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Reinforcement Learning

Overview -
Agent
| - —
Reward &
006 ‘ .« 7
Action u'&f;

Observations

Environment

Agent needs to move in the world physically.
Current actions affect future observations.
Require Spatial and Semantic Understanding.
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Agent interacts with environment.
Predicts actions given observations (policy).
Receives scalar feedback (reward) from the
environment.
Interaction terminates given H actions:

o Referred to as an episode.

Reinforcement Learning:
e |earn policy that maximizes episodic
reward.




Carnegie Mellon University

(On-Policy) Reinforcement Learning

» Agent formalized as policy 71g.
» Maps states to a distribution over actions.
» Parameterized by () .

» Sample from 7 to collect episodes (31, Q1,71+, SH,QH, TH)-

Want to maximize:
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(On-Policy) Reinforcement Learning

» Agent formalized as policy 71g.
» Maps states to a distribution over actions.
» Parameterized by () .

» Sample from 7 to collect episodes (31, Q1,71+, SH,QH, TH)-

Want to maximize:

J(0) =E,,

H
>r
t=1
Update g using Policy Gradient:

0J(0) & H
20 ~ ;log mo(as|s:)A (Zk:t rt>
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Distributed (On-Policy) RL

A\ J
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Params
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Episodes
Actor 1 Actor 4
(CPU) Episodes Params Episodes\ \Params (CPU)
Action l State Actor 2 Actor 3 Action l State
Env1—\ (CPU (CPU E
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Larger Models Work Better
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Gated Transformers /

Position-
Wise
MLP

f

[ Layer-Norm ]

L
—wP[ Gating Layer ]
ylk

Multi-Head
Attention

4

[ Layer-Norm ] /

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al., 2019)
Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)




Gated Transformers
State-of-the-Art in DMLab30

DMLab30

120

100 e

GTrXL (GRU)
LSTM
TrXL

— = MERLIN@100OB

Mean Human Normalized Scores

T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Env. Steps leloO

Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)
DeepMind Lab (Beattie et al., 2016)
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Gated Transformers
Rapid Memorization of Partially-Observed Environments

Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)






Actor-Latency is a Major Bottleneck

Learner
(GPU)

Params
Episodes

Actor
(_CPU)

Action l
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% 1dle | Actor
Model | ¢ Traj. | SPS
LSTM 34% 1053
GTrXL 84% 70




Motivation
Smaller Models More Time-Efficient?

9x9 |-Maze (Data-Efficiency)

o o o =
IS o o) o

Mean Episode Success
o
N

0 1 2 3 4
Env. Steps (Million)

1.0
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9x9 I-Maze (Wall-Clock Time)

m—=32-Dim LSTM
= 4-Layer GTrXL

2 4 6 8 10
Time (minutes)

12
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Why Not Model Compression?

In supervised learning (with dataset D ):

J(0) =E - p|L(x;0)

Do Deep Nets Really Need to be Deep? (Ba et al., 2013)
Distilling the Knowledge in a Neural Network (Hinton et al., 2015)



Carnegie Mellon University

Why Not Model Compression?

In supervised learning (with dataset D ):

J(0) =E - p|L(x;0)

J(0) = Egnrmy [L(;0)]

Do Deep Nets Really Need to be Deep? (Ba et al., 2013)
Distilling the Knowledge in a Neural Network (Hinton et al., 2015)
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Why Not Model Compression?

In supervised learning (with dataset D ):

J(0) =E - p|L(x;0)

J(0) = BgnmplL(7;0)]

Depends on Current Parameters - Can'’t Learn Offline

Do Deep Nets Really Need to be Deep? (Ba et al., 2013)
Distilling the Knowledge in a Neural Network (Hinton et al., 2015)
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Actor-Latency Constraints

» Inference running on un-accelerated hardware:
» CPUs, robotic platforms, mobile phones, etc.
» Potential hard constraint on latency (robot acting)

» Learning running on accelerators.
» GPU, TPU, large-scale CPU cluster, etc.

Goal: Leverage large model capacity while minimizing inference costs
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Idea: Separate Actor and Learner Models

Actor Model M A

Low-Capacity
Optimized for Inference Speed
Sequential Execution (CPU)

Generates Environment Episodes.

High-Capacity
Optimized for Learning Speed
Easily Parallelizable (GPU)



Actor-Learner Distillation (ALD)

Actor Model M A

Learner Model M)

OO

e S~ e —
e S v
S e e 2
e =~ =TS

Train with RL



Actor-Learner Distillation (ALD)

/Actor Model M A\

/

Distill from Learner

Train with RL



Actor-Learner Distillation (ALD)

/Actor Model M A\

/

Distill from Learner

Train with RL
Regularize towards Actor
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Actor-Learner Distillation (ALD)

Objectives

Learner Objective: Reinforcement Learning Policy Distillation

AL AL
4 N\ (g N\

J01) = E(sparri)f oo, | LRE((310500,70){L1300) = > Dicr(mo, (-[se) |7, (-|s1))
t=1
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Actor-Learner Distillation (ALD)

Objectives
Learner Objective: Reinforcement Learning Policy Distillation
A A
4 N\ (g A\
J(OL) = E(s, a0,m) 2 ~mo [LRL((St, a, )13 0L) — ZDKL(WQA('\St)\|7T9L('|8t))]

t=1
Actor Objective: Policy Distillation

Al

4 \

H
J(HA) — E(St,at,'l"t)leNWQA [Z DKL(T‘-GA('lst)HTrQL (St))]

t=1
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Actor-Learner Distillation (ALD)

Value Distillation Loss

Actor Objective w/ Value Distillation:

» Actor predicts Learner’s value predictions.
» Improves Representation Learning at the feature level.

Policy Distillation Value Distillation

A A

e A\ q
J(04) = E(sisae,ro) i~ , ZDKL(WHA('|5t)||7T0L('\8t)) + §(V9L (st) = Vou(s1))?

t=1

Phasic Policy Optimization (Cobbe et al., 2020)



Actor-Learner Distillation (ALD)

Distributed Structure

Updated Learner
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Batched Tq-length Ny
Trajectories trajectories . Actors
1 Actor 1
Queue < S
Updated Actor
Parameters

Learner Parameters
A
Bat hOf(;-?oli.cyt . B{—.tl:\crced Trajeoct(t)riets Learner
atched Trajectories | with Learner Outputs Runner
o
Replay
Off-Policy g N
Batched Trajectories v o 'D
- ~, Distill Processes
Distill
4 |
k J
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Actor-Learner Distillation (ALD)

Actors + Queue

e There are N, parallel Actors (CPU).
o  Executes actor model.
o  Submits episodes to the Queue

process. I

Ty-length
trajectories

Updated Actor
Parameters

Ny
Actors

Trajecjpries

l Batchgfd

Learner
Runner

e The Queue receives episodes
asynchronously.
o Episodes are accumulated into
Np

batches. , Distill Processes

o The batched trajectories are
then passed to the Learner

Runner.
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Actor-Learner Distillation (ALD)

Learner Runner

Batched Trajectories
with Learner Outputs

Updated Learner
Parameters

e The Learner Runner process (GPU):
o Runs Learner model on
incoming batches of data.
o  Computes learning targets for
Distillation to actor.
o Pass outputs to Learner and
Replay process.

Batched
Trajectories

Learner
Runner R }

e The Replay process manages a replay
buffer:
o Incoming batches of trajectories
are archived.
o Increases data diversity for
distillation.
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Actor-Learner Distillation (ALD)

Learner

Off-Policy Batched Trajectories
Batched Trajectories ! with Learner Outputs

Updated Learner
Parameters

Learner
Runner

e The Learner process:

o  Computes Learner model
updates based on trajectories
from the Learner Runner and
Replay.

o  Sends updated learner model
parameters to learner runner




Actor-Learner Distillation (ALD)
Distill

e Distill process:
o  Computes Actor model updates
on data from the Replay
process.
o Sends updated actor model
parameters to the Actor
processes.

Off-Policy N
Batched Trajectories oD
Distill Processes
Distill h

)
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Ny
Actors

Updated Actor
Parameters
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Actor-Learner Distillation (ALD)

Sampling Distribution Mismatch?

Jri(mo,) = Exmomy [LRL(7;01L)]
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Actor-Learner Distillation (ALD)

Sampling Distribution Mismatch?

~

Jri(mo,) = Exmomy [LRL(7;01L)]

H
J(OL) = E(sy a0,r0)H , ~mo [LRL((St, a, )it 01) — ZDKL(WGA('!St)HWeL('|St))]
t=1
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Actor-Learner Distillation (ALD)

Sampling Distribution Mismatch?

JRL (WQL) s <1".CIJ

J(HL) — ]E(St,at,’f't)t 1 @ LRL((Stvatart)F ’HL ZDKL 779,4( ’3t)||7r9L( |3t))]

We're sampling from 776 4 instead of 770 1,
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Actor-Learner Distillation (ALD)

Sampling Distribution Mismatch?

JRL (WHL) e 4"33

J(HL) — ]E(St,at,’r't)t 1 @ LRL((Stvatvrt)F ’HL ZDKL 7T9A( "St)HWGL( |3t))]

We're sampling from 776 4 instead of 770 1,

Need to make sure 7T , ~ 70,
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Actor-Learner Distillation (ALD)
Distillation steps per RL step (DpRL) Ratio

Meta-Fetch (Data-Efficiency)

DpRL Ratio:
# Parameter Updates on Actor c 25
# Parameter Updates on Learner =
© 20
o
e Better performance if we o 15
artificially constraint DpRL o
to be high. a
“é' 10 —— Ratio = 2
® = Ratio = 5
= 5 - Ratio = 10
- Ratio = 15
0 10 20 30 40 50

Env. Steps (Million)
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Actor-Learner Distillation (ALD)
Distillation steps per RL step (DpRL) Ratio

Meta-Fetch (Data-Efficiency)

DpRL Ratio:
# Parameter Updates on Actor c 25
# Parameter Updates on Learner =
o 20
o
e Better performance if we o 15
artificially constraint DpRL o
to be high. a
“é' 10 —— Ratio = 2
8 ~— Ratio = 5
= Improve speed of distillation = 5 = Ratio =10
- Ratio = 15
0 10 20 30 40 50

Env. Steps (Million)



Actor-Learner Distillation (ALD)
Async Distillation using HOGWILD!

e Run Np parallel Distill processes.
o Each independently
updates actor model
parameters.
o Asynchronously share
parameters (i.e.
HOGWILD!)

Off-Policy
Batched Trajectories

Np
Distill Processes
\

Distill

HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent (Niu et al., 2011)
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Ny
Actors

Updated Actor
Parameters



Actor-Learner Distillation (ALD)

Complete System

Updated Learner

Carnegie Mellon University

Batched Tq-length Ny
Trajectories trajectories . Actors
1 Actor 1
Queue < S
Updated Actor
Parameters

Learner Parameters
A
Off-Policy ' Batched Trajectories L
. . - ; earner
Batched Trajectories : with Learner Outputs Runner
o
Replay
Off-Policy g N
Batched Trajectories v o 'D
- ~, Distill Processes
Distill
4 |
k J
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Actor-Learner Distillation Experiments

LSTM Actor -- GTrXL Learner

Actor Model MA
LSTM

@@@@J

Low-Capacity
Optimized for Inference Speed
Sequential Execution (CPU)

Generates Environment Episodes.

Learner Model ML
GTrXL

e High-Capacity
e Optimized for Learning Speed
e Easily Parallelizable (GPU)
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I-Maze

Remembering Far into the Past

* Indicator: Either blue or pink

> If blue, find the green block
> If pink, find the red block

* Negative reward if agent does not find
correct block in N steps or goes to wrong
block.
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I-Maze

Remembering Far into the Past




I-Maze Results

9x9 I-Maze (Data-Efficiency)

-
o

o
o)

o
o

o
I

o
N

Mean Episode Success

—

Env. Steps (Million)
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9x9 I-Maze (Wall-Clock Time)

LSTM
GTrXL

ALD (Ours)
Asymm. AC

0 1 2 3 4

Time (minutes)
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Transferring Learner’s Inductive Bias

e Local optimum in I-Maze
o Agent enters either goal without discernment.
o Expected reward is 0.5 instead of 0 for not
entering any goal.

e This behaviour does not require long-term memory:
o Only the ability to navigate to a corner.
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Transferring Learner’s Inductive Bias

15x15 I-Maze (Data-Efficiency)

=
(=}

e Per-seed curves on 15x15 |-Maze

o
(o3

e Model stuck at 0.5 => local optimum.
o Transformer avoids local optimum.
o LSTM agents stuck there for significant
amount of time.
o ALD exits very quickly in comparison.

o
o

o
I

= GTrXL
== ALD (Ours)
= Asymm. AC

0 2 4 6 8 10
Env. Steps (Million)

e ALD LSTM model has learned to rapidly
compress the transformer memory.

o
N

Mean Episode Success
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Meta-Fetch:

Partially-Observed, Combinatorial Search
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Meta-Fetch:
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Meta-Fetch:
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Meta-Fetch:
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Meta-Fetch:
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Meta-Fetch:

=
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Meta-Fetch:




Carnegie Mellon University

Meta-Fetch:

=



Meta-Fetch Results

20

Mean Episode Return
=
o

Meta-Fetch (Data-Efficiency)

LSTM
GTrXL

ADL (Ours)
Asymm. AC

0 10 20 30 40 50

Env. Steps (Million)

12

10

&~ O
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Meta-Fetch (Wall-Clock Time)

2 4 6 8
Time (1000 seconds)



Carnegie Mellon University

References

» Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al., 2019)

» Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)

» DeepMind Lab (Beattie et al., 2016)

» Do Deep Nets Really Need to be Deep? (Ba et al., 2013)

» Distilling the Knowledge in a Neural Network (Hinton et al., 2015)

» Phasic Policy Optimization (Cobbe et al., 2020)

» HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent (Niu et al., 2011)



Carnegie Mellon University

Data Inefficiency Restricts Real-World Impact

."\.~ Google DeepMind

AlphaZero AlphaStar Rubik’s Cube

140 million Go games >1 million SC2 games 13,000 simulation years

» Data inefficiency is a critical obstruction to Deep RL’s widespread use:
» Currently Deep RL is constrained to environments with viable simulators.

» Recent off-policy and model-based algorithms show improvements.
» But still require extremely large amounts of data.
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Addressing the Data Inefficiency of Deep RL

RL Algorithms work over any Markov Decision Process (MDP).

The Set of
All MDPs

Key Insight:
» Specialize the learning algorithm.
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Addressing the Data Inefficiency of Deep RL

The Set of ol RL works over any MDP.
All MDPs o
Key Insight:

» Develop specialized
learning algorithms.
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Specialization to a Distribution of Environments

The Set of
All MDPs

MDPs Controlling
Shadow Hand

MM u\“.

ll
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Dexterous
Manipulation
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Dexterous AP

Manipulation
Safe Manipulation
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A Learning Approach to Specialization

Solving Rubik’s Cube

Dexterous

Manipulation
Safe Manipulation
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Standard Reinforcement Learning

Task [ Task 13 Task [ 3
RL
RL Algorith L
Algorithm gorm Algorithm

Solving Rubik’s Cube

Dexterous
Manipulation

Safe Manipulation
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Meta-Learning

Task T2
Meta Task
Alaorithm <: Distribution
d Parameters

Safe Manipulation
Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.
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Meta Reinforcement Learning

Dataset TQ

Dataset Tl Dataset T3
@ < -
Meta
Meta | () v Algorithm = I Meta - o)

Algorithm Algorithm

Solving Rubik’s Cube

Dexterous
Manipulation

Safe Manipulation
Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.
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Meta Reinforcement Learning

Dataset TQ

Dataset Tl Dataset T3
@ < -
Meta
Meta ) (= v Algorithm = I Meta - o)

Algorithm Algorithm

Solving Rubik’s Cube

Dexterous
Manipulation

Safe Manipulation
Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.
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Meta Reinforcement Learning

Dataset TQ

Dataset Tl Dataset T3
Met <:
eta
Met : Meta
Algoeritar:m g ,U Algorithm - 'LL Algorithm g lu
Backpropagate
@ Backpropagate Py & Update @ Backpropagate

& Update & Update

Solving Rubik’s Cube

Dexterous
Manipulation

Safe Manipulation
Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.



Meta-Learning as a formalism

Definitions:

/

(S

Task: T

N

Experience: o € [’

Agent Parameters: (9
Task Distribution: DT

Performance Measure: qb(@, 33)

4
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Expected Performance in TaskT

(0)

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

EwET[¢(07 CIZ)]
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Meta-Learning as a formalism

Definitions:

/ Task: [’ \ Expected Performance in Task 1’

Experience: o € [’ — ESBET[¢(07 CE')]

Agent Parameters: (9
Task Distribution: D Expected Performance Gain of L, in Tasks D
Performance Measure: qb(@,a:) 5(LN) . EQE@,TGDT [(I)(LM (97 T)) o @(9)]

Learning Algorithm: L, (0, T')

ngrithm Parameters: U /

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.
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Meta-Learning as a formalism

Definitions:

/ Task: T \ Expected Performance in Task 1
T ©(0) = Ezer[¢(0,2)]

Experience: p &

Agent Parameters: (9
Task Distribution: D Expected Performance Gain of L, in Tasks D

Performance Measure: qb(@,:l:) 5(L“) - EQE@,TEDT [(I)(LM (97 T)) o @(9)]

Learning Algorithm: L, (0, T') Maximi
aximize.

