Efficient Distributed RL: Actor-Learner Distillation

Deep Reinforcement Learning and Control Fall 2021, CMU 10-703

> Russ Salakhutdinov (work with Emilio Parisotto)

> > Machine Learning Department Carnegie Mellon University

Reinforcement Learning

Agent needs to move in the world physically.

Current actions affect future observations.

Require Spatial and Semantic Understanding.

- Agent interacts with environment.
- Predicts actions given observations (policy).
- Receives *scalar feedback* (*reward*) from the environment.
- Interaction terminates given **H** actions:
 - Referred to as an **episode**.

Reinforcement Learning:

• Learn policy that maximizes episodic reward.

(On-Policy) Reinforcement Learning

- Agent formalized as policy π_{θ} .
 - Maps states to a distribution over actions.
 - Parameterized by θ .
- ► Sample from π_{θ} to collect episodes $(s_1, a_1, r_1, \dots, s_H, a_H, r_H)$.

Want to maximize:

$$J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{H} r_t \right]$$

(On-Policy) Reinforcement Learning

- Agent formalized as policy π_{θ} .
 - Maps states to a distribution over actions.
 - Parameterized by θ .
- ► Sample from π_{θ} to collect episodes $(s_1, a_1, r_1, \dots, s_H, a_H, r_H)$.

Want to maximize:

$$J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{H} r_t \right]$$

Update θ using Policy Gradient:

$$\frac{\partial J(\theta)}{\partial \theta} \approx \sum_{t=1}^{H} \log \pi_{\theta}(a_t | s_t) \mathcal{A}\left(\sum_{k=t}^{H} r_t\right)$$

Distributed (On-Policy) RL

Larger Models Work Better Gated Transformers

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al., 2019) Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)

Gated Transformers State-of-the-Art in DMLab30

Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019) DeepMind Lab (Beattie et al., 2016)

Gated Transformers

Rapid Memorization of Partially-Observed Environments

Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)

Actor-Latency is a Major Bottleneck

Motivation Smaller Models More Time-Efficient?

Why Not Model Compression?

In supervised learning (with dataset \mathcal{D}):

$$J(\theta) = \mathbb{E}_{x \sim \mathcal{D}}[L(x;\theta)]$$

Do Deep Nets Really Need to be Deep? (Ba et al., 2013) Distilling the Knowledge in a Neural Network (Hinton et al., 2015)

Why Not Model Compression?

In supervised learning (with dataset \mathcal{D}):

$$J(\theta) = \mathbb{E}_{x \sim \mathcal{D}}[L(x;\theta)]$$

In reinforcement learning:

$$J(\theta) = \mathbb{E}_{x \sim \pi_{\theta}}[L(x;\theta)]$$

Do Deep Nets Really Need to be Deep? (Ba et al., 2013) Distilling the Knowledge in a Neural Network (Hinton et al., 2015)

Why Not Model Compression?

In supervised learning (with dataset \mathcal{D}):

$$J(\theta) = \mathbb{E}_{x \sim \mathcal{D}}[L(x;\theta)]$$

In reinforcement learning:

$$J(\theta) = \mathbb{E}_{x \sim \pi_{\theta}}[L(x;\theta)]$$
Depends on Current Parameters \Longrightarrow Can't Learn Offline

Do Deep Nets Really Need to be Deep? (Ba et al., 2013) Distilling the Knowledge in a Neural Network (Hinton et al., 2015)

Actor-Latency Constraints

- ► Inference running on un-accelerated hardware:
 - ► CPUs, robotic platforms, mobile phones, etc.
 - Potential hard constraint on latency (robot acting)
- Learning running on accelerators.
 - ► GPU, TPU, large-scale CPU cluster, etc.

Goal: Leverage large model capacity while minimizing inference costs

Idea: Separate Actor and Learner Models

Actor Model \mathcal{M}_A

- Low-Capacity
- Optimized for Inference Speed
- Sequential Execution (CPU)
- Generates Environment Episodes.

- High-Capacity
- Optimized for Learning Speed
- Easily Parallelizable (GPU)

Actor Model \mathcal{M}_A

Distill from Learner

Distill from Learner

Objectives

Objectives

Value Distillation Loss

Actor Objective w/ Value Distillation:

- Actor predicts Learner's value predictions.
- ► Improves Representation Learning at the feature level.

