Visual Navigation

Deep Reinforcement Learning and Control

Fall 2021, CMU 10703

Learning Behaviors

Learning to map sequences of observations to actions, for a particular goal

Physical Intelligence

Agent needs to move in the world physically. Current actions affect future observations. Require Spatial and Semantic Understanding.

Navigation

Goal-conditioned Navigation

- Convenient for humans
- Compositionality

Goal-conditioned Navigation

Navigation Tasks

Known goal location

- Require efficient navigation to the goal
- ► Tasks
 - ▶ Pointgoal [1, 2, 3]
 - Language Instructions describing path to goal [4]

Anderson et al. *arXiv:1807.06757*, 2018.
 Mirowski et al. In *NeurIPS*, 2018.
 Savva et al. arXiv:1712.03931, 2017.
 Anderson et al. In *CVPR*, 2018.

Navigation Tasks

Known goal location

- Require efficient navigation to the goal
- ► Tasks
 - ▶ Pointgoal [1, 2, 3]
 - Language Instructions describing path to goal [4]

[1] Anderson et al. *arXiv:1807.06757*, 2018.
 [2] Mirowski et al. In *NeurIPS*, 2018.
 [3] Savva et al. arXiv:1712.03931, 2017.
 [4] Anderson et al. In *CVPR*, 2018.
 [5] Chen et al. *ICLR*, 2019.

Unknown goal location

- Require exhaustive exploration
- ► Tasks
 - Exploration: Maximize explored area [5]
 - Object/Area Goal [3, 6, 7]
 - Semantic Goal Navigation [8]
 - Embodied Question Answering [9, 10]

[6] Lample et al. In AAAI, 2017.
[7] Mirowski et al. ICLR, 2017.
[8] Chaplot et al. AAAI, 2018.
[9] Gordon et al. CVPR, 2018.
[10] Das et al. CVPR, 2018.

Desirable Characteristics of a Navigation model

- Effective at both types of Navigation tasks:
 - Known goal location (Pointgoal) and
 - Unknown goal location (Exploration)
- ► Generalization: domains, task, goals
- Sample efficiency

Limitations of Classical SLAM

- ► Generalization
 - Robustness to environment conditions [Maddern et al. 2016]
 - Robustness to dynamic objects [Zou and Tan, 2012]
 - ▶ Failure cases of keypoint tracking [Cadena et al. 2016]
- Passiveness
 - Unable to decide the actions taken by the agent in order to map the environment or localize as accurately and efficiently as possible.

Deep RL?

[Lample & Chaplot, 2016]

[Mirowski et al. 2017]

Limitations of "end-to-end" Deep RL

- Ineffective at long-term planning
- Sample inefficiency
- Poor transferability

Navigation Tasks

Exploration

Exploration

- How to efficiently explore an unseen environment?
- Limitations of end-to-end reinforcement learning
 - Learning about mapping, pose-estimation and path-planning in expensive
 - Sample inefficiency
 - Poor generalization
- Our solution:
 - Incorporating the strengths of learning
 - Modular and hierarchical system

Predicted Map and Pose

Preview: Visual Navigation in the Real World

Observation

Exploration in Gibson Environment

Active Neural SLAM: Overview

Neural SLAM Module

Domain Generalization: Matterport3D

Exploration Results

*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19

Goal-conditioned Navigation

Image	e Goal

Object Goal	Language Goal
Chair	Blue Chair
TV	Largest TV
Sofa	White Sofa

Point-Goal Navigation

Point-Goal Navigation

- Objective: Navigate to goal coordinates
- Metric: Success weighted by invers $\frac{1}{N} \sum_{i=1}^{N} Success * \frac{ShortestPathLength}{PathLength}$ • Global Policy -> always gives the point goal as the long-term goal

Harder Datasets

• Hard-GEDR

- Higher Geodesic to Euclidean distance ratio (GEDR)
- Avg GEDR 2.5 vs 1.37, minimum GEDR is 2

• Hard-Dist

- Higher Geodesic distance
- Avg Dist 13.5m vs 7.0m, minimum Dist is 10m

Point-Goal Navigation

Gibson

*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17

Navigation Tasks

Object Goa	I

Chair	
ΤV	
Sofa	

Language Goal

Blue Chair Largest TV White Sofa

Semantic Priors and Common-Sense

- Humans use semantic priors and common-sense to explore and navigate everyday
- Most navigation algorithms struggle to do so

Object Goal Navigation using Goal-oriented Semantic Exploration Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta, Ruslan Salakhutdinov, NeurIPS 2020

Topological Maps

Topological Graph Representation

Observation

• Selected Ghost Node

Goal Image

- Nodes: areas
- **Regular nodes**: Explored areas
- Ghost nodes: Unexplored areas

Topological Graph Representation

Observation

Goal Image

• Selected Ghost Node

- Nodes: areas
- **Regular nodes**: Explored areas
- Ghost nodes: Unexplored areas
- *Edges*: Spatial relationship between nodes

Regular NodesGhost Nodes

6

Agent's Current Node

Neural Topological SLAM

Observation

Local Map (Metric)

Local Map (Metric)

-1910-1910

*

0002

Local Map (Metric)

Local Map (Metric)

Goal Image

Local Map (Metric)

Global Graph Map (Topological)

Local Map (Metric)

Goal Image

Global Graph Map (Topological)

Internet vs Embodied Data

Static Internet Data

Active Embodied Data

Using Internet models for Embodied Agents

False positives

False negatives

Savva et al, Habitat: A platform for embodied AI research, ICCV 2019

Embodied Perception

Active Embodied data

Embodied Perception

Active Embodied data

Perception-Action Loop

Pathak et al, Learning instance segmentation by interaction, 2018 Jang et al, Grasp2vec: Learning object representations from self-supervised grasping, 2018 Eitel et al, Self-supervised transfer learning for instance segmentation through physical interaction, 2019 Fang et al., Move to See Better: Self-Improving Embodied Object Detection, 2021

