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Learning Behaviors

Observation Action

Learning to map sequences of observations to actions,
for a particular goal
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Physical Intelligence

altle

Action

Observations

Environment

Agent needs to move in the world physically.
Current actions affect future observations.
Require Spatial and Semantic Understanding.
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Goal-conditioned Navigation
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Goal-conditioned Navigation

- End-to-end Reinforcement Learning \
'S
¥
Sl @ I Reward
Observations
Goal ——— — Reward
K Neural Network Actions j
Train
Go to the short red torch Language Goal
Go to the blue keycard
Go to the largest yellow object
Go to the green object Blue Chair
Largest TV
White Sofa
Test
Go to the tall green torch
Go to the red keycard « Convenient for humans
Go to the green torch Go to the smallest blue object

- Compositionality
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Navigation Tasks

Known goal location
» Require efficient navigation to the goal
» Tasks

> Pointgoal [1, 2, 3]

» Language Instructions describing
path to goal [4]

[1] Anderson et al. arXiv:1807.06757, 2018.
[2] Mirowski et al. In NeurlPS, 2018.

[3] Savva et al. arXiv:1712.03931, 2017.

[4] Anderson et al. In CVPR, 2018.
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Navigation Tasks

Known goal location Unknown goal location
» Require efficient navigation to the » Require exhaustive exploration
goal » Tasks
> Tasks > Exploration: Maximize explored area [5]
> Pointgoal [1, 2, 3] > Object/Area Goal [3, 6, 7]
> Language Instructions describing > Semantic Goal Navigation [§]

path to goal [4] » Embodied Question Answering [9, 10]

[1] Anderson et al. arXiv:1807.06757, 2018. [6] Lample et al. In AAAI, 2017.
[2] Mirowski et al. In NeurlPS, 2018. [7] Mirowski et al. ICLR, 2017.
[3] Savva et al. arXiv:1712.03931, 2017. [8] Chaplot et al. AAAI, 2018.
[4] Anderson et al. In CVPR, 2018. [9] Gordon et al. CVPR, 2018.

[5] Chen et al. ICLR, 2019. [10] Das et al. CVPR, 2018.
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Desirable Characteristics of a Navigation model

» Effective at both types of Navigation tasks:
> Known goal location (Pointgoal) and

» Unknown goal location (Exploration)
» Generalization: domains, task, goals

» Sample efficiency
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Limitations of Classical SLAM

» Generalization

> Robustness to environment conditions [Maddern et al. 2016]
> Robustness to dynamic objects [Zou and Tan, 2012]
> Failure cases of keypoint tracking [Cadena et al. 2016]

» Passiveness

» Unable to decide the actions taken by the agent in order to map the environment or
localize as accurately and efficiently as possible.
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Deep RL?

Large static maze

[Lample & Chaplot, 2016] [Mirowski et al. 2017]
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Limitations of “end-to-end” Deep RL

» Ineffective at long-term planning
» Sample inefficiency

» Poor transferability
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Navigation Tasks

Point Goal Image Goal Object Goal Language Goal
Chair Blue Chair
TV Largest TV
Sofa White Sofa

(X ’ y) coordinate

Require exploring the environment
to find the goal
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Exploration
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Exploration

e How to efficiently explore an unseen environment?
R T T — - \‘ 3
7 GeRu EREA ¥

* Limitations of end-to-endg N

* Learning about ms ‘f Sy
and pat

e Sample

* Poor genera
* Qur solution:

e |ncorporating the enhf learning

* Modular and hierarchical system
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Preview: Visual Navigation in the Real World

Observation Predicted Map and Pose
- .
Third-gggn view
L . '
. —




Carnegie Mellon University

Exploration in Gibson Environment

Observation | Predicted Map and Pose
Ground Truth

® (long-Term Goal
|| Explored Area

- Correct Map prediction

D Incorrect Map prediction

—— Agent Trajectory prediction

P> Agent Pose prediction

- True Map

P> Agent True Pose

% —— Agent True Trajectory
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Active Neural SLAM: Overview

$ Pose Estimate (&,) i
' 2 Global Policy B

Map (m,) N
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Neural SLAM Module

Sensor Pose Egocentric Pro;j.

v (\/
o\
Pose Estimate €/\>

Map (m,_;)

Neural SLAM )

Observation (s,_;)

v

Channel

Relative Pose

Pool

Pose Estimator

Sensor Pose

Pose Estirmrate

Geocentric Pro;j.

