Efficient Distributed RL:
Actor-Learner Distillation

Deep Reinforcement Learning and Control
Fall 2021, CMU 10-703

Russ Salakhutdinov
(work with Emilio Parisotto)

Machine Learning Department
Carnegie Mellon University

Reinforcement Learning

Overview -
Agent
| - —
Reward &
006 ‘ .« 7
Action u'&f;

Observations

Environment

Agent needs to move in the world physically.
Current actions affect future observations.
Require Spatial and Semantic Understanding.

Carnegie Mellon University

Agent interacts with environment.
Predicts actions given observations (policy).
Receives scalar feedback (reward) from the
environment.
Interaction terminates given H actions:

o Referred to as an episode.

Reinforcement Learning:
e |earn policy that maximizes episodic
reward.

Carnegie Mellon University

(On-Policy) Reinforcement Learning

» Agent formalized as policy 71g.
» Maps states to a distribution over actions.
» Parameterized by () .

» Sample from 7 to collect episodes (31, Q1,71+, SH,QH, TH)-

Want to maximize:

Carnegie Mellon University

(On-Policy) Reinforcement Learning

» Agent formalized as policy 71g.
» Maps states to a distribution over actions.
» Parameterized by () .

» Sample from 7 to collect episodes (31, Q1,71+, SH,QH, TH)-

Want to maximize:

J(0) =E,,

H
>r
t=1
Update g using Policy Gradient:

0J(0) & H
20 ~ ;log mo(as|s:)A (Zk:t rt>

Carnegie Mellon University

Distributed (On-Policy) RL

A\ J

g
\ J

Learner
Episodes (GPU)
Params
Params
Episodes
Actor 1 Actor 4
(CPU) Episodes Params Episodes\ \Params (CPU)
Action l State Actor 2 Actor 3 Action l State
Env1—\ (CPU (CPU E
' State Action State @——‘
: Env 2 Env 3 L \

Larger Models Work Better

Carnegie Mellon University

Gated Transformers /

Position-
Wise
MLP

f

[Layer-Norm]

L
—wP[Gating Layer]
ylk

Multi-Head
Attention

4

[Layer-Norm] /

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al., 2019)
Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)

Gated Transformers
State-of-the-Art in DMLab30

DMLab30

120

100 e

GTrXL (GRU)
LSTM
TrXL

— = MERLIN@100OB

Mean Human Normalized Scores

T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps leloO

Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)
DeepMind Lab (Beattie et al., 2016)

Carnegie Mellon University

Carnegie Mellon University

Gated Transformers
Rapid Memorization of Partially-Observed Environments

Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)

Actor-Latency is a Major Bottleneck

Learner
(GPU)

Params
Episodes

Actor
(_CPU)

Action l

Carnegie Mellon University

% 1dle | Actor
Model | ¢ Traj. | SPS
LSTM 34% 1053
GTrXL 84% 70

Motivation
Smaller Models More Time-Efficient?

9x9 |-Maze (Data-Efficiency)

o o o =
IS o o) o

Mean Episode Success
o
N

0 1 2 3 4
Env. Steps (Million)

1.0

Carnegie Mellon University

9x9 I-Maze (Wall-Clock Time)

m—=32-Dim LSTM
= 4-Layer GTrXL

2 4 6 8 10
Time (minutes)

12

Carnegie Mellon University

Why Not Model Compression?

In supervised learning (with dataset D):

J(0) =E - p|L(x;0)

Do Deep Nets Really Need to be Deep? (Ba et al., 2013)
Distilling the Knowledge in a Neural Network (Hinton et al., 2015)

Carnegie Mellon University

Why Not Model Compression?

In supervised learning (with dataset D):

J(0) =E - p|L(x;0)

J(0) = Egnrmy [L(;0)]

Do Deep Nets Really Need to be Deep? (Ba et al., 2013)
Distilling the Knowledge in a Neural Network (Hinton et al., 2015)

Carnegie Mellon University

Why Not Model Compression?

