Deep Reinforcement Learning and Control

Bandit Algorithms

Recitation 2 Spring 2022, CMU 10-403 Robin Schmucker

Overview

Focus: Provide an overview of some important bandit algorithms

- Stochastic bandits
- Contextual bandits
- Bayesian bandits

Some references

• Sutton & Barto, Chapter 2

Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

• A comprehensive reference

Lattimore, Tor, and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

• The bandit framework allows to analyze diverse repeated 1-step interaction problems

What is a Bandit problem?

Sequential game between an *agent* and an *environment*

Round	1	2	3	4	5	6	7	8	9	10
LEFT	0		10	0		0				10
RIGHT		10			0		0	0	0	

What is a Bandit problem?

Sequential game between a *agent* and an *environment*

In each round t = 1, ..., n: - Agent chooses action $A_t \in \mathcal{A}$ - Environment reveals reward $X_t \in \mathbb{R}$

<u>History</u> up to time $t: H_t = (A_1, X_1, \dots, A_{t-1}, X_{t-1})$ <u>Policy</u>: mapping from *history to action* <u>Environment</u>: mapping from *history & action* to *reward* <u>Env. class</u>: \mathcal{E} describes a family of similar *environments*

Example: Gaussian Bandits

- Each action $A \in \{1, \ldots, k\}$ returns a reward $X \sim \mathcal{N}(\mu_A, \sigma_A^2)$
- At each step, the reward distribution is identical

How to evaluate bandit algo.?

DEFINITION 1.1. The regret of the learner relative to a policy π (not necessarily that followed by the learner) is the difference between the total expected reward using policy π for n rounds and the total expected reward collected by the learner over n rounds. The regret relative to a set of policies Π is the maximum regret relative to any policy $\pi \in \Pi$ in the set.

• Total expected reward:
$$S_n = \mathbb{E}[\sum_{t=1}^n X_t]$$

- Our total expected reward depends on the policy induced by the bandit algo. and randomness in the environment
- Competitor class Π : a set of policies to benchmark against

How to evaluate a bandit algo.?

• Regret:
$$R_n = \max_{\pi \in \Pi} \mathbb{E}_{\pi} [\sum_{t=1}^n X_t] - \mathbb{E} [\sum_{t=1}^n X_t]$$

- <u>Worst-case regret</u>: Max. regret over all environments in \mathcal{E}
- A good bandit algorithm achieves sublinear regret:

$$\lim_{n \to \infty} R_n / n = 0 \quad \Rightarrow \quad R_n = o(n)$$

Can we do better ($R_n = O(\sqrt{n})$, $R_n = O(\log(n))$, ...)?

Example: Gaussian Bandits

- Want to do as well as the optimal action ($\Pi = \{1, ..., k\}$)
- Regret: $R_n = n \max_{a \in \mathcal{A}} \mu_a - \mathbb{E}\left[\sum_{t=1}^n X_t\right]$

• <u>Question</u>: Why has ε-Greedy linear regret?

Stochastic Finite Bandits

- Defined via a set of distributions $v = (P_A : a \in \mathcal{A})$
- Each action $A \in \{1, \dots, k\}$ returns a reward $X \sim P_A$
- At each step, the reward distribution is identical
- Want to do as well as the best action ($\Pi = \{1, ..., k\}$)
- Regret:

Upper Confidence Bound (UCB)

- Idea: Optimism in the face of uncertainty ③
- $T_i(t)$: number of times arm i has been sampled

•
$$\hat{\mu}_i(t)$$
: sample mean $\hat{\mu}_i(t) = \frac{1}{n} \sum_{i=1}^n X_i$

Assign each i a value which is likely to be an <u>overestimate</u>

$$\text{UCB}_{i}(t-1,\delta) = \begin{cases} \infty & \text{if } T_{i}(t-1) = 0\\ \hat{\mu}_{i}(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_{i}(t-1)}} & \text{otherwise} . \end{cases}$$

exploration parameter

Upper Confidence Bound (UCB)

- 1: **Input** k and δ
- 2: for $t \in 1, ..., n$ do
- 3: Choose action $A_t = \operatorname{argmax}_i \operatorname{UCB}_i(t-1, \delta)$
- 4: Observe reward X_t and update upper confidence bounds

5: end for

Algorithm 3: UCB(δ).