Map (m,)
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Domain Generalization: Matterport3D

Observation Predicted Map and Pose
Ground Truth ® Long-Term Goal

|| Explored Area

- Correct Map prediction

D Incorrect Map prediction

—— Agent Trajectory prediction
& ‘% P> Agent Pose prediction
P
—— | True Map
P P> Agent True Pose

—— Agent True Trajectory
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Exploration Results

RL + 3LConv [1]
RL + Res18
RL + Res18 + AuxDepth [2]

RL + Res18 + ProjDepth [3]

{Active Neural SLAM

% Coverage Coverage (mz)
73.7 47,987
74.7 49,453
52,130
/8,9 55,032
72,747 :
25 o 5 o o 100
Gibson

Domain Generalization

*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19
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Goal-conditioned Navigation

4 : 4 i
Point Goal Image Goal Object Goal Language Goal
Chair Blue Chair
TV Largest TV
Sofa White Sofa

Ek(.)C ’ y) coordinatej
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Point-Goal Navigation
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Point-Goal Navigation

e Objective: Navigate to goal coordinates

 Metric: Success weighted by invers \L-\.Nﬂﬁ

ShortestPathLengi "‘5 -
— Z Success * ,

e Global Policy -> always gives t 4_
the long-term goal
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Harder Datasets

* Hard-GEDR
* Higher Geodesic to Euclidean distance ratio (GEDR)
e Avg GEDR 2.5 vs 1.37, minimum GEDR is 2

e Hard-Dist
e Higher Geodesic distance
* Avg Dist 13.5m vs 7.0m, minimum Dist is 10m

Geodesic Distance

--------- Euclidean Distance
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Point-Goal Navigation

MP3D
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Results

SPL Success
Random [0 0.000
( Reinforcement RL + Blind }0,006 0.008
Learning RL + 3LConv [1] |0,006 0.006
RL + Res18 10,003 0.004
RL + Res18 + AuxDepth [2] § 0,011 0.013
RL + Res18 + ProjDepth [3] |0,004 0.008

‘ Imitation IL + Res18 0,359 ]
| Learning IL + CMP [4] 0,318 0,369

" Active Neural SLAM (ANS) 0.662

| Ours ANS + Task Transfer ‘m 0.665 }
0 0,225 0,45 0,675 0,9

Hard-Dist

*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17
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Navigation Tasks

: .~ "y :
Point Goal Image Goal Object Goal Language Goal
Chair Blue Chair
TV Largest TV
Sofa White Sofa

(X ’ y) coordinate
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Semantic Priors and Common-Sense

mag e Humans use semantic priors

e and common-sense to
———hl explore and navigate
everyday

e Most navigation algorithms
struggle to do so

Object Goal Navigation using Goal-oriented Semantic Exploration
Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta, Ruslan Salakhutdinov, NeurlPS 2020
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Topological Maps
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Topological Graph Representation

@ Selected Ghost Node

Goal Image

' * Nodes: areas
/! * Regular nodes: Explored areas
o  Ghost nodes: Unexplored areas

© Agent’s Current Node

© Regular Nodes
@ Ghost Nodes
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Topological Graph Representation

Observation

Relative ™.
Position

@ Selected Ghost Node

© Agent’s Current Node

© Regular Nodes
@ Ghost Nodes

33

Goal Image

* Nodes: areas
* Regular nodes: Explored areas
 Ghost nodes: Unexplored areas

 Edges: Spatial relationship between
nodes



Carnegie Mellon University

Neural Topological SLAM

Pose Estimate Pose Estimate (X,)
< 78 - -
€> €> Global Policy Short-term Local Policy
Map (m,_,) Map (m,)

—

Graph (Gt—l)

Graph Update

(ou)

Global Policy Subgoal ( Local Policy ¥s) + (¢}
p) ©

Navigation action (a,)

ee)

( GP) Directions

A «

Image Obs (/)

Goal Image ()

* updates the topological
| map as it receives 3
observations

samples takes navigational actions
subgoals ~ toreach the subgoal
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Observation Goal Image

Global Graph Map (Topological)

V— S 29 @ Goal Location

@ Node Locations

Ghost nodes

® Selected o
Ghost node

Agent

trajectory

Agent *
l>/ocen.‘ion A

teay




Observation

Local Map (Metric)

Goal Image

Global Graph Map (Topological)

r
s f
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V— S 3 O @ Goal Location