In supervised learning (with dataset D):

J(0) =E - p|L(x;0)

J(0) = BgnmplL(7;0)]

Depends on Current Parameters - Can'’t Learn Offline

Do Deep Nets Really Need to be Deep? (Ba et al., 2013)
Distilling the Knowledge in a Neural Network (Hinton et al., 2015)

Carnegie Mellon University

Actor-Latency Constraints

» Inference running on un-accelerated hardware:
» CPUs, robotic platforms, mobile phones, etc.
» Potential hard constraint on latency (robot acting)

» Learning running on accelerators.
» GPU, TPU, large-scale CPU cluster, etc.

Goal: Leverage large model capacity while minimizing inference costs

Carnegie Mellon University

Idea: Separate Actor and Learner Models

Actor Model M A

Low-Capacity
Optimized for Inference Speed
Sequential Execution (CPU)

Generates Environment Episodes.

High-Capacity
Optimized for Learning Speed
Easily Parallelizable (GPU)

Actor-Learner Distillation (ALD)

Actor Model M A

Learner Model M)

OO

e S~ e —
e S v
S e e 2
e =~ =TS

Train with RL

Actor-Learner Distillation (ALD)

/Actor Model M A\

/

Distill from Learner

Train with RL

Actor-Learner Distillation (ALD)

/Actor Model M A\

/

Distill from Learner

Train with RL
Regularize towards Actor

Carnegie Mellon University

Actor-Learner Distillation (ALD)

Objectives

Learner Objective: Reinforcement Learning Policy Distillation

AL AL
4 N\ (g N\

J01) = E(sparri)f oo, | LRE((310500,70){L1300) = > Dicr(mo, (-[se) |7, (-|s1))
t=1

Carnegie Mellon University

Actor-Learner Distillation (ALD)

Objectives
Learner Objective: Reinforcement Learning Policy Distillation
A A
4 N\ (g A\
J(OL) = E(s, a0,m) 2 ~mo [LRL((St, a,)13 0L) — ZDKL(WQA('\St)\|7T9L('|8t))]

t=1
Actor Objective: Policy Distillation

Al

4 \

H
J(HA) — E(St,at,'l"t)leNWQA [Z DKL(T‘-GA('lst)HTrQL (St))]

t=1

Carnegie Mellon University

Actor-Learner Distillation (ALD)

Value Distillation Loss

Actor Objective w/ Value Distillation:

» Actor predicts Learner’s value predictions.
» Improves Representation Learning at the feature level.

Policy Distillation Value Distillation

A A

e A\ q
J(04) = E(sisae,ro) i~ , ZDKL(WHA('|5t)||7T0L('\8t)) + §(V9L (st) = Vou(s1))?

t=1

Phasic Policy Optimization (Cobbe et al., 2020)

Actor-Learner Distillation (ALD)

Distributed Structure

Updated Learner

Carnegie Mellon University

Batched Tq-length Ny
Trajectories trajectories . Actors
1 Actor 1
Queue < S
Updated Actor
Parameters

Learner Parameters
A
Bat hOf(;-?oli.cyt . B{—.tl:\crced Trajeoct(t)riets Learner
atched Trajectories | with Learner Outputs Runner
o
Replay
Off-Policy g N
Batched Trajectories v o 'D
- ~, Distill Processes
Distill
4 |
k J

Carnegie Mellon University

Actor-Learner Distillation (ALD)

Actors + Queue

e There are N, parallel Actors (CPU).
o Executes actor model.
o Submits episodes to the Queue

process. I

Ty-length
trajectories

Updated Actor
Parameters

Ny
Actors

Trajecjpries

l Batchgfd

Learner
Runner

e The Queue receives episodes
asynchronously.
o Episodes are accumulated into
Np

batches. , Distill Processes

o The batched trajectories are
then passed to the Learner

Runner.

Carnegie Mellon University

Actor-Learner Distillation (ALD)

Learner Runner

Batched Trajectories
with Learner Outputs

Updated Learner
Parameters

e The Learner Runner process (GPU):
o Runs Learner model on
incoming batches of data.
o Computes learning targets for
Distillation to actor.
o Pass outputs to Learner and
Replay process.