• δ : <u>confidence level</u> that controls degree of exploration

$$UCB_{i}(t-1,\delta) = \begin{cases} \infty & \text{if } T_{i}(t-1) = 0\\ \hat{\mu}_{i}(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_{i}(t-1)}} & \text{otherwise} . \end{cases}$$
exploration parameter

DEFINITION 5.2 (Subgaussianity). A random variable X is σ -subgaussian if for all $\lambda \in \mathbb{R}$, it holds that $\mathbb{E}[\exp(\lambda X)] \leq \exp(\lambda^2 \sigma^2/2)$.

-> Tails decay at least as fast as a Gaussian

Useful concentration inequality:

COROLLARY 5.5. Assume that $X_i - \mu$ are independent, σ -subgaussian random variables. Then for any $\varepsilon \geq 0$,

$$\mathbb{P}\left(\hat{\mu} \ge \mu + \varepsilon\right) \le \exp\left(-\frac{n\varepsilon^2}{2\sigma^2}\right) \quad and \quad \mathbb{P}\left(\hat{\mu} \le \mu - \varepsilon\right) \le \exp\left(-\frac{n\varepsilon^2}{2\sigma^2}\right) ,$$

where $\hat{\mu} = \frac{1}{n} \sum_{t=1}^n X_t.$

• Suboptimality gap:
$$\Delta_a = \mu^* - \mu_a$$

LEMMA 4.5 (Regret decomposition lemma). For any policy π and stochastic bandit environment ν with \mathcal{A} finite or countable and horizon $n \in \mathbb{N}$, the regret R_n of policy π in ν satisfies

$$R_n = \sum_{a \in \mathcal{A}} \Delta_a \mathbb{E} \left[T_a(n) \right] \,. \tag{4.5}$$

• Environment class \mathcal{E} of interest: subgaussian distributions

THEOREM 7.1. Consider UCB as shown in Algorithm 3 on a stochastic k-armed 1-subgaussian bandit problem. For any horizon n, if $\delta = 1/n^2$, then

$$R_n \le 3\sum_{i=1}^k \Delta_i + \sum_{i:\Delta_i > 0} \frac{16\log(n)}{\Delta_i}$$

- Regret decomposition: $R_n = \sum_{i=1}^k \Delta_i \mathbb{E}[T_i(n)]$
- For each arm i prove that $\mathbb{E}[T_i(t)]$ is small
- <u>Question</u>: When does UCB select arm *i*?

• For *i* to be selected at least one of the following must hold:

(a) The index of action i is larger than the true mean of a specific optimal arm.(b) The index of a specific optimal arm is smaller than its true mean.

- Without loss of generality assume $\mu_1 = \mu^*$
- G_i describes an event in which we select A_1 over A_i

$$G_{i} = \left\{ \mu_{1} < \min_{t \in [n]} \text{UCB}_{1}(t, \delta) \right\} \cap \left\{ \hat{\mu}_{iu_{i}} + \sqrt{\frac{2}{u_{i}} \log\left(\frac{1}{\delta}\right)} < \mu_{1} \right\},$$
We will choose an $u_{i} \in \{1, \ldots, n\}$ later
Average of observed rewards for arm i

Game Plan: We will show two things

- 1 If G_i occurs, then arm *i* will be played at most u_i times: $T_i(n) \leq u_i$.
- 2 The complement event G_i^c occurs with low probability (governed in some way yet to be discovered by u_i).