@ Node Locations

Ghost nodes

® Selected o
Ghost node

...... Agent El
trajectory ‘

Agent :‘
l>/ocen.‘ion A




Observation
-

Local Map (Metric)

Goal Image

Global Graph Map (Topological)
V— —_ 4 5 @ Goal Location

@ Node Locations

Ghost nodes

Selected
® Ghost node

...... Agent
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Observation Goal Image

Local Map (Metric) Global Graph Map (Topological)
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Local Map (Metric)

Y

Goal Image

Global Graph Map (Topological)
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Obervation

T

Goal Image

Carnegie Mellon University

Global Graph Map (Topological)

@ Goal Location

@ Node Locations

Ghost nodes

Selected
® Ghost node

Agent

trajectory
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Observation Goal Image

-.*. A.vn‘.

Local Map (Metric) Global Graph Map (Topological)

@ Goal Location

@ Node Locations

Ghost nodes

Selected
® Ghost node

Agent

5 trajectory
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Re S u |tS Robustness to
Pose Noise
RGBD RGBD
\ RGB RGBD (No Noise) (No Stop)
e LSTM + Imitation 0,10 0,14 0,15 0,18
LSTM + RL 0,10 0,13 0,14 0,17
: : - 5 -
Modular ccupancy maps +
Motrio Maps il NN 0,26 0,31 024
Active Neural SLAM 0,23 0,29 0,35 0,39 ™
% 4
: Neural Topological
Topological
Maps SLAM 0,38 0,43 0,45 0,60 v

)

Map based
methods are
better than
vanilla learning
methods even in
presence of
noise

NTS is better than
occupancy map
models, captures
and uses
semantic priors.
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Internet vs Embodied Data
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Using Internet models for Embodied Agents

Goal: Toilet

Goal: Chair
‘ \3" .

False positives False negatives

Savva et al, Habitat: A platform for embodied Al research, ICCV 2019
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Embodied Perception

Active Embodied data
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Embodied Perception

Active Embodied data
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Perception-Action Loop

Step 1. Self-supervised
Active Exploration

Perception

Step 2. Self-supervised
Visual Learning

Pathak et al, Learning instance segmentation by interaction, 2018

Jang et al, Grasp2vec: Learning object representations from self-supervised grasping, 2018

Eitel et al, Self-supervised transfer learning for instance segmentation through physical interaction, 2019
Fang et al.,Move to See Better: Self-Improving Embodied Object Detection, 2021
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SEAL: Self-supervised Embodied Active Learning

e )

Phase 1: Action
Learning active exploration policy

Exploration Action
Policy

Perception Module
(Mask RCNN)

A

 Gainful Curiosity

i Reward = =

3D Semantic Map
3D Semantic
Mapping

AN
)

Semantic Predictions

SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency
Devendra Chaplot, Murtaza Dalal, Saurabh Gupta, Jitendra Malik, Russ Salakhutdinov, NeurlPS 2021
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SEAL: Self-supervised Embodied Active Learning

Phase 1: Action
Learning active exploration policy

Exploration

Policy
A

 Gainful Curiosity
+ Reward

—=

= N -

3D Semantic
Mapping

3D Semantic Map

Perception Module

(Mask RCNN)

Semantic Predictions

Training Mask-RCNN using spatio-temporal label propagation

[ Phase 2: Perception }

L

Sample Trajectories

Trained Exploration
Policy

3D Semantic
Mapping

3DLabelProp 3D Semantic Map

Get Labels
Perception Module : 2 ™

(Mask RCNN)

Both phases do not require any additional labelled data

SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency
Devendra Chaplot, Murtaza Dalal, Saurabh Gupta, Jitendra Malik, Russ Salakhutdinov, NeurlPS 2021



3D Semantic Mapping

RGB Observation 3D Semantic Map M=KXLXWXxXH

(- Chair
- Couch
- Potted Plant

—

Mask-RCNN Predictions
o

A\




3D Semantic Mapping

RG B“O-l')servgtioin' 4'

3D Semantic Map M=KXLXWXxXH

-

(- Chair
- Couch
- Potted Plant

f-77 i |
ctions




Gainful Curiosity

Exploration

Policy

A
. sum :
i Train across
: exploration height ¢ .-
policy v o .
. r.
Gainful
Curiosity <(uEE— .
Reward Count of voxels with score v
5\)((\ R
o0
?

