
Efficient	Distributed	RL:	
Actor-Learner	Distillation	

Machine Learning Department
Carnegie Mellon University

Fall	2021,	CMU	10-703		
	

Russ	Salakhutdinov	
(work	with	Emilio	Parisotto)

Deep Reinforcement Learning and Control

2

Agent needs to move in the world physically.
Current actions affect future observations.

Require Spatial and Semantic Understanding.

Action
Observations

Agent

Environment

●  Agent interacts with environment.
●  Predicts actions given observations (policy).
●  Receives scalar feedback (reward) from the

environment.
●  Interaction terminates given H actions:

○  Referred to as an episode.

Reinforcement Learning:
●  Learn policy that maximizes episodic

reward.

Overview
Reinforcement	Learning	

Reward

(On-Policy)	Reinforcement	Learning	
▶  Agent formalized as policy .

▶  Maps states to a distribution over actions.
▶  Parameterized by .

▶  Sample from to collect episodes .

Want to maximize:

(On-Policy)	Reinforcement	Learning	
▶  Agent formalized as policy .

▶  Maps states to a distribution over actions.
▶  Parameterized by .

▶  Sample from to collect episodes .

Want to maximize:

Update using Policy Gradient:

Distributed	(On-Policy)	RL	

Learner
(GPU)

Actor 1
(CPU)

Actor 2
(CPU)

Actor 3
(CPU)

Actor 4
(CPU)

Env 2

Env 3

Env 4

Action

Action Action

Action State

State State

State

Params

Episodes

Params Episodes Episodes Params

Episodes

Params

Env 1

Larger	Models	Work	Better		
Gated Transformers

Layer-Norm

Multi-Head
Attention

Position-
Wise
MLP

Layer-Norm

GTrXL

Gating Layer

Gating Layer

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al., 2019)
Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)

Gated	Transformers	
State-of-the-Art in DMLab30

Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)
DeepMind Lab (Beattie et al., 2016)

Gated	Transformers	
Rapid Memorization of Partially-Observed Environments

Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)

Latency-Constrained	Acting	
Large models cannot always be deployed during training

Actor-Latency	is	a	Major	Bottleneck	

Learner
(GPU)

Actor
(CPU)

Env

Action State

Episodes

Params

Motivation	
Smaller Models More Time-Efficient?

Why	Not	Model	Compression?	
In supervised learning (with dataset):

Do Deep Nets Really Need to be Deep? (Ba et al., 2013)
Distilling the Knowledge in a Neural Network (Hinton et al., 2015)

In supervised learning (with dataset):

In reinforcement learning:

Why	Not	Model	Compression?	

Do Deep Nets Really Need to be Deep? (Ba et al., 2013)
Distilling the Knowledge in a Neural Network (Hinton et al., 2015)

In supervised learning (with dataset):

In reinforcement learning:

Depends on Current Parameters Can’t Learn Offline

Why	Not	Model	Compression?	

Do Deep Nets Really Need to be Deep? (Ba et al., 2013)
Distilling the Knowledge in a Neural Network (Hinton et al., 2015)

Actor-Latency	Constraints	

▶  Inference running on un-accelerated hardware:
▶  CPUs, robotic platforms, mobile phones, etc.
▶  Potential hard constraint on latency (robot acting)

▶  Learning running on accelerators.

▶  GPU, TPU, large-scale CPU cluster, etc.

Goal: Leverage large model capacity while minimizing inference costs

Idea:	Separate	Actor	and	Learner	Models	

Actor Model Learner Model

●  High-Capacity
●  Optimized for Learning Speed
●  Easily Parallelizable (GPU)

●  Low-Capacity
●  Optimized for Inference Speed
●  Sequential Execution (CPU)
●  Generates Environment Episodes.