SEAL: Self-supervised Embodied Active Learning

SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency Devendra Chaplot, Murtaza Dalal, Saurabh Gupta, Jitendra Malik, Russ Salakhutdinov, NeurIPS 2021

SEAL: Self-supervised Embodied Active Learning

Both phases do not require any additional labelled data

SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency Devendra Chaplot, Murtaza Dalal, Saurabh Gupta, Jitendra Malik, Russ Salakhutdinov, NeurIPS 2021

3D Semantic Map

 $M = K \times L \times W \times H$

3D Semantic Mapping

Gainful Curiosity

SEAL: Self-supervised Embodied Active Learning

Instance label for each pixel is obtained using ray tracing based on the agent's pose

Pretrained Mask-RCNN Predictions

Perception Model (Mask RCNN)

SEAL: Self-supervised Embodied Active Learning

	Action	Perception
Generalization	Train	Train
Specialization	Train	Train + 1 episode test

Dataset

- Gibson dataset: 25 training and 5 test scenes
- 6 object categories: chair, couch, bed, toilet, TV, potted plant.
- Training Set: randomly sample 2500 images (500 per test scene)
- Evaluation Set: randomly sample 12,500 images (500 per training scene)
- Report bounding box and mask AP50 scores for detection and instance segmentation

Results

	Gene	ralization	Specialization	
Method	Object Detection	Instance Segmentation	Object Detection	Instance Segmentation
Pretrained Mask-RCNN	34.82	32.54	34.82	32.54
Random Policy + Self-training [51]	33.41	31.89	34.11	31.23
Random Policy + Optical Flow [22]	33.97	32.34	34.33	32.22
Frontier Exploration [52] + Self-training [51]	33.78	32.45	33.29	32.50
Frontier Exploration [52] + Optical Flow [22]	35.22	31.90	34.19	32.12
Active Neural SLAM [10] + Self-training [51]	34.35	31.20	34.84	32.44
Active Neural SLAM [10] + Optical Flow [22]	35.85	32.22	35.90	33.12
Semantic Curiosity [11] + Self-training [51]	35.04	32.19	35.23	32.88
Semantic Curiosity [11] + Optical Flow [22]	35.61	32.57	35.71	33.29
SEAL	40.02	36.23	41.23	37.28

EIF: Embodied Instruction Following: ALFRED

Instruction: place a cold lettuce slice in a waste basket.

RGB	Completed Subgoals X PickUp, Knife
	X Slice, Lettuce
	X Put, Knife, Sink
	X PickUp SlicedLettuce
	X Open, Fridge
	X Put, SlicedLettuce, Fridge
	X Close, Fridge
	X Open, Fridge
	X PickUp, SlicedLettuce
	X Close, Fridge
	X Put, SlicedLettuce, GarbageCan

Predicted Action RotateLeft_90

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks

FILM: Following Instructions in Language with Modular Methods

FILM: Following Instructions in Language with Modular Methods So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar, Yonatan Bisk, Ruslan Salakhutdinov

FILM: Following Instructions in Language with Modular Methods

Instruction: place a cold lettuce slice in a waste basket.

RGB	Semantic	Мар	Completed Subgoals
			X Slice, Lettuce X Put, Knife, Sink X PickUp SlicedLettuce
			X Open, Fridge X Put, SlicedLettuce, Fridge
			X Open, Fridge X PickUp, SlicedLettuce
		•	X Close, Fridge X Put, SlicedLettuce, GarbageCan
Predicted Action			RotateLeft_90

65

Perception-Action Loop

Explicit Semantic Mapping

Time Navigable Area 0: chair 1: couch 2: potted plant 3: bed 4: toilet 5: tv 6: dining-table 7: oven 8: sink 9: refrigerator 10: book 11: clock 12: vase 13: cup 14: bottle

Chaplot et al, . Object Goal Navigation using Goal-Oriented Semantic Exploration. NeurIPS-20

Explicit Semantic Mapping

Chaplot et al, . Object Goal Navigation using Goal-Oriented Semantic Exploration. NeurIPS-20

Results: Object Goal Navigation

Method	Success	SPL
SemExp [9]	0.544	0.199
SemExp + SEAL (Gen.)	0.611	0.323
SemExp + SEAL (Spec.)	0.627	0.331

Simulation to Real

Games

ViZDoom

[CL AAAI-17]

[CMPRS AAAI-18]

[CPS ICLR-18]

[PCZS CVPR-18 (w)]

Reconstructed simulation

Habitat (Gibson, MP3D)

[CGSGG ICLR-20]

[CSGG CVPR-20]

Physical Domain Gap

Visual

Domain Gap

Real-world

Simulation to Real

- Physical Domain Gap
 - Actuation noise models
 - Sensor noise models
- Visual Domain Gap
 - Image Translation
 - Policy-based

|--|

LoCoBot

PyRobot is a light weight, high-level interface which provides hardware independent APIs for robotic manipulation and navigation. This repository also contains the low-level stack for LoCoBot, a low cost mobile manipulator hardware platform.

- What can you do with PyRobot?
- Installation
- Getting Started
- The Team
- Citation
- License
- Future features

What can you do with PyRobot?

pyrobot.org

locobot.org

Simulation to Real

Building Intelligent Agents

Navigate Autonomously Localize and Plan Multi-modal Input Perceptive Human Speech Reason & Understand Language Recognize objects