Phasic Policy Optimization (Cobbe et al., 2020)

Distributed Structure

Actors + Queue

Learner Runner

- The Learner Runner process (GPU):
 - Runs Learner model on incoming batches of data.
 - Computes learning targets for Distillation to actor.
 - Pass outputs to Learner and Replay process.
- The Replay process manages a replay buffer:
 - Incoming batches of trajectories are archived.
 - Increases data diversity for distillation.

• The Learner process:

Learner

- Computes Learner model updates based on trajectories from the Learner Runner and Replay.
- Sends updated learner model parameters to learner runner

- Distill process:
 - Computes Actor model updates on data from the Replay process.
 - Sends updated actor model parameters to the Actor processes.

$$J_{RL}(\pi_{\theta_L}) = \mathbb{E}_{x \sim \pi_{\theta_L}}[L_{RL}(x; \theta_L)]$$

$$J_{RL}(\pi_{\theta_L}) = \mathbb{E}_{x \sim \pi_{\theta_L}}[L_{RL}(x; \theta_L)]$$

$$J(\theta_L) = \mathbb{E}_{(s_t, a_t, r_t)_{t=1}^H \sim \pi_{\theta_A}} \left[L_{RL}((s_t, a_t, r_t)_{t=1}^H; \theta_L) - \sum_{t=1}^H \mathcal{D}_{KL}(\pi_{\theta_A}(\cdot | s_t) || \pi_{\theta_L}(\cdot | s_t)) \right]$$

$$J_{RL}(\pi_{\theta_{L}}) = \mathbb{E}_{x \sim \pi_{\theta_{L}}}[L_{RL}(x;\theta_{L})]$$
$$J(\theta_{L}) = \mathbb{E}_{(s_{t},a_{t},r_{t})_{t=1}^{H}} \prod_{\pi_{\theta_{A}}} \left[L_{RL}((s_{t},a_{t},r_{t})_{t=1}^{H};\theta_{L}) - \sum_{t=1}^{H} \mathcal{D}_{KL}(\pi_{\theta_{A}}(\cdot|s_{t})||\pi_{\theta_{L}}(\cdot|s_{t})) \right]$$
$$We're sampling from \pi_{\theta_{A}} instead of \pi_{\theta_{L}}$$

$$\begin{split} J_{RL}(\pi_{\theta_L}) &= \mathbb{E}_{x \sim \pi_{\theta_L}}[L_{RL}(x;\theta_L)] \\ J(\theta_L) &= \mathbb{E}_{(s_t,a_t,r_t)_{t=1}^H} \int_{\pi_{\theta_A}} \left[L_{RL}((s_t,a_t,r_t)_{t=1}^H;\theta_L) - \sum_{t=1}^H \mathcal{D}_{KL}(\pi_{\theta_A}(\cdot|s_t)||\pi_{\theta_L}(\cdot|s_t)) \right] \\ & \quad \text{We're sampling from } \pi_{\theta_A} \text{ instead of } \pi_{\theta_L} \end{split}$$

Actor-Learner Distillation (ALD) Distillation steps per RL step (DpRL) Ratio

DpRL Ratio:

- # Parameter Updates on Actor
- # Parameter Updates on Learner
- Better performance if we artificially constraint DpRL to be high.

Actor-Learner Distillation (ALD) Distillation steps per RL step (DpRL) Ratio

DpRL Ratio:

- # Parameter Updates on Actor
- # Parameter Updates on Learner
- Better performance if we artificially constraint DpRL to be high.
- ⇒ Improve speed of distillation

Meta-Fetch (Data-Efficiency)

Async Distillation using HOGWILD!

- Run N_D parallel Distill processes.
 - Each independently updates actor model parameters.
 - Asynchronously share parameters (i.e. HOGWILD!)

Complete System

Actor-Learner Distillation Experiments LSTM Actor -- GTrXL Learner

Actor Model \mathcal{M}_A LSTM

- Low-Capacity
- Optimized for Inference Speed
- Sequential Execution (CPU)
- Generates Environment Episodes.

Learner Model \mathcal{M}_{L} **GTrXL**

- High-Capacity
- Optimized for Learning Speed
- Easily Parallelizable (GPU)
I-Maze Remembering Far into the Past

- Indicator: Either blue or pink
- If blue, find the green blockIf pink, find the red block
- Negative reward if agent does not find correct block in N steps or goes to wrong block.