Because $T_i(n) \leq n$ no matter what, this will mean that

 $\mathbb{E}\left[T_i(n)\right] = \mathbb{E}\left[\mathbb{I}\left\{G_i\right\} T_i(n)\right] + \mathbb{E}\left[\mathbb{I}\left\{G_i^c\right\} T_i(n)\right] \le u_i + \mathbb{P}\left(G_i^c\right) n.$ (7.5)

1 If G_i occurs, then arm *i* will be played at most u_i times: $T_i(n) \leq u_i$.

By contradiction: Assume G_i holds and $T_i(n) > u_i$ $\implies \exists t \in \{1, ..., n\} : T_i(t-1) = u_i \land A_t = i$

It follows:

$$UCB_{i}(t-1,\delta) = \hat{\mu}_{i}(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_{i}(t-1)}} \quad (\text{definition of } UCB_{i}(t-1,\delta))$$

$$= \hat{\mu}_{iu_{i}} + \sqrt{\frac{2\log(1/\delta)}{u_{i}}} \quad (\text{since } T_{i}(t-1) = u_{i})$$

$$< \mu_{1} \quad (\text{definition of } G_{i})$$

$$< UCB_{1}(t-1,\delta). \quad (\text{definition of } G_{i})$$

Hence $A_t = \operatorname{argmax}_j \operatorname{UCB}_j(t-1, \delta) \neq i$, which is a contradiction. Therefore if G_i occurs, then $T_i(n) \leq u_i$.

2 The complement event G_i^c occurs with low probability (governed in some way yet to be discovered by u_i).

By definition:
$$G_i^c = \left\{ \mu_1 \ge \min_{t \in [n]} \operatorname{UCB}_1(t, \delta) \right\} \cup \left\{ \hat{\mu}_{iu_i} + \sqrt{\frac{2\log(1/\delta)}{u_i}} \ge \mu_1 \right\}.$$

Analyze term (a):

$$\mathbb{P}\left(\mu_{1} \geq \min_{t \in [n]} \mathrm{UCB}_{1}(t, \delta)\right) \leq \mathbb{P}\left(\bigcup_{s \in [n]} \left\{\mu_{1} \geq \hat{\mu}_{1s} + \sqrt{\frac{2\log(1/\delta)}{s}}\right\}\right)$$
$$\leq \sum_{s=1}^{n} \mathbb{P}\left(\mu_{1} \geq \hat{\mu}_{1s} + \sqrt{\frac{2\log(1/\delta)}{s}}\right) \leq n\delta. \quad (7.7)$$
$$\mathbb{P}(\hat{\mu} \leq \mu - \varepsilon) \leq \exp\left(-\frac{n\varepsilon^{2}}{2\sigma^{2}}\right)$$

Analyze term (b): Select u_i large enough s.t. for some $c \in (0, 1)$

$$\begin{split} \Delta_{i} - \sqrt{\frac{2\log(1/\delta)}{u_{i}}} &\geq c\Delta_{i} \\ \text{With } \mu_{i} &= \mu_{i} + \Delta_{i} : \\ \mathbb{P}\left(\hat{\mu}_{iu_{i}} + \sqrt{\frac{2\log(1/\delta)}{u_{i}}} \geq \mu_{1}\right) &= \mathbb{P}\left(\hat{\mu}_{iu_{i}} - \mu_{i} \geq \Delta_{i} - \sqrt{\frac{2\log(1/\delta)}{u_{i}}}\right) \\ &\leq \mathbb{P}\left(\hat{\mu}_{iu_{i}} - \mu_{i} \geq c\Delta_{i}\right) \leq \exp\left(-\frac{u_{i}c^{2}\Delta_{i}^{2}}{2}\right) \\ & \mathbb{P}(\hat{\mu} \leq \mu - \varepsilon) \leq \exp\left(-\frac{n\varepsilon^{2}}{2\sigma^{2}}\right) \end{split}$$

Combining (a) and (b):
$$\mathbb{P}\left(G_{i}^{c}
ight)\leq n\delta+\exp\left(-rac{u_{i}c^{2}\Delta_{i}^{2}}{2}
ight)$$