Batched
Trajectories

Learner
Runner R }

e The Replay process manages a replay
buffer:
o Incoming batches of trajectories
are archived.
o Increases data diversity for
distillation.

Carnegie Mellon University

Actor-Learner Distillation (ALD)

Learner

Off-Policy Batched Trajectories
Batched Trajectories ! with Learner Outputs

Updated Learner
Parameters

Learner
Runner

e The Learner process:

o Computes Learner model
updates based on trajectories
from the Learner Runner and
Replay.

o Sends updated learner model
parameters to learner runner

Actor-Learner Distillation (ALD)
Distill

e Distill process:
o Computes Actor model updates
on data from the Replay
process.
o Sends updated actor model
parameters to the Actor
processes.

Off-Policy N
Batched Trajectories oD
Distill Processes
Distill h

)

Carnegie Mellon University

Ny
Actors

Updated Actor
Parameters

Carnegie Mellon University

Actor-Learner Distillation (ALD)

Sampling Distribution Mismatch?

Jri(mo,) = Exmomy [LRL(7;01L)]

Carnegie Mellon University

Actor-Learner Distillation (ALD)

Sampling Distribution Mismatch?

~

Jri(mo,) = Exmomy [LRL(7;01L)]

H
J(OL) = E(sy a0,r0)H , ~mo [LRL((St, a,)it 01) — ZDKL(WGA('!St)HWeL('|St))]
t=1

Carnegie Mellon University

Actor-Learner Distillation (ALD)

Sampling Distribution Mismatch?

JRL (WQL) s <1".CIJ

J(HL) —]E(St,at,’f't)t 1 @ LRL((Stvatart)F ’HL ZDKL 779,4(’3t)||7r9L(|3t))]

We're sampling from 776 4 instead of 770 1,

Carnegie Mellon University

Actor-Learner Distillation (ALD)

Sampling Distribution Mismatch?

JRL (WHL) e 4"33

J(HL) —]E(St,at,’r't)t 1 @ LRL((Stvatvrt)F ’HL ZDKL 7T9A("St)HWGL(|3t))]

We're sampling from 776 4 instead of 770 1,

Need to make sure 7T , ~ 70,

Carnegie Mellon University

Actor-Learner Distillation (ALD)
Distillation steps per RL step (DpRL) Ratio

Meta-Fetch (Data-Efficiency)

DpRL Ratio:
Parameter Updates on Actor c 25
Parameter Updates on Learner =
© 20
o
e Better performance if we o 15
artificially constraint DpRL o
to be high. a
“é' 10 —— Ratio = 2
® = Ratio = 5
= 5 - Ratio = 10
- Ratio = 15
0 10 20 30 40 50

Env. Steps (Million)

Carnegie Mellon University

Actor-Learner Distillation (ALD)
Distillation steps per RL step (DpRL) Ratio

Meta-Fetch (Data-Efficiency)

DpRL Ratio:
Parameter Updates on Actor c 25
Parameter Updates on Learner =
o 20
o
e Better performance if we o 15
artificially constraint DpRL o
to be high. a
“é' 10 —— Ratio = 2
8 ~— Ratio = 5
= Improve speed of distillation = 5 = Ratio =10
- Ratio = 15
0 10 20 30 40 50

Env. Steps (Million)

Actor-Learner Distillation (ALD)
Async Distillation using HOGWILD!

e Run Np parallel Distill processes.
o Each independently
updates actor model
parameters.
o Asynchronously share
parameters (i.e.
HOGWILD!)

Off-Policy
Batched Trajectories

Np
Distill Processes
\

Distill

HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent (Niu et al., 2011)

Carnegie Mellon University

Ny
Actors

Updated Actor
Parameters

Actor-Learner Distillation (ALD)

Complete System

Updated Learner

Carnegie Mellon University

Batched Tq-length Ny
Trajectories trajectories . Actors
1 Actor 1
Queue < S
Updated Actor
Parameters

Learner Parameters
A
Off-Policy ' Batched Trajectories L
. . - ; earner
Batched Trajectories : with Learner Outputs Runner
o
Replay
Off-Policy g N
Batched Trajectories v o 'D
- ~, Distill Processes
Distill
4 |
k J

Carnegie Mellon University

Actor-Learner Distillation Experiments

LSTM Actor -- GTrXL Learner

Actor Model MA
LSTM

@@@@J

Low-Capacity
Optimized for Inference Speed
Sequential Execution (CPU)

Generates Environment Episodes.