Carnegie Mellon University

I-Maze Remembering Far into the Past

I-Maze Results

Transferring Learner's Inductive Bias

- Local optimum in I-Maze
 - Agent enters either goal without discernment.
 - Expected reward is 0.5 instead of 0 for not entering any goal.
- This behaviour does not require long-term memory:
 - Only the ability to navigate to a corner.

Transferring Learner's Inductive Bias

- Per-seed curves on 15x15 I-Maze
- Model stuck at 0.5 => local optimum.
 - Transformer avoids local optimum.
 - LSTM agents stuck there for significant amount of time.
 - ALD exits very quickly in comparison.
- ALD LSTM model has learned to rapidly compress the transformer memory.

Meta-Fetch: Partially-Observed, Combinatorial Search

Carnegie Mellon University

7

. . .

Meta-Fetch Results

References

- **•** Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al., 2019)
- **Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)**
- **DeepMind Lab (Beattie et al., 2016)**
- **Do Deep Nets Really Need to be Deep? (Ba et al., 2013)**
- **Distilling the Knowledge in a Neural Network (Hinton et al., 2015)**
- Phasic Policy Optimization (Cobbe et al., 2020)
- **HOGWILD!:** A Lock-Free Approach to Parallelizing Stochastic Gradient Descent (Niu et al., 2011)

Data Inefficiency Restricts Real-World Impact

AlphaZero 140 million Go games

AlphaStar >1 million SC2 games

Rubik's Cube 13,000 simulation years

- Data inefficiency is a critical obstruction to Deep RL's widespread use:
 - Currently Deep RL is constrained to environments with viable simulators.
- Recent off-policy and model-based algorithms show improvements.
 - ► But still require extremely large amounts of data.

Addressing the Data Inefficiency of Deep RL

RL Algorithms work over any Markov Decision Process (MDP).

Key Insight:

▶ **Specialize** the learning algorithm.

Addressing the Data Inefficiency of Deep RL

RL works over any MDP.

Key Insight:

Develop specialized learning algorithms.

Specialization to a Distribution of Environments

Dexterous Manipulation

Safe Manipulation

Safe Manipulation

Standard Reinforcement Learning

Dexterous Manipulation

Safe Manipulation

Solving Rubik's Cube

Meta-Learning

Safe Manipulation

Meta Reinforcement Learning

Dexterous Manipulation

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

Safe Manipulation

Solving Rubik's Cube

Meta Reinforcement Learning

Dexterous Manipulation

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

Solving Rubik's Cube

Meta Reinforcement Learning

Meta-Learning as a formalism

Definitions:

Task: TExperience: $x \in T$ Agent Parameters: hetaTask Distribution: \mathcal{D}_T Performance Measure: $\phi(heta, x)$ Expected Performance in Task T

$$\Phi(\theta) = \mathbb{E}_{x \in T}[\phi(\theta, x)]$$

Meta-Learning as a formalism

Definitions:

Task: '/' Experience: $x \in T$ Agent Parameters: θ Task Distribution: \mathcal{D}_T Performance Measure: $\phi(\theta, x)$ Learning Algorithm: $\mathbf{L}_{\mu}(heta,T)$ Algorithm Parameters: μ

Expected Performance in Task T

$$\Phi(\theta) = \mathbb{E}_{x \in T}[\phi(\theta, x)]$$

Expected Performance Gain of \mathbf{L}_{μ} in Tasks \mathcal{D}_{T} $\delta(\mathbf{L}_{\mu}) = \mathbb{E}_{\theta \in \Theta, T \in \mathcal{D}_{T}} \left[\Phi(\mathbf{L}_{\mu}(\theta, T)) - \Phi(\theta) \right]$

Meta-Learning as a formalism

Definitions:

Task: TExperience: $x \in T$ Agent Parameters: θ Task Distribution: \mathcal{D}_T Performance Measure: $\phi(\theta, x)$ Learning Algorithm: $\mathbf{L}_{\mu}(\theta, T)$