 Trained to maximise Gainful Curiosity:
gaining definitive knowledge

3D Semantic Map

(- Chair
- Couch
- Potted Plant




SEAL: Self-supervised Embodied Active Learning

Carnegie Mellon University

Phase 1: Action
Learning active exploration policy

Exploration Action
Policy
A

 Gainful Curiosity
+ Reward

3D Semantic Map

3D Semantic
Mapping

Perception Module
(Mask RCNN)

Semantic Predictions

Phase 2: Perception

Training Mask-RCNN using spatio-temporal label propagation

Sample Trajectories

Trained Exploration
Policy

3DLabelProp

3D Semantic
Mapping

\ 4
Get Labels

Perception Module

(Mask RCNN)

3D Semantic Map




3 D I_a b e | P rO p a gat | O ﬂ Instance label for each pixel

is obtained using ray tracing
based on the agent’s pose

Self-Supervised Labels (SEAL)

3D Semantic Map

(- Chair

- Couch
- Potted Plant
- Bed

- Toilet
-

4l
=~ ' & -
Agent Pose

N i \.\gﬁh\ K
D 2l J

>

Negatives



3D Label Propagation

Self-Supervised Labels (SEAL)

-----------

~el
~

False
Positive

False
Negatives

3D Semantic Map

(- Chair

- Couch
- Potted Plant
- Bed

- Toilet

(I~




3D Label Propagation

Self- Superwsed Labels (SEAL)

3D Semantic Map

(- Chair

- Couch
- Potted Plant
- Bed

- Toilet

(I~




3D Label Propagation

o,

NV
Sy

Selyf-Supervised Labels

(SEAL)

3D Semantic Map

(- Chair

- Couch
- Potted Plant
- Bed

- Toilet
-

couc

o, N

" Pretrained Mask-RCNN Predictions

)
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False D
= Positive \ | / T



3D Label Propagation

Train
: Perception
i Model

Perception Model

(Mask RCNN)

3D Semantic Map

(- Chair

- Couch
- Potted Plant
- Bed

- Toilet

(I~




Carnegie Mellon University

SEAL: Self-supervised Embodied Active Learning

. N [ )
Phase 1: Action Phase 2: Perception
Learning active exploration policy Training Mask-RCNN using spatio-temporal label propagation

Exploration Action _ ’
Policy Perception Module
3 (Mask RCNN)

Gamful Curiosity

; Reward

3D Semantic Map

Sample Trajectories

Trained Exploration

3D Semantic

Policy Mapping

3DLabelProp 3D Semantic Map

Model ; \\;\

3D Semantic Get Labels \/ S g ‘-\" /Qg\
WETelellgle Perception Module L/(//)
(Mask RCNN) '

Semantic Predictions

k J

Action

Perception
Generalization Train Train

Specialization Train Train + 1 episode test
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Dataset

« Gibson dataset: 25 training and 5 test scenes

6 object categories: chair, couch, bed, toilet, TV, potted plant.

Training Set: randomly sample 2500 images (500 per test scene)

Evaluation Set: randomly sample 12,500 images (500 per training scene)

Report bounding box and mask AP50 scores for detection and instance segmentation

Armeni et al , 3d scene graph: A structure for unified semantics, 3d space, and camera, ICCV 2019
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Results
Generalization Specialization
Method Object Instance Object Instance
Detection Segmentation Detection Segmentation
Pretrained Mask-RCNN 34.82 32.54 34.82 32.54
Random Policy + Self-training [51] 33.41 31.89 34.11 31.23
Random Policy + Optical Flow [22] 33.97 32.34 34.33 32.22
Frontier Exploration [52] + Self-training [51] 33.78 32.45 33.29 32.50
Frontier Exploration [52] + Optical Flow [22] 35.22 31.90 34.19 32.12
Active Neural SLAM [10] + Self-training [51] 34.35 31.20 34.84 32.44
Active Neural SLAM [10] + Optical Flow [22] 35.85 32.22 35.90 33.12
Semantic Curiosity [11] + Self-training [51] 35.04 32.19 35.23 32.88
Semantic Curiosity [11] + Optical Flow [22] 35.61 32.57 35.71 33.29
SEAL 40.02 36.23 41.23 37.28




EIF: Embodied Instruction Following: ALFRED

Instruction: place a cold lettuce slice in a waste basket.