Learner Model ML
GTrXL

e High-Capacity
e Optimized for Learning Speed
e Easily Parallelizable (GPU)

Carnegie Mellon University

I-Maze

Remembering Far into the Past

* Indicator: Either blue or pink

> If blue, find the green block
> If pink, find the red block

* Negative reward if agent does not find
correct block in N steps or goes to wrong
block.

Carnegie Mellon University

Carnegie Mellon University

I-Maze

Remembering Far into the Past

I-Maze Results

9x9 I-Maze (Data-Efficiency)

-
o

o
o)

o
o

o
I

o
N

Mean Episode Success

—

Env. Steps (Million)

4

1.0

0.8

0.6

0.4

0.2

Carnegie Mellon University

9x9 I-Maze (Wall-Clock Time)

LSTM
GTrXL

ALD (Ours)
Asymm. AC

0 1 2 3 4

Time (minutes)

Carnegie Mellon University

Transferring Learner’s Inductive Bias

e Local optimum in I-Maze
o Agent enters either goal without discernment.
o Expected reward is 0.5 instead of 0 for not
entering any goal.

e This behaviour does not require long-term memory:
o Only the ability to navigate to a corner.

Carnegie Mellon University

Transferring Learner’s Inductive Bias

15x15 I-Maze (Data-Efficiency)

=
(=}

e Per-seed curves on 15x15 |-Maze

o
(o3

e Model stuck at 0.5 => local optimum.
o Transformer avoids local optimum.
o LSTM agents stuck there for significant
amount of time.
o ALD exits very quickly in comparison.

o
o

o
I

= GTrXL
== ALD (Ours)
= Asymm. AC

0 2 4 6 8 10
Env. Steps (Million)

e ALD LSTM model has learned to rapidly
compress the transformer memory.

o
N

Mean Episode Success

Carnegie Mellon University

Meta-Fetch:

Partially-Observed, Combinatorial Search

Carnegie Mellon University

Meta-Fetch:

Carnegie Mellon University

Meta-Fetch:

Carnegie Mellon University

Meta-Fetch:

Carnegie Mellon University

Meta-Fetch:

Carnegie Mellon University

Meta-Fetch:

=

Carnegie Mellon University

Meta-Fetch:

Carnegie Mellon University

Meta-Fetch:

=

Meta-Fetch Results

20

Mean Episode Return
=
o

Meta-Fetch (Data-Efficiency)

LSTM
GTrXL

ADL (Ours)
Asymm. AC

0 10 20 30 40 50

Env. Steps (Million)

12

10

&~ O

Carnegie Mellon University

Meta-Fetch (Wall-Clock Time)

2 4 6 8
Time (1000 seconds)

Carnegie Mellon University

References

» Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al., 2019)

» Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)

» DeepMind Lab (Beattie et al., 2016)

» Do Deep Nets Really Need to be Deep? (Ba et al., 2013)

» Distilling the Knowledge in a Neural Network (Hinton et al., 2015)

» Phasic Policy Optimization (Cobbe et al., 2020)

» HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent (Niu et al., 2011)

Carnegie Mellon University

Data Inefficiency Restricts Real-World Impact

."\.~ Google DeepMind

AlphaZero AlphaStar Rubik’s Cube

140 million Go games >1 million SC2 games 13,000 simulation years

» Data inefficiency is a critical obstruction to Deep RL’s widespread use:
» Currently Deep RL is constrained to environments with viable simulators.

» Recent off-policy and model-based algorithms show improvements.
» But still require extremely large amounts of data.

54 Carnegie Mellon University

Addressing the Data Inefficiency of Deep RL

RL Algorithms work over any Markov Decision Process (MDP).

The Set of
All MDPs

Key Insight:
» Specialize the learning algorithm.

Carnegie Mellon University

Addressing the Data Inefficiency of Deep RL

The Set of ol RL works over any MDP.
All MDPs o
Key Insight:

» Develop specialized
learning algorithms.

Carnegie Mellon University

Specialization to a Distribution of Environments

The Set of
All MDPs

MDPs Controlling
Shadow Hand

MM u\“.

ll

Carnegie Mellon University

58 Carnegie Mellon University

Dexterous
Manipulation

Carnegie Mellon University

Dexterous AP

Manipulation
Safe Manipulation

60 Carnegie Mellon University

A Learning Approach to Specialization

Solving Rubik’s Cube

Dexterous

Manipulation
Safe Manipulation

Carnegie Mellon University

Standard Reinforcement Learning

Task [Task 13 Task [3
RL
RL Algorith L
Algorithm gorm Algorithm

Solving Rubik’s Cube

Dexterous
Manipulation

Safe Manipulation

Carnegie Mellon University

Meta-Learning

Task T2
Meta Task
Alaorithm <: Distribution
d Parameters

Safe Manipulation
Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

Carnegie Mellon University

Meta Reinforcement Learning

Dataset TQ

Dataset Tl Dataset T3
@ < -
Meta
Meta | () v Algorithm = I Meta - o)

Algorithm Algorithm

Solving Rubik’s Cube

Dexterous
Manipulation

Safe Manipulation
Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

Carnegie Mellon University

Meta Reinforcement Learning

Dataset TQ

Dataset Tl Dataset T3
@ < -
Meta
Meta) (= v Algorithm = I Meta - o)

Algorithm Algorithm

Solving Rubik’s Cube

Dexterous
Manipulation

Safe Manipulation
Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

Carnegie Mellon University

Meta Reinforcement Learning

Dataset TQ

Dataset Tl Dataset T3
Met <:
eta
Met : Meta
Algoeritar:m g ,U Algorithm - 'LL Algorithm g lu
Backpropagate
@ Backpropagate Py & Update @ Backpropagate

& Update & Update

Solving Rubik’s Cube

Dexterous
Manipulation

Safe Manipulation
Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

Meta-Learning as a formalism

Definitions:

/

(S

Task: T

N

Experience: o € [’

Agent Parameters: (9
Task Distribution: DT

Performance Measure: qb(@, 33)

4

Carnegie Mellon University

Expected Performance in TaskT

(0)

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

EwET[¢(07 CIZ)]

Carnegie Mellon University

Meta-Learning as a formalism

Definitions:

/ Task: [’ \ Expected Performance in Task 1’

Experience: o € [’ — ESBET[¢(07 CE')]

Agent Parameters: (9
Task Distribution: D Expected Performance Gain of L, in Tasks D
Performance Measure: qb(@,a:) 5(LN) . EQE@,TGDT [(I)(LM (97 T)) o @(9)]

Learning Algorithm: L, (0, T')

ngrithm Parameters: U /

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

Carnegie Mellon University

Meta-Learning as a formalism

Definitions:

/ Task: T \ Expected Performance in Task 1
T ©(0) = Ezer[¢(0,2)]

Experience: p &

Agent Parameters: (9
Task Distribution: D Expected Performance Gain of L, in Tasks D

Performance Measure: qb(@,:l:) 5(L“) - EQE@,TEDT [(I)(LM (97 T)) o @(9)]

Learning Algorithm: L, (0, T') Maximi
aximize.

Euemrens [0(LmrueT)) — 06(Ly)] >0

Algorithm Parameters: 1

<

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

Meta-Algorithm: ML (1, T')

Carnegie Mellon University

Meta_RL 7:; . (87 A? 7-7 /}/7 R)

= (81,a1,T1,---,SH,QH,TH), T ~ Tg, T’
-¥n
t

Expected Performance in Task i

Definitions: ¢(

/ Task: [’ 1}

Experience: p &

S
|

Agent Parameters: (9 CI)(@) —F g 2 :Tt
- r~Tg,
Task Distribution: DT L ¢t |
Expected Performance Gain of Lu in TasksDT

0(Ly) = Egeo,reny [P(L(0,T)) — ©(0),

Performance Measure: ¢(97 33)

Learning Algorithm: L, (0, T')

Algorithm Parameters: 1

Maximize:
K Meta-Algorithm: ML(,LLﬂ E,eMmTeDy [5(LML(/.L,T)) — 5(1‘#)] > 0

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

Carnegie Mellon University

Meta-Reinforcement Learning

C N

Learning Algorithm: L, (0, T')

Algorithm Parameters: 1

9 Meta-Algorithm: ML (1, T')

Carnegie Mellon University

Meta-Reinforcement Learning
Amortizing RL’s Data Inefficiency

C N

Learning Algorithm: L, (0, T')

Algorithm Parameters: 1

9 Meta-Algorithm: ML (1, T')

Policy Gradient

h/.[]:J<ILL7 {T]_7 . 7TN}) :< Q-learning

2 B

This can be very expensive, but we gain the ability to later train any new task with much less data.

Carnegie Mellon University

Meta-Reinforcement Learning
Parameterizing the Learning Algorithm

[Learning Algorithm: L, (0, T)}
A

Igorithm Parameters: [t

Carnegie Mellon University

Meta-Reinforcement Learning
Parameterizing the Learning Algorithm

" e Optimization-based:
O MAML (Finn et al. 2017)
O Reptile (Nichol et al. 2018)

e Episodic Control:
O Model-Free Episodic Control (Biundell et al. 2016)
O Neural Episodic Control (pritzel et al. 2017)

e Memory / Sequence Models:

O Learning to Learn Using Gradient Descent (Hochreiter 2001)
O RLA"2 (Duan et al. 2016)
O L2RL (wang et al. 2016)

Learning Algorithm: L, (0, T') <

Algorithm Parameters: 1

Carnegie Mellon University

Meta-Reinforcement Learning

" e Optimization-based:
O MAML (Finn et al. 2017)
O Reptile (Nichol et al. 2018)

e Episodic Control:
O Model-Free Episodic Control (Biundell et al. 2016)
O Neural Episodic Control (pritzel et al. 2017)

e Memory / Sequence Models:

O Learning to Learn Using Gradient Descent (Hochreiter 2001)
O RLA"2 (Duan et al. 2016)
O L2RL (wang et al. 2016)

Learning Algorithm: L, (0, T') <

Algorithm Parameters: 1

Meta-RL through Memory

Stqt rE done?

A

Environment Instance Tz

A

Carnegie Mellon University

Meta-Agent Interaction History

with [’

-

,I: .
A
4 A\
Episode Episode Episode N\
1 2 E
(81,a1,6p)" (81,81,1p)? (s4,84,1)F
(82,89,13)" (82,@2,3)? (Sp.85.r3)F
(83,83,1y)" (83,83,14)? (3,83,1)F

(St.1 En 1)

(Sh-1.@m)"!

(S-1,@p,TH)?

\S

s

RL?/ L2RL

E
St+1

rE done?

Deep
LSTM
(S4,81,15)"
(S2,89,13)"
(S3,83.14)"

A

Environment Instance Tz

(Sh-1.@m)"!

A

Duan et al. 2016 / Wang et al. 2016

(51,84,r,)?

(52,85,r3)?

(83,83,14)?

(Sh-1,@H,MW)?

s

=2

\.

Carnegie Mellon University

Algorithm as Architecture

Stqt rE done?

A

Environment Instance Tz

A

Carnegie Mellon University

Meta-Agent Interaction History

with [’

-

,I: .
A
4 A\
Episode Episode Episode N\
1 2 E
(81,a1,6p)" (81,81,1p)? (s4,84,1)F
(82,89,13)" (82,@2,3)? (Sp.85.r3)F
(83,83,1y)" (83,83,14)? (3,83,1)F

(St.1 En 1)

(Sh-1.@m)"!

(S-1,@p,TH)?

\S

s