Euemrens [0(LmrueT)) — 06(Ly)] >0

Algorithm Parameters: 1

<

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

Meta-Algorithm: ML (1, T')
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Meta_RL 7:; . (87 A? 7-7 /}/7 R)

= (81,a1,T1,---,SH,QH,TH ), T ~ Tg, T’
-¥n
t

Expected Performance in Task i

Definitions: ¢(

/ Task: [’ 1}

Experience: p &

S
|

Agent Parameters: (9 CI)(@) —F g 2 :Tt
- r~Tg,
Task Distribution: DT L ¢t |
Expected Performance Gain of Lu in TasksDT

0(Ly) = Egeo,reny [P(L(0,T)) — ©(0),

Performance Measure: ¢(97 33)

Learning Algorithm: L, (0, T')

Algorithm Parameters: 1

Maximize:
K Meta-Algorithm: ML(,LLﬂ E,eMmTeDy [5(LML(/.L,T)) — 5(1‘#)] > 0

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.
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Meta-Reinforcement Learning

C N

Learning Algorithm: L, (0, T')

Algorithm Parameters: 1

9 Meta-Algorithm: ML (1, T')
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Meta-Reinforcement Learning
Amortizing RL’s Data Inefficiency

C N

Learning Algorithm: L, (0, T')

Algorithm Parameters: 1

9 Meta-Algorithm: ML (1, T')

Policy Gradient

h/.[]:J<ILL7 {T]_7 . 7TN}) :< Q-learning

2 B

This can be very expensive, but we gain the ability to later train any new task with much less data.
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Meta-Reinforcement Learning
Parameterizing the Learning Algorithm

[ Learning Algorithm: L, (0, T)}
A

Igorithm Parameters: [t
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Meta-Reinforcement Learning
Parameterizing the Learning Algorithm

" e Optimization-based:
O  MAML (Finn et al. 2017)
O  Reptile (Nichol et al. 2018)

e Episodic Control:
O  Model-Free Episodic Control (Biundell et al. 2016)
O Neural Episodic Control (pritzel et al. 2017)

e Memory / Sequence Models:

O Learning to Learn Using Gradient Descent (Hochreiter 2001)
O  RLA"2 (Duan et al. 2016)
O L2RL (wang et al. 2016)

Learning Algorithm: L, (0, T') <

Algorithm Parameters: 1
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Meta-Reinforcement Learning

" e Optimization-based:
O  MAML (Finn et al. 2017)
O  Reptile (Nichol et al. 2018)

e Episodic Control:
O  Model-Free Episodic Control (Biundell et al. 2016)
O Neural Episodic Control (pritzel et al. 2017)

e Memory / Sequence Models:

O Learning to Learn Using Gradient Descent (Hochreiter 2001)
O  RLA"2 (Duan et al. 2016)
O L2RL (wang et al. 2016)

Learning Algorithm: L, (0, T') <

Algorithm Parameters: 1




Meta-RL through Memory

Stqt rE done?

A

Environment Instance Tz

A
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Meta-Agent Interaction History

with [’

-

,I: .
A
4 A\
Episode Episode Episode N\
1 2 E
(81,a1,6p)" (81,81,1p)? (s4,84,1)F
(82,89,13)" (82,@2,3)? (Sp.85.r3)F
(83,83,1y)" (83,83,14)? (3,83,1)F

(St.1 En 1)

(Sh-1.@m)"!

(S-1,@p,TH)?

\S

s




RL?/ L2RL

E
St+1

rE done?

Deep
LSTM
(S4,81,15)"
(S2,89,13)"
(S3,83.14)"

A

Environment Instance Tz

(Sh-1.@m)"!

A

Duan et al. 2016 / Wang et al. 2016

(51,84,r,)?

(52,85,r3)?

(83,83,14)?

(Sh-1,@H,MW)?

s

=2

\.
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Algorithm as Architecture

Stqt rE done?

A

Environment Instance Tz

A
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Meta-Agent Interaction History

with [’

-

,I: .
A
4 A\
Episode Episode Episode N\
1 2 E
(81,a1,6p)" (81,81,1p)? (s4,84,1)F
(82,89,13)" (82,@2,3)? (Sp.85.r3)F
(83,83,1y)" (83,83,14)? (3,83,1)F

(St.1 En 1)

(Sh-1.@m)"!

(S-1,@p,TH)?

\S

s