Actor-Learner	Distillation	(ALD)	

Actor Model Learner Model

Train with RL

Actor-Learner	Distillation	(ALD)	

Actor Model Learner Model

Train with RL

Distill from Learner

Actor-Learner	Distillation	(ALD)	

Actor Model Learner Model

Train with RL
Regularize towards Actor

Distill from Learner

Learner Objective:

Actor-Learner	Distillation	(ALD)	
Objectives

Policy Distillation Reinforcement Learning

Learner Objective:

Actor Objective:

Actor-Learner	Distillation	(ALD)	
Objectives

Policy Distillation

Policy Distillation

Reinforcement Learning

Actor Objective w/ Value Distillation:
▶  Actor predicts Learner’s value predictions.
▶  Improves Representation Learning at the feature level.

Value Distillation Loss
Actor-Learner	Distillation	(ALD)	

Phasic Policy Optimization (Cobbe et al., 2020)

Value Distillation Policy Distillation

Distributed Structure
Actor-Learner	Distillation	(ALD)	

Actors + Queue
Actor-Learner	Distillation	(ALD)	

●  There are NA parallel Actors (CPU).
○  Executes actor model.
○  Submits episodes to the Queue

process.

●  The Queue receives episodes
asynchronously.
○  Episodes are accumulated into

batches.
○  The batched trajectories are

then passed to the Learner
Runner.

Learner Runner
Actor-Learner	Distillation	(ALD)	

●  The Learner Runner process (GPU):
○  Runs Learner model on

incoming batches of data.
○  Computes learning targets for

Distillation to actor.
○  Pass outputs to Learner and

Replay process.

●  The Replay process manages a replay
buffer:
○  Incoming batches of trajectories

are archived.
○  Increases data diversity for

distillation.

Learner
Actor-Learner	Distillation	(ALD)	

●  The Learner process:
○  Computes Learner model

updates based on trajectories
from the Learner Runner and
Replay.

○  Sends updated learner model
parameters to learner runner

Distill
Actor-Learner	Distillation	(ALD)	

●  Distill process:
○  Computes Actor model updates

on data from the Replay
process.

○  Sends updated actor model
parameters to the Actor
processes.

Sampling Distribution Mismatch?
Actor-Learner	Distillation	(ALD)	

Sampling Distribution Mismatch?
Actor-Learner	Distillation	(ALD)	

Sampling Distribution Mismatch?

We’re sampling from instead of

Actor-Learner	Distillation	(ALD)	

Sampling Distribution Mismatch?

Need to make sure

Actor-Learner	Distillation	(ALD)	

We’re sampling from instead of

Distillation steps per RL step (DpRL) Ratio
Actor-Learner	Distillation	(ALD)	

DpRL Ratio:

●  Better performance if we

artificially constraint DpRL
to be high.

Distillation steps per RL step (DpRL) Ratio
Actor-Learner	Distillation	(ALD)	

DpRL Ratio:

●  Better performance if we

artificially constraint DpRL
to be high.

 ⇒ Improve speed of distillation

Async Distillation using HOGWILD!
Actor-Learner	Distillation	(ALD)	

HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent (Niu et al., 2011)

●  Run ND parallel Distill processes.
○  Each independently

updates actor model
parameters.

○  Asynchronously share
parameters (i.e.
HOGWILD!)

Complete System
Actor-Learner	Distillation	(ALD)	

Actor-Learner	Distillation	Experiments	

Actor Model Learner Model

●  High-Capacity
●  Optimized for Learning Speed
●  Easily Parallelizable (GPU)

●  Low-Capacity
●  Optimized for Inference Speed
●  Sequential Execution (CPU)
●  Generates Environment Episodes.

LSTM GTrXL

LSTM Actor -- GTrXL Learner

•  Indicator: Either blue or pink

Ø  If blue, find the green block
Ø  If pink, find the red block

•  Negative reward if agent does not find
correct block in N steps or goes to wrong
block.

I-Maze	
Remembering Far into the Past

I-Maze	
Remembering Far into the Past

I-Maze	Results	

Transferring	Learner’s	Inductive	Bias	

●  Local optimum in I-Maze

○  Agent enters either goal without discernment.
○  Expected reward is 0.5 instead of 0 for not

entering any goal.

●  This behaviour does not require long-term memory:
○  Only the ability to navigate to a corner.

Transferring	Learner’s	Inductive	Bias	

●  Per-seed curves on 15x15 I-Maze

●  Model stuck at 0.5 => local optimum.

○  Transformer avoids local optimum.
○  LSTM agents stuck there for significant

amount of time.
○  ALD exits very quickly in comparison.

●  ALD LSTM model has learned to rapidly

compress the transformer memory.

Meta-Fetch:		
Partially-Observed, Combinatorial Search

Meta-Fetch:		

Meta-Fetch:		

Meta-Fetch:		

Meta-Fetch:		

Meta-Fetch:		

Meta-Fetch:		

Meta-Fetch:		

...

Meta-Fetch	Results	

References	

▶  Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al., 2019)
▶  Stabilizing Transformers for Reinforcement Learning (Parisotto et al., 2019)
▶  DeepMind Lab (Beattie et al., 2016)
▶  Do Deep Nets Really Need to be Deep? (Ba et al., 2013)
▶  Distilling the Knowledge in a Neural Network (Hinton et al., 2015)
▶  Phasic Policy Optimization (Cobbe et al., 2020)
▶  HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent (Niu et al., 2011)

Data	Inefficiency	Restricts	Real-World	Impact	

▶  Data inefficiency is a critical obstruction to Deep RL’s widespread use:
▶  Currently Deep RL is constrained to environments with viable simulators.

▶  Recent off-policy and model-based algorithms show improvements.
▶  But still require extremely large amounts of data.

Rubik’s Cube
13,000 simulation years

AlphaZero
140 million Go games

AlphaStar
>1 million SC2 games

53

Addressing	the	Data	Inefficiency	of	Deep	RL	

RL Algorithms work over any Markov Decision Process (MDP).

Key Insight:
▶  Specialize the learning algorithm.

The Set of
All MDPs

54

The Set of
All MDPs

Addressing	the	Data	Inefficiency	of	Deep	RL	

RL works over any MDP.

Key Insight:
▶  Develop specialized

learning algorithms.

55

Specialization	to	a	Distribution	of	Environments	

MDPs Controlling
Shadow Hand

The Set of
All MDPs

56

57

Dexterous
Manipulation

58

Dexterous
Manipulation

Safe Manipulation

59

Dexterous
Manipulation

Safe Manipulation

Solving Rubik’s Cube

A	Learning	Approach	to	Specialization	
60

 Task

RL
Algorithm

Dexterous
Manipulation

Safe Manipulation

Solving Rubik’s Cube

Standard	Reinforcement	Learning	
 Task

RL
Algorithm

 Task

RL
Algorithm

61

Safe Manipulation

Meta-Learning	
 Task

Meta
Algorithm

Task
Distribution

Parameters .

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

62

 Dataset

Meta
Algorithm

Dexterous
Manipulation

Safe Manipulation

Solving Rubik’s Cube

Meta	Reinforcement	Learning	
 Dataset

Meta
Algorithm

 Dataset

Meta
Algorithm

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

63

 Dataset

Meta
Algorithm

Dexterous
Manipulation

Safe Manipulation

Solving Rubik’s Cube

Meta	Reinforcement	Learning	
 Dataset

Meta
Algorithm

 Dataset

Meta
Algorithm

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

64

 Dataset

Meta
Algorithm

Dexterous
Manipulation

Safe Manipulation

Solving Rubik’s Cube

Meta	Reinforcement	Learning	
 Dataset

Meta
Algorithm

 Dataset

Meta
Algorithm

Backpropagate
& Update

Backpropagate
& Update Backpropagate

& Update

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

65

Meta-Learning	as	a	formalism	

Experience:
Task:

Agent Parameters:

Task Distribution:

Performance Measure:

Expected Performance in Task
Definitions:

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

66

Meta-Learning	as	a	formalism	

Experience:
Task:

Agent Parameters:

Task Distribution:

Performance Measure:

Expected Performance in Task

Learning Algorithm:

Algorithm Parameters:

Expected Performance Gain of in Tasks

Definitions:

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

67

Meta-Learning	as	a	formalism	

Experience:
Task:

Agent Parameters:

Task Distribution:

Performance Measure:

Expected Performance in Task

Learning Algorithm:

Algorithm Parameters:

Expected Performance Gain of in Tasks

Meta-Algorithm:

Maximize:

Definitions:

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

68

Meta-RL	

Experience:
Task:

Agent Parameters:

Task Distribution:

Performance Measure:

Expected Performance in Task

Learning Algorithm:

Algorithm Parameters:

Expected Performance Gain of in Tasks

Meta-Algorithm:

Maximize:

Definitions:

Tom Schaul and Juergen Schmidhuber (2010), Scholarpedia, 5(6):4650.