RGB

Completed Subgoals
X PickUp, Knife

X Slice, Lettuce

X Put, Knife, Sink

X PickUp SlicedLettuce

X Open, Fridge

X Put, SlicedLettuce, Fridge

X Close, Fridge

X Open, Fridge

X PickUp, SlicedLettuce

X Close, Fridge

X Put, SlicedLsttuce, GarbageCan

Predicted Action Rotateleft_90

Carnegie Mellon University

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox.
Alfred: A benchmark for interpreting grounded instructions for everyday tasks
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FILM: Following Instructions in Language with Modular Methods

Instruction Subtasks [ Semantic
Language h Poli
Drop a clean pan|¥ Pagslng ¥ |(Pan, PickUp), (SinkBasin, Put), (Faucet, ToggleOn), i,
on the table (Faucet, ToggleOff), (Pan, PickUp), (Table, Put) v
| Search Goal |
Egocentric RGB Semantic Map . s ‘v'p
Semantic |, {
*[Mapplng] i L X \ 4
1 Deterministic )
" Policy
———y ;& *
RotateRight

FILM: Following Instructions in Language with Modular Methods
So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar, Yonatan Bisk, Ruslan Salakhutdinov
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FII M: Following Instructions in Language with Modular Methods

Instruction: place a cold lettuce slice in a waste basket.

RGB Semantic Map  Completed Subgoals
X PickUp, Knife
X Slice, Lettuce
X Put, Knife, Sink
X PickUp SlicedLettuce
X Open, Fridge
X Put, SlicedLettuce, Fridge
X Close, Fridge
X Open, Fridge
X PickUp, SlicedLettuce
* X Close, Fridge
X Put, SlicedLsttuce, GarbageCan

Predicted Action Rotateleft_90
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Perception-Action Loop

Step 1. Self-supervised
Active Exploration

Step 3. Object-Goal
Navigation

Perception

Step 2. Self-supervised
Visual Learning
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Explicit Semantic Mapping

Time

Navigable Area
0: chawr
1: couch
2: potted plant
3 bed
4: todlet
Sty
6: dining-table
’ 7: oven

8: sink

9: refrigerator
s 10: book

11: clock

12: vase

13: cup

14: bottle

Chapilot et al, . Object Goal Navigation using Goal-Oriented Semantic Exploration. NeurlPS-20



Explicit Semantic Mapping

Carnegie Mellon University

Predicted Semantic Map

Navigable Area

3: bed 7: oven B 11: clock
0: chair 4: toilet 8: sink 12: vase
1: couch 5: tv B 9: refrigerator 13: cup
2: potted plant 6: dining-table N 10: book 14: bottle

Chapilot et al, . Object Goal Navigation using Goal-Oriented Semantic Exploration. NeurlPS-20



Results: Object Goal Navigation

Method Success SPL
SemExp [9] 0.544  0.199
SemExp + SEAL (Gen.) 0.611 0.323
SemExp + SEAL (Spec.) 0.627 0.331

Carnegie Mellon University



Simulation to Real

Carnegie Mellon University

Games
ViZzDoom

[CL AAAI-17]

[CMPRS AAAI-18]

Photorealistic

simulation

Unreal

Reconstructed
simulation

Habitat (Gibson, MP3D)

1 = ' c—
- § -
—~. ..

[CPS ICLR-18]

ol e}

L .S

[PCZS CVPR-18 (w)]

|
{ :' J »
_Im

[CGSGG ICLR-20]

[CSGG CVPR-20]

Physical
Domain Gap

Visual
Domain Gap

Real-world




Simulation to Real

* Physical Domain Gap
e Actuation noise models
e Sensor noise models

e Visual Domain Gap
e Image Translation
* Policy-based

Carnegie Mellon University

¢ PyRobol LoCoBot

PyRobot is a light weight, high-level interface which provides hardware independent APIs for robotic manipulation and navigation.

e
This repository also contains the low-level stack for LoCoBot, a low cost mobile manipulator hardware platform.
* What can you do with PyRobot? = - i

 Installation

* Getting Started
* The Team

« Citation
 License
 Future features

What can you do with PyRobot?

pyrobot.org locobot.org
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Simulation to Real




Carnegie Mellon University

Building Intelligent Agents

Action
|
«avigate Autonomously \
Localize and Plan Reward
Multi-modal Input
Perceptive Human Speech Tt
Reason & Understand Language
Recognize objects
\ / Ot

Observation / State



