
Monte Carlo Tree Search

Deep Reinforcement Learning and Control

Instructors:
Katerina Fragkiadaki
Russ Salakhutdinov

Carnegie Mellon

School of Computer Science

Fall 2021, CMU 10-703

Part of today’s lecture is inspired by the MCTS presentation of Bryce Wiedenbeck

Learning: the acquisition of knowledge or skills through experience,
study, or by being taught.

Planning: any computational process that uses a model to create or
improve a policy

Definitions

Model Policy
Planning

Unroll the model of the environment forward in time to select the right
action sequences to achieve your goal.

What is Online Planning?

Unroll the model of the environment forward in time to select the right
action sequences to achieve your goal.

What is Online Planning?

current state

goal state

Unroll the model of the environment forward in time to select the right
action sequences to achieve your goal.

What is Online Planning?

current state

goal state

Unroll the model of the environment forward in time to select the right
action sequences to achieve your goal.

What is Online Planning?

current state

goal state

Why don’t we just learn a value function directly for every state offline, so
that we do not waste time online?

• Because the environment has many many states (consider Go 10^170,
Chess 10^48, real world ….)

• Very hard to compute a good value function for each one of them, most
of them you will never visit at training time.

• Thus, condition on the current state you are in, try to estimate the value
function of the relevant part of the state space online.

• Focus your resources on sub-MDP starting from now, often dramatically
easier than solving the whole MDP.

Why online planning?

1. Build the full search tree with the current state of the agent at
the root

2. Select the next move to execute using heuristics

3. Execute it

4. GOTO 1

Online Planning with Search

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Forward Search

Forward search algorithms select the best action by lookahead
They build a search tree with the current state st at the root
Using a model of the MDP to look ahead

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!

No need to solve whole MDP, just sub-MDP starting from now

The sub-MDP rooted at the current state the agent is in may still be
very large (too many states are reachable), despite much smaller than
the original one.

Too many actions possible: large tree branching factor

Too many steps: large tree depth

I cannot exhaustively search the full tree

Curse of dimensionality

Goal of HEX: to make a connected line that links
two antipodal points of the grid

Curse of dimensionality

How to handle the curse of dimensionality?

The depth of the search may be reduced by position evaluation:
truncating the search tree at state s and replacing the subtree below s

by an approximate value function that predicts the

outcome from state .

The breadth of the search may be reduced by sampling actions from a

policy , that is, a probability distribution over plausible moves a

in position , instead of trying every action.

v(s) = v * (s)
s

p(a |s)
s

Solution 1 (we will visit this in a later lecture): Intelligent
instead of exhaustive search

We can estimate values for states in two ways:

• Engineering them using human experts (DeepBlue)

• Learning them from self-play (TD-gammon)

Problems with human engineering:

• tiring

• non transferrable to other domains.

Value function

http://stanford.edu/~cpiech/cs221/apps/deepBlue.html

YET: that’s how Kasparov was first beaten.

1. We will be sampling from our actions instead of exhaustively trying
them all.

2. We will concurrently be learning from (mental) outcomes of our
(mental) samples how to (mentally) sample better in the next round
(trajectory).

Solution 2 (today): Random instead of exhaustive search

Monte-Carlo search
Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Monte-Carlo Evaluation in Go

Current position s

Simulation

 1 1 0 0 Outcomes

V(s) = 2/4 = 0.5

Averaging sampled returns..

What policy shall we use to draw our simulations?

The cheapest one is random..

Monte-Carlo position evaluation

Given a deterministic transition function , a root state and a simulation

policy (potentially random)

Simulate episodes from current (real) state:

Evaluate action value function of the root by mean return:

Select root action:

T s
π

K

{s, a, Rk
1, Sk

1, Ak
1, Rk

2, Sk
2, Ak

2, . . . , Sk
T}K

k=1 ∼ T, π

Q(s, a) =
1
K

K

∑
k=1

Gk → qπ(s, a)

a = argmaxa∈𝒜Q(s, a)

Simplest Monte-Carlo Search

Given a deterministic transition function , a root state and a simulation

policy (potentially random)

For each action

Select root action:

T s
π

a ∈ 𝒜

Q(s, a) = MC-boardEval(s′), s′ = T(s, a)

a = argmaxa∈𝒜Q(s, a)

Simplest Monte-Carlo Search

• Could we be improving our simulation policy the more simulations we
obtain?