69

Meta-Reinforcement	Learning		

Learning Algorithm:

Algorithm Parameters:

Meta-Algorithm:

70

Learning Algorithm:

Algorithm Parameters:

Meta-Algorithm:

Policy Gradient

Q-learning

...

Meta-Reinforcement	Learning		

This can be very expensive, but we gain the ability to later train any new task with much less data.

Amortizing RL’s Data Inefficiency

71

Meta-Reinforcement	Learning		

Learning Algorithm:

Algorithm Parameters:

Parameterizing the Learning Algorithm

72

Meta-Reinforcement	Learning		

●  Optimization-based:
○  MAML (Finn et al. 2017)

○  Reptile (Nichol et al. 2018)

●  Episodic Control:
○  Model-Free Episodic Control (Blundell et al. 2016)

○  Neural Episodic Control (Pritzel et al. 2017)

●  Memory / Sequence Models:
○  Learning to Learn Using Gradient Descent (Hochreiter 2001)
○  RL^2 (Duan et al. 2016)

○  L2RL (Wang et al. 2016)

Learning Algorithm:

Algorithm Parameters:

Parameterizing the Learning Algorithm

73

●  Optimization-based:
○  MAML (Finn et al. 2017)

○  Reptile (Nichol et al. 2018)

●  Episodic Control:
○  Model-Free Episodic Control (Blundell et al. 2016)

○  Neural Episodic Control (Pritzel et al. 2017)

●  Memory / Sequence Models:
○  Learning to Learn Using Gradient Descent (Hochreiter 2001)
○  RL^2 (Duan et al. 2016)

○  L2RL (Wang et al. 2016)

Meta-Reinforcement	Learning		

Learning Algorithm:

Algorithm Parameters:

74

Meta-RL	through	Memory		

(s1,a1,r2)1

(s2,a2,r3)1

(s3,a3,r4)1

...

(sH-1,aH,rH)1

...

...

...

...

...

(s1,a1,r2)E

(s2,a2,r3)E

(s3,a3,r4)E
...

(st-1,at-1,rt)E

Episode
 1

Episode
 2

Episode
 E

(s1,a1,r2)2

(s2,a2,r3)2

(s3,a3,r4)2

...

(sH-1,aH,rH)2 st
E

at
E

st+1
E rt

E done?

Environment Instance .

Meta-Agent Interaction History
with .

st
E

75

RL2	/	L2RL	

Deep
LSTM

(s1,a1,r2)1

(s2,a2,r3)1

(s3,a3,r4)1

...

(sH-1,aH,rH)1

(s1,a1,r2)2

(s2,a2,r3)2

(s3,a3,r4)2

...

(sH-1,aH,rH)2

st
E

at
E

st+1
E rt

E done?

Environment Instance .

...

...
.
.
.

...
.
.
.

...

st
E

Deep
LSTM

Duan et al. 2016 / Wang et al. 2016

76

Algorithm	as	Architecture	

(s1,a1,r2)1

(s2,a2,r3)1

(s3,a3,r4)1

...

(sH-1,aH,rH)1

...

...

...

...

...

(s1,a1,r2)E

(s2,a2,r3)E

(s3,a3,r4)E
...

(st-1,at-1,rt)E

Episode
 1

Episode
 2

Episode
 E

(s1,a1,r2)2

(s2,a2,r3)2

(s3,a3,r4)2

...

(sH-1,aH,rH)2 st
E

at
E

st+1
E rt

E done?

Environment Instance .

Meta-Agent Interaction History
with .

st
E

77

