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Model learning from sensory input

Unrolling in the observation space:
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Unrolling in a latent state space

Deterministic transition model: s,, ; = g(s,, a,)

MuZero learns such observation to latent space mapping by considering value
functions and policies under a specific reward function.



Prediction in a latent space
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Q:What is the problem with this optimization problem?
A:There is a trivial solution :-(

Q:Would the problem go away if instead we had: Z,, | = z, + f(c,, a;; 0)
A:No, it's exactly the same problem.

We need to predict additional information from the encodings to avoid the trivial
solution

1f(cs, a3 0) =zl



Prediction in a latent space - autoencoding
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e Predict the image from the latent encoding
e ...and suffer the problems of autoencoding reconstruction loss that has little to do
with our task

Incentivizing exploration in RL with deep predictive models, Stadie et al.



Prediction in a latent space
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Prediction in a latent space - inverse models
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e Let’s couple forward and inverse models (to avoid the trivial solution)
e ...then we will only predict things that the agent can control

Learning to poke by poking, Agrawal et al. 2016



Prediction in a latent space - contrastive prediction
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e Generative: model the distribution of future observations/embeddings

e Discriminative: model how much closer you can match the future observations
than other alternatives.

¢ [magine we could discretize all the possible future: then we would just need to
predict the right probability distribution over all (discrete set of) possibilities.
Then, we want to maximize the probability of the correct outcome.



Prediction in a latent space - contrastive prediction
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e Q:Since we do not directly predict the future z,_ {, how can we unroll this model

forward in time?
e A: Through ranking. Consider a set of possibilities and rank them



Contrastive forward models for
deformable object manipulation

Learning Predictive Representations for Deformable Objects using Contrastive Estimation



Contrastive forward models for
deformable object manipulation

Learning Predictive Representations for Deformable Objects using Contrastive Estimation



Contrastive forward models for
deformable object manipulation

Contrastive loss:
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Learning Predictive Representations for Deformable Objects using Contrastive Estimation



Contrastive forward models for
deformable object manipulation

Contrastive loss:

L= —ED lOg

Similarity function:
h(z1,22) = exp(z] 22)

Learning Predictive Representations for Deformable Objects using Contrastive Estimation



Contrastive forward models for deformable object
manipulation

Latent Space

Learning Predictive Representations for Deformable Objects using Contrastive Estimation



Contrastive forward models for deformable object
manipulation

Latent Space

Learning Predictive Representations for Deformable Objects using Contrastive Estimation



Contrastive forward models for deformable object
manipulation

Latent Space




Start

One step Model-Predictive Control

a; = max h(fe(z,a), z4)

Goal




One step Model-Predictive Control

Start Final Goal
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One step Model-Predictive Control

Final Goal




Problem with holistic models

fe,
4
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- The whole image is mapped to one vector, and the dynamics of that single
vector are predicted over time.

- This means all objects together are predicted, and we do not exploit
causality constraints: that objects often move independently!

-+ By making our representations causal and disentangled enough, we have
the hope of generalization. If we entangle, we cannot generalize beyond
training conditions.



Problem with holistic models
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Q: Will our model be able to generalize across different number of balls present?



Frame-centric models

__________d

Frame-Centric Prediction

Q: Will our model be able to generalize across different number of balls present?

Visual Predictive Models of Intuitive Physics for Playing Billiards, ICLR 2016



Entity-centric models

l
l
l
l
l
l
l
World-Centric Prediction T T Object-Centric Prediction

The object-centric model will be applied to each object in the scene

Visual Predictive Models of Intuitive Physics for Playing Billiards, ICLR 2016



Context around the object is captured by using large
windows around the object of interest

Visual Predictive Models of Intuitive Physics for Playing Billiards, ICLR 2016



Context around the object is captured by using large
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Context around the object is captured by using large
windows around the object of interest
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Context around the object is captured by using large
windows around the object of interest

Visual Predictive Models of Intuitive Physics for Playing Billiards, ICLR 2016



Unrolling with entity-centric dynamics models

v

» dX

ball displacement

 The object-centric model is shared across all objects in the scene.
 We apply it one object at a time to predict the object’s future displacement.
 We then copy paste the ball at the predicted location, and feed back as input.

Visual Predictive Models of Intuitive Physics for Playing Billiards, ICLR 2016



Cross-object interactions

How can we encode cross-object relations?

1. usinglarge context windows around each object (this is what we just
used)

2. using graph neural networks!



From CNNs to GNNSs

Single CNN layer
with 3x3 filter:
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h; € RY are (hidden layer) activations of a pixel/node




From CNNs to GNNSs

Single CNN layer

with 3x3 filter: h
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From CNNs to GNNSs

Single CNN layer

with 3x3 filter: h
0

h,; ..
O\(Q’/C) Update for a single pixel:
O 6 ~ » Transform messages individually W ;h;

‘\O - Add everythingup ) . W;h;
O (g h;

h; € RY are (hidden layer) activations of a pixel/node

Full update:
hi{*) =4 (wg”hg” +wWh{ 4.4 wg>hg>)



From CNNs to GNNs

Consider this
undirected graph:



From CNNs to GNNs

Consider this Calculate update
undirected graph: for node in red:
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From CNNs to GNNSs

Consider this Calculate update
undirected graph: for node in red:
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From CNNs to GNNSs

Consider this Calculate update
undirected graph: for node in red:
O O 0\8 P
O O O
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Update 1
e CAE SEEY
JEN; ¢

N : neighbor indices  Ci;: norm. constant
(fixed/trainable)



From CNNs to GNNs

Consider this Calculate update
undirected graph: for node in red:
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Update
ruF;e: hgl—l—l) (h(l)w(l) 4 Z h(l W(l))
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Scalability: subsample messages [Hamilton et al., NIPS 2017] M : neighbor indices  C;; : norm. constant
(fixed/trainable)



From CNNs to GNNs

Consider this Calculate update Desirable properties:

undirected graph: for node in red:  Weight sharing over all locations
 Invariance to permutations
 Linear complexity O(E)

SN
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Update
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Scalability: subsample messages [Hamilton et al., NIPS 2017] M : neighbor indices  C;; : norm. constant

(fixed/trainable)



Interaction Networks for Learning about Objects,
Relations and Physics

Peter W. Battaglia Razvan Pascanu Matthew Lai
Google DeepMind Google DeepMind Google DeepMind
London, UK N1C 4AG London, UK N1C 4AG London, UK NI1C 4AG
peterbattagliaOgoogle.com razp@google.com matthewlai@google.com
Danilo Rezende Koray Kavukcuoglu
Google DeepMind Google DeepMind
London, UK N1C 4AG London, UK N1C 4AG
danilor@google.com koraykQgoogle.com

Main idea: Given a set of objects or object parts, use graph neural networks to
predict their future velocities, given their physical properties and current positions
and velocities

Interaction Networks for Learning about Objects, Relations and Physics, Battaglia et al., 2016
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e Input:
e Object state: dynamic (position/velocity), static(mass, size, shape)-> assumed given
e Relation attributes: coefficient of restitution, spring constant

e Output: the velocities of the objects in the next time step.

. takes two object states as input and relational
attributes and predicts a feature vector
. takes object states and summation of incoming

edge messages and predicts future object velocity

e Can be used for unrolling by feeding the predictions back as input

Interaction Networks for Learning about Objects, Relations and Physics, Battaglia et al., 2016



Unrolling results

Interaction Networks for Learning about Objects, Relations and Physics, Battaglia et al., 2016



Learning 3D object dynamics under

Manipulation under any viewpoint




Problems with 2D image centric
representations

* No object permanence: objects disappear at
occlusions

e Objects move” when the camera moves
* Objects change size when the camera zooms in/out

Camera motion is entangled with scene appearance in a 2D image.



ORB-SLAM 2.0

- SLAM disentangles a video into scene appearance (point cloud
map) and camera motion
- Obijects persist in the pointcloud map



but...

e SLAM cannot do amodal completion: it does not predict what the
camera does not see.

e it may not optimize for the right end task (recognizing and acting
in the world)



Geometry-Aware Recurrent Networks

- 3-dimensional latent state
- Egomotion-stabilized latent state updates

Learning spatial common sense with geometry-aware recurrent networks, Tung et al. CVPR 2019






2D RNNs (conv-LSTMs/GRUSs)
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More diverse object dynamics
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Intuitive physics under varying viewpoint

input views

iInput view
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More diverse object dynamics
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Learning object
dynamics in a latent 3D
feature space
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Comparison to models using
glifferent representations
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Pushing - Simulation




Obstacle Avoidance - Simulation Task 2




Robots as graphs

A physical system’s bodies and joints can be represented by a graph’s nodes and
edges.

Node features

- Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular
velocities

- Unobservable/static: mass, inertia tensor

- Actions: forces applied on the joints

Predictions: | predict only the dynamic features, their temporal difference.
Train with regression.

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.



Robots as graphs

Node features

Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular
velocities

Unobservable/static: mass, inertia tensor
Actions: forces applied on the joints
No visual input here, much easier.

Algorithm 1 Graph network, GN

Input: Graph, G = (g. {n,}. {e,.s,.7,})
for each edge {e,.s;.r;} do

~ Gather sender and receiver nodes n, . n,

. . Compute output edges, e* = f.(g.n, .n, .e;)

TN - end for

for each node {n,} do
‘n ! n."} Aggregate e’ per receiver,é, = »_ €]
' | Compute node-wise features, n; = f,.(g.n,.e,)
\\ end for
(€., 5., F,} e e . 5. Aggregate all edges andnodes e = >~ e, n=)_ n;
| | | : ) - Compute global features, g* = f,(g.n.e)

Output: Graph, G = (g". {n] }. {e].5,.7,})

Predictions: | predict only the dynamic features, their temporal difference.
Train with regression.

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.



Robots as graphs

Node features
Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular
velocities
Unobservable/static: mass, inertia tensor
Actions: forces applied on the joints
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Predictions: | predict only the dynamic features, their temporal difference.

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.



Model predictive control (MPC)

MPC to reach a target configuration

Control Fixed JACO
Imitate, full pose (1x)

Target pose Control trajectory

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.



GNNs over particles

Ground truth Prediction Ground truth Prediction

Ground truth Prediction Ground truth Prediction




Learning to Simulate Complex Physics with Graph Networks

Alvaro Sanchez-Gonzalez™ ' Jonathan Godwin ' Tobias Pfaff "' Rex Ying "> Jure Leskovec?
Peter W. Battaglia
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Represent objects as graphs of particles and scenes as graph of all the particles

from all objects.

e Q:Why? How are particle nodes different than object nodes?

e A: Theydo not need to capture appearance information only particles
displacement! Appearances of particles stays constant over time, while
appearance of objects changes: the appearance of the water changes, but the
appearance of each of its particles did not. The shape of the object/material is
captured simply by the particle graph (the location of its nodes).
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(¢)  Extract dynamics info

«
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e Input: particle velocities of the last 5 time steps, output: particle acceleration.

¢ Train for single step prediction.

e Handle error accumulation during unrolling by injecting noise in particle velocities

during training.

e Q: how can we encode particle locations?

e A:Edges encode relative distances between two particles, no absolute position,
else the neural net would not be translation invariant

e Multiple rounds of message passing: necessary to transmit the interaction across
the graph. Each round has node and edge weights that are different.



Generalization

Ground truth Prediction

Ground truth Prediction