• Yes we can! We can have two policies:

• Internal to the tree: keep track of action values Q not only for the root
but also for nodes internal to a tree we are expanding, and use to
improve the simulation policy over time

• External to the tree: we do not have Q estimates and thus we use a
random policy

In MCTS, the simula6on policy improves

• Can we think anything better than ?ϵ − greedy

Can we do better?

•

•

• Probability of choosing an action:

• decreases with the number of visits (explore)

• increases with a node’s value (exploit)

• Always tries every option once.

• A better exploration-exploitation than

At = argmaxa Qt(a) + c
log t
Nt(a)

t : parent node visits

Nt(a) : times the action has been tried out

ϵ − greedy

Finite-time Analysis of the Multiarmed Bandit Problem, Auer, Cesa-Bianchi, Fischer, 2002

Upper Confidence Bound (UCB)

1. Selec6on

• Used for nodes we have seen before

• Pick actions according to UCB

2. Expansion

• Used when we reach the frontier

• Add one node per rollout

3. Simula6on

• Used beyond the search frontier

• Don’t bother with UCB, just pick actions randomly

4. Back-propaga6on

• After reaching a terminal node

• Update value and visits for states expanded in selection and expansion

Monte-Carlo Tree Search

Bandit based Monte-Carlo Planning, Kocsis and Szepesvari, 2006

Monte-Carlo Tree Search

Monte-Carlo Tree Search

For every state within the search tree we bookkeep # of visits and # of wins

Monte-Carlo Tree Search (helper functions)

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree

Search tree contains states whose children have been tried at least once

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

• Estimates action-state values by look-ahead planning.

• Questions:

• Which one, MCTS or DQN, discovers better actions, that is, Q
estimates that if we act greedily with respect to them, we achieve
higher returns on expectation?

• Why don’t we simply use MCTS to select actions during playing of
Atari games (no prior knowledge)?

• How can we use the estimates discovered with MCTS but at the same
time play fast at test time?

Q(s, a)

Monte-Carlo Tree Search planner

Idea: Use MCTS for Q value estimation and action selection at training time
instead of the Q learning update rule.

At test time just use the reactive policy network, without any look-ahead
planning. In other words, imitate the MCTS planner.

• The MCTS agent plays against itself and generates tuples.
Use this data to train:

• UCTtoRegression: A regression network, that given 4 frames

regresses to for all actions. Select actions using argmax Q.

• UCTtoClassifica6on: A classification network, that given 4 frames
predicts the best action.

• Q: Could we use the learned policies to play the game?

(s, a, Q(s, a))

Q(s, a, w)

Learning to play from offline MCTS

• The state distribution visited using actions of the MCTS planner will not
match the state distribution obtained from the learned policy.

• UCTtoClassifica6on-Interleaved: Interleave UCTtoClassification with
data collection:

1.Start from 200 runs with MCTS.

2.Train the policy UCTtoClassifica6on.

3.Deploy the policy for 200 runs allowing 5% of the time a random action
to be sampled.

4.Use MCTS to decide best action for those states,

5.GOTO 2

• At test time, just deploy the learnt policy.

Learning from offline MCTS

Results

Results

MCTS planning discovers better actions than deep Q learning. It takes though "a few days on a
recent multicore computer to play for each game”.

Results

Classification is doing much better than regression! Indeed, we are training for exactly what we
care about.

Results

Interleaving is important to prevent mismatch between the training data and the data that the
trained policy will see at test time.

Results

Results improve further if you allow MCTS planner to have more simulations and build more
reliable Q estimates.

Problem

We do not learn to save the divers. Saving 6 divers brings very high reward, but exceeds the
depth of our MCTS planner, thus it is ignored.

Interleaving of Q updates with real world experience collection: the experience we collect it takes long time
till they are reflected to our Q values.

Image to Q value mapping through a nearest neighbor
look-up

Q(s, a)

Image to Q value mapping through a nearest neighbor
look-up

Q(s, a)

Nearest neighbors Lookup

If identical key h present:

Else add row to the memory(h, QN(s, a))

Writing in the memory

N-step Q targets:

