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Agent needs to move in the world physically. 
Current actions affect future observations. 

Require Spatial and Semantic Understanding. 

Action 
Observations 

Agent 

Environment 

●  Agent interacts with environment. 
●  Predicts actions given observations (policy). 
●  Receives scalar feedback (reward) from the 

environment. 
●  Interaction terminates given H actions: 

○  Referred to as an episode. 
 
 

Reinforcement Learning:  
●  Learn policy that maximizes episodic 

reward. 

Overview 
Reinforcement	Learning	

Reward 



(On-Policy)	Reinforcement	Learning	
▶  Agent formalized as policy       . 

▶  Maps states to a distribution over actions. 
▶  Parameterized by     . 

▶  Sample from       to collect episodes                                                       . 

 
Want to maximize:  
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Update    using Policy Gradient: 
 



Distributed	(On-Policy)	RL	
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Larger	Models	Work	Better		
Gated Transformers 

Layer-Norm 

Multi-Head 
Attention 

Position- 
Wise 
MLP 

Layer-Norm 

GTrXL 

Gating Layer 

Gating Layer 

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al., 2019) 
Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019) 



Gated	Transformers	
State-of-the-Art in DMLab30 
 
 

Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019) 
DeepMind Lab (Beattie et al., 2016) 



Gated	Transformers	
Rapid Memorization of Partially-Observed Environments 
 
 

Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019) 



Latency-Constrained	Acting	
Large models cannot always be deployed during training 



Actor-Latency	is	a	Major	Bottleneck	
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Motivation	
Smaller Models More Time-Efficient? 



Why	Not	Model	Compression?	
In supervised learning (with dataset      ): 
 
 
 

Do Deep Nets Really Need to be Deep? (Ba et al., 2013) 
Distilling the Knowledge in a Neural Network (Hinton et al., 2015) 
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In reinforcement learning: 

Why	Not	Model	Compression?	
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In supervised learning (with dataset      ): 
 
 
 
In reinforcement learning: 

Depends on Current Parameters            Can’t Learn Offline 

Why	Not	Model	Compression?	

Do Deep Nets Really Need to be Deep? (Ba et al., 2013) 
Distilling the Knowledge in a Neural Network (Hinton et al., 2015) 



Actor-Latency	Constraints	

▶  Inference running on un-accelerated hardware: 
▶  CPUs, robotic platforms, mobile phones, etc. 
▶  Potential hard constraint on latency (robot acting) 

 
▶  Learning running on accelerators. 

▶  GPU, TPU, large-scale CPU cluster, etc. 

 
Goal: Leverage large model capacity while minimizing inference costs  
 



Idea:	Separate	Actor	and	Learner	Models	

Actor Model Learner Model 

●  High-Capacity 
●  Optimized for Learning Speed 
●  Easily Parallelizable (GPU) 

●  Low-Capacity 
●  Optimized for Inference Speed 
●  Sequential Execution (CPU) 
●  Generates Environment Episodes. 



Actor-Learner	Distillation	(ALD)	

Actor Model Learner Model 

Train with RL 



Actor-Learner	Distillation	(ALD)	

Actor Model Learner Model 

Train with RL 

Distill from Learner 



Actor-Learner	Distillation	(ALD)	

Actor Model Learner Model 

Train with RL 
Regularize towards Actor 

Distill from Learner 



 
 
Learner Objective: 
 
 
 
 
 

Actor-Learner	Distillation	(ALD)	
Objectives 

Policy Distillation Reinforcement Learning 



 
 
Learner Objective: 
 
 
 
Actor Objective: 
 
 

Actor-Learner	Distillation	(ALD)	
Objectives 

Policy Distillation 

Policy Distillation 

Reinforcement Learning 



Actor Objective w/ Value Distillation: 
▶  Actor predicts Learner’s value predictions. 
▶  Improves Representation Learning at the feature level. 

 

Value Distillation Loss 
Actor-Learner	Distillation	(ALD)	

Phasic Policy Optimization (Cobbe et al., 2020) 

Value Distillation Policy Distillation 



Distributed Structure 
Actor-Learner	Distillation	(ALD)	



Actors + Queue 
Actor-Learner	Distillation	(ALD)	

●  There are NA parallel Actors (CPU). 
○  Executes actor model. 
○  Submits episodes to the Queue 

process. 

 

●  The Queue receives episodes 
asynchronously. 
○  Episodes are accumulated into 

batches.  
○  The batched trajectories are 

then passed to the Learner 
Runner. 

 
 



Learner Runner 
Actor-Learner	Distillation	(ALD)	

●  The Learner Runner process (GPU):  
○  Runs Learner model on 

incoming batches of data. 
○  Computes learning targets for 

Distillation to actor. 
○  Pass outputs to Learner and 

Replay process. 
 

●  The Replay process manages a replay 
buffer: 
○  Incoming batches of trajectories 

are archived.  
○  Increases data diversity for 

distillation. 



Learner 
Actor-Learner	Distillation	(ALD)	

●  The Learner process: 
○  Computes Learner model 

updates based on trajectories 
from the Learner Runner and 
Replay. 

○  Sends updated learner model 
parameters to learner runner 



Distill 
Actor-Learner	Distillation	(ALD)	

●  Distill process: 
○  Computes Actor model updates 

on data from the Replay 
process. 

○  Sends updated actor model 
parameters to the Actor 
processes. 



Sampling Distribution Mismatch? 
Actor-Learner	Distillation	(ALD)	



Sampling Distribution Mismatch? 
Actor-Learner	Distillation	(ALD)	



Sampling Distribution Mismatch? 

We’re sampling from           instead of  

Actor-Learner	Distillation	(ALD)	



Sampling Distribution Mismatch? 

Need to make sure 

Actor-Learner	Distillation	(ALD)	

We’re sampling from           instead of  



Distillation steps per RL step (DpRL) Ratio 
Actor-Learner	Distillation	(ALD)	

DpRL Ratio:  
 
 
 
 
●  Better performance if we 

artificially constraint DpRL 
to be high. 

 
 
 
 



Distillation steps per RL step (DpRL) Ratio 
Actor-Learner	Distillation	(ALD)	

DpRL Ratio:  
 
 
 
 
●  Better performance if we 

artificially constraint DpRL 
to be high. 

 
 
 
 ⇒ Improve speed of distillation 



Async Distillation using HOGWILD! 
Actor-Learner	Distillation	(ALD)	

HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent (Niu et al., 2011) 

●  Run ND parallel Distill processes. 
○  Each independently 

updates actor model 
parameters. 

○  Asynchronously share 
parameters (i.e. 
HOGWILD!) 



Complete System 
Actor-Learner	Distillation	(ALD)	



Actor-Learner	Distillation	Experiments	

Actor Model Learner Model 

●  High-Capacity 
●  Optimized for Learning Speed 
●  Easily Parallelizable (GPU) 

●  Low-Capacity 
●  Optimized for Inference Speed 
●  Sequential Execution (CPU) 
●  Generates Environment Episodes. 

LSTM GTrXL 

LSTM Actor -- GTrXL Learner 



•  Indicator: Either blue or pink 
 
Ø  If blue, find the green block 
Ø  If pink, find the red block 

•  Negative reward if agent does not find 
correct block in N steps or goes to wrong 
block. 

I-Maze	
Remembering Far into the Past 





I-Maze	
Remembering Far into the Past 



I-Maze	Results	



Transferring	Learner’s	Inductive	Bias	

 
●  Local optimum in I-Maze 

○  Agent enters either goal without discernment. 
○  Expected reward is 0.5 instead of 0 for not 

entering any goal. 
  

●  This behaviour does not require long-term memory: 
○  Only the ability to navigate to a corner. 



Transferring	Learner’s	Inductive	Bias	

 
●  Per-seed curves on 15x15 I-Maze 

 
●  Model stuck at 0.5 => local optimum. 

○  Transformer avoids local optimum. 
○  LSTM agents stuck there for significant 

amount of time. 
○  ALD exits very quickly in comparison. 

 
●  ALD LSTM model has learned to rapidly 

compress the transformer memory. 



Meta-Fetch:		
Partially-Observed, Combinatorial Search 



Meta-Fetch:		



Meta-Fetch:		



Meta-Fetch:		



Meta-Fetch:		



Meta-Fetch:		



Meta-Fetch:		



Meta-Fetch:		

... 



Meta-Fetch	Results	
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Data	Inefficiency	Restricts	Real-World	Impact	

▶  Data inefficiency is a critical obstruction to Deep RL’s widespread use: 
▶  Currently Deep RL is constrained to environments with viable simulators. 

▶  Recent off-policy and model-based algorithms show improvements. 
▶  But still require extremely large amounts of data. 

Rubik’s Cube 
13,000 simulation years 

AlphaZero 
140 million Go games 

AlphaStar 
>1 million SC2 games 
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Addressing	the	Data	Inefficiency	of	Deep	RL	

RL Algorithms work over any Markov Decision Process (MDP). 
 
 
 
 
 
 
 
Key Insight: 
▶  Specialize the learning algorithm. 

The Set of 
All MDPs 
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The Set of 
All MDPs 

Addressing	the	Data	Inefficiency	of	Deep	RL	

RL works over any MDP. 
 
Key Insight: 
▶  Develop specialized 

learning algorithms. 
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Specialization	to	a	Distribution	of	Environments	

MDPs Controlling  
Shadow Hand  

The Set of 
All MDPs 
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Dexterous 
Manipulation 
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Dexterous 
Manipulation 

Safe Manipulation 
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Dexterous 
Manipulation 

Safe Manipulation 

Solving Rubik’s Cube 

A	Learning	Approach	to	Specialization	
60 



      Task 

RL 
Algorithm 
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RL 
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      Task 

RL 
Algorithm 

61 



Safe Manipulation 

Meta-Learning	
       Task 

Meta 
Algorithm 

Task 
Distribution 

Parameters   . 

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650. 
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   Dataset 

Meta 
Algorithm 

Dexterous 
Manipulation 

Safe Manipulation 

Solving Rubik’s Cube 

Meta	Reinforcement	Learning	
   Dataset 

Meta 
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   Dataset 

Meta 
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Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650. 
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   Dataset 

Meta 
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   Dataset 

Meta 
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Dexterous 
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Safe Manipulation 

Solving Rubik’s Cube 

Meta	Reinforcement	Learning	
   Dataset 

Meta 
Algorithm 

   Dataset 

Meta 
Algorithm 

Backpropagate 
& Update 

Backpropagate 
& Update Backpropagate 

& Update 

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650. 

65 



Meta-Learning	as	a	formalism	

Experience: 
Task: 

Agent Parameters: 

Task Distribution: 

Performance Measure: 

Expected Performance in Task  
Definitions: 

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650. 
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Meta-Learning	as	a	formalism	

Experience: 
Task: 

Agent Parameters: 

Task Distribution: 

Performance Measure: 

Expected Performance in Task  

Learning Algorithm: 

Algorithm Parameters: 

Expected Performance Gain of        in Tasks 

Definitions: 

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650. 
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Meta-Learning	as	a	formalism	

Experience: 
Task: 

Agent Parameters: 

Task Distribution: 

Performance Measure: 

Expected Performance in Task  

Learning Algorithm: 

Algorithm Parameters: 

Expected Performance Gain of        in Tasks 

Meta-Algorithm: 

Maximize: 

Definitions: 

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650. 
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Meta-RL	

Experience: 
Task: 

Agent Parameters: 

Task Distribution: 

Performance Measure: 

Expected Performance in Task  

Learning Algorithm: 

Algorithm Parameters: 

Expected Performance Gain of        in Tasks 

Meta-Algorithm: 

Maximize: 

Definitions: 

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650. 
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Meta-Reinforcement	Learning		

Learning Algorithm: 

Algorithm Parameters: 

Meta-Algorithm: 
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Learning Algorithm: 

Algorithm Parameters: 

Meta-Algorithm: 

Policy Gradient 

Q-learning 

... 

Meta-Reinforcement	Learning		

This can be very expensive, but we gain the ability to later train any new task with much less data. 

Amortizing RL’s Data Inefficiency 
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Meta-Reinforcement	Learning		

Learning Algorithm: 

Algorithm Parameters: 

Parameterizing the Learning Algorithm 
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Meta-Reinforcement	Learning		

●  Optimization-based: 
○  MAML (Finn et al. 2017) 

○  Reptile (Nichol et al. 2018) 

●  Episodic Control: 
○  Model-Free Episodic Control (Blundell et al. 2016) 

○  Neural Episodic Control (Pritzel et al. 2017) 

●  Memory / Sequence Models: 
○  Learning to Learn Using Gradient Descent (Hochreiter 2001) 
○  RL^2 (Duan et al. 2016) 

○  L2RL (Wang et al. 2016) 

Learning Algorithm: 

Algorithm Parameters: 

Parameterizing the Learning Algorithm 
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●  Optimization-based: 
○  MAML (Finn et al. 2017) 
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Meta-Reinforcement	Learning		

Learning Algorithm: 

Algorithm Parameters: 
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Meta-RL	through	Memory		
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RL2	/	L2RL	

Deep 
LSTM 
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Algorithm	as	Architecture	
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