,2),5) da(6, z)
2 da df

= Vlog my(s,a)p(s, a)

Deep Deterministic Policy Gradients

ar

dy(s,, a,)
> do

[

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

] Z dQ(s,, a,) da,
da, doO

a = my(s)

=1 !

Re-parametrized Policy Gradients

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

a = pu(s;0) + zo(s;0)

Learning continuous control by stochastic value gradients, Hees et al.

Re-parametrized Policy Gradients

0

deterministic node: the value is a
deterministic function of its input
I stochastic node: the value is sampled
based on its input (which parametrizes
o the distribution to sample from)

e Reparameterize: a, = n(s,, z,, 0). z, 1S noise from fixed distribution

0

5

dQ(s, a,)
. Z do

!

a = u(s;0)+ zo(s;0)
I

L dQ(st, a) da, dQ(s,, a) [dus;: 9) da(sl, 0)
=E), a9 E) < d0 d0 >

=1 Ay =1 Ay

Stochastic Value Gradients VO

for iteration=1,2,... do
Execute policy my to collect T timesteps of data

Update g using g o< Vo 3.7 Q(s¢, 7(se, z:; 0))

Update Qg using g o< Vo 3.0 (Qq(se, a:) — Q¢)?, e.g. with TD()\)
end for

Computing Gradients of Expectations

When the variable w.r.t. which we are differentiating appears inside the
expectation:

df(x(0)) dx
dx db

VQEXNP(x)f (X(H)) — [ExNP(x) VQf (X(@)) — [EXNP()C)

> When the variable w.r.t. which we are differentiating appears in the
distribution: Ve _XNPg(x)f(x)

Likelihood ratio gradient estimator:

—x~Py(x) Vﬁlog P Q(X)f (.X)
Re-parametrized gradient for Gaussian distributions:

df dud) do(0)

7 _Z~/V(0J)f(x(z’ 0)) = [Ez~/l/(0,l) dx(do i do