We showed: $\mathbb{E}[T_i(n)] = \mathbb{E}[\mathbb{I}\{G_i\}T_i(n)] + \mathbb{E}[\mathbb{I}\{G_i^c\}T_i(n)] \le u_i + \mathbb{P}(G_i^c)n$ $T_i(n) \le u_i \qquad \mathbb{P}(G_i^c) \le n\delta + \exp\left(-\frac{u_ic^2\Delta_i^2}{2}\right)$

It follows:
$$\mathbb{E}[T_i(n)] \le u_i + n\left(n\delta + \exp\left(-\frac{u_i c^2 \Delta_i^2}{2}\right)\right)$$

Set
$$u_i = \left\lceil \frac{2 \log(1/\delta)}{(1-c)^2 \Delta_i^2} \right\rceil$$
 and $c = 1/2$, it follows:

$$\mathbb{E}[T_i(n)] \le u_i + 1 + n^{1-2c^2/(1-c)^2} = \left\lceil \frac{2\log(n^2)}{(1-c)^2 \Delta_i^2} \right\rceil + 1 + n^{1-2c^2/(1-c)^2}$$
$$\mathbb{E}[T_i(n)] \le 3 + \frac{16\log(n)}{\Delta_i^2}$$

Completing the proof by substitution

$$\mathbb{E}\left[T_{i}(n)\right] \leq 3 + \frac{16\log(n)}{\Delta_{i}^{2}} \qquad R_{n} = \sum_{i=1}^{k} \Delta_{i} \mathbb{E}\left[T_{i}(n)\right]$$

THEOREM 7.1. Consider UCB as shown in Algorithm 3 on a stochastic k-armed 1-subgaussian bandit problem. For any horizon n, if $\delta = 1/n^2$, then

$$R_n \le 3\sum_{i=1}^k \Delta_i + \sum_{i:\Delta_i > 0} \frac{16\log(n)}{\Delta_i}$$

<u>Problem</u>: Bound is meaningless for small gaps $\Delta_a = \mu^* - \mu_a$

 \square

THEOREM 7.2. If $\delta = 1/n^2$, then the regret of UCB, as defined in Algorithm 3, on any $\nu \in \mathcal{E}_{SG}^k(1)$ environment, is bounded by

1-subgaussian

$$R_n \le 8\sqrt{nk\log(n)} + 3\sum_{i=1}^{\kappa} \Delta_i.$$

- No inverse relationship to suboptimality gap 😳
- Optimal algorithm for 1-subgaussian up to $\log(n)$ factor

Proof Let $\Delta > 0$ be some value to be tuned subsequently, and recall from the proof of Theorem 7.1 that for each suboptimal arm *i*, we can bound

$$\mathbb{E}[T_i(n)] \le 3 + \frac{16\log(n)}{\Delta_i^2} \,.$$

Again, relying on the regret decomposition

$$\begin{aligned} R_n &= \sum_{i=1}^k \Delta_i \mathbb{E}\left[T_i(n)\right] = \sum_{i:\Delta_i < \Delta} \Delta_i \mathbb{E}\left[T_i(n)\right] + \sum_{i:\Delta_i \ge \Delta} \Delta_i \mathbb{E}\left[T_i(n)\right] \\ &\leq n\Delta + \sum_{i:\Delta_i \ge \Delta} \left(3\Delta_i + \frac{16\log(n)}{\Delta_i}\right) \le n\Delta + \frac{16k\log(n)}{\Delta} + 3\sum_i \Delta_i \\ &\leq 8\sqrt{nk\log(n)} + 3\sum_{i=1}^k \Delta_i \,, \end{aligned}$$

where the first inequality follows because $\sum_{i:\Delta_i < \Delta} T_i(n) \le n$ and the last line by choosing $\Delta = \sqrt{16k \log(n)/n}$.

Boltzmann Exploration

- Not covered in class, but similar to UCB
 - Control degree of exploration using temperature param. $au \in \mathbb{R}_{>0}$
 - Resembles a "softmax" over action values
 - Stochastic policy

$$p(A_t = a \mid H_t) = \frac{\exp