Algorithm Parameters: μ

Meta-Algorithm: $\mathbf{ML}(\mu,T)$

Expected Performance in Task T

$$\Phi(\theta) = \mathbb{E}_{x \in T}[\phi(\theta, x)]$$

Expected Performance Gain of \mathbf{L}_{μ} in Tasks \mathcal{D}_{T} $\delta(\mathbf{L}_{\mu}) = \mathbb{E}_{\theta \in \Theta, T \in \mathcal{D}_{T}} \left[\Phi(\mathbf{L}_{\mu}(\theta, T)) - \Phi(\theta) \right]$

Maximize: $\mathbb{E}_{\mu \in M, T \in \mathcal{D}_T} \left[\delta(\mathbf{L}_{\mathbf{ML}(\mu, \mathbf{T})}) - \delta(\mathbf{L}_{\mu}) \right] > 0$

Meta-RL

Definitions:

Task: TExperience: $x \in T$ Agent Parameters: θ Task Distribution: \mathcal{D}_T Performance Measure: $\phi(\theta, x)$ Learning Algorithm: $\mathbf{L}_{\mu}(\theta, T)$

Algorithm Parameters: μ

Meta-Algorithm: $\mathbf{ML}(\mu, T)$

$$T = (S, A, T, \gamma, \mathcal{R})$$

$$x = (s_1, a_1, r_1, \dots, s_H, a_H, r_H), x \sim \pi_{\theta}, T$$

$$\phi(x) = \sum_t r_t$$
Expected Performance in Task T

$$\Phi(\theta) = \mathbb{E}_{x \sim \pi_{\theta}, T} \left[\sum_t r_t \right]$$

Expected Performance Gain of \mathbf{L}_{μ} in Tasks \mathcal{D}_{T} $\delta(\mathbf{L}_{\mu}) = \mathbb{E}_{\theta \in \Theta, T \in \mathcal{D}_{T}} \left[\Phi(\mathbf{L}_{\mu}(\theta, T)) - \Phi(\theta) \right]$

Maximize: $\mathbb{E}_{\mu \in M, T \in \mathcal{D}_T} \left[\delta(\mathbf{L}_{\mathbf{ML}(\mu, \mathbf{T})}) - \delta(\mathbf{L}_{\mu}) \right] > 0$

Meta-Reinforcement Learning

Learning Algorithm: $\mathbf{L}_{\mu}(\theta,T)$ Algorithm Parameters: μ

Meta-Algorithm: $\mathbf{ML}(\mu,T)$

Meta-Reinforcement Learning Amortizing RL's Data Inefficiency

Learning Algorithm: $\mathbf{L}_{\mu}(\theta, T)$ Algorithm Parameters: μ Meta-Algorithm: $\mathbf{ML}(\mu, T)$ **Policy Gradient** $\mathbf{ML}(\mu, \{T_1, \dots, T_N\}) = \prec$ **Q-learning** ...

This can be very expensive, but we gain the ability to later train any new task with much less data.

Meta-Reinforcement Learning Parameterizing the Learning Algorithm

Learning Algorithm: $\mathbf{L}_{\mu}(\boldsymbol{\theta},T)$ Algorithm Parameters: μ
Meta-Reinforcement Learning Parameterizing the Learning Algorithm

Learning Algorithm: $\mathbf{L}_{\mu}(\theta,T)$ Algorithm Parameters: μ

- Optimization-based:
 - MAML (Finn et al. 2017)
 - Reptile (Nichol et al. 2018)
- **Episodic Control**:
 - Model-Free Episodic Control (Blundell et al. 2016)
 - Neural Episodic Control (Pritzel et al. 2017)
- Memory / Sequence Models:
 - Learning to Learn Using Gradient Descent (Hochreiter 2001)
 - RL² (Duan et al. 2016) Ο
 - L2RL (Wang et al. 2016)

Meta-Reinforcement Learning

Learning Algorithm: $\mathbf{L}_{\mu}(heta,T)$

Algorithm Parameters: μ

- Optimization-based:
 - O MAML (Finn et al. 2017)
 - O Reptile (Nichol et al. 2018)
- Episodic Control:
 - O Model-Free Episodic Control (Blundell et al. 2016)
 - O Neural Episodic Control (Pritzel et al. 2017)
- Memory / Sequence Models:
 - Learning to Learn Using Gradient Descent (Hochreiter 2001)
 - O RL^2 (Duan et al. 2016)
 - O L2RL (Wang et al. 2016)

Meta-RL through Memory

Deep

Duan et al. 2016 / Wang et al. 2016

Algorithm as Architecture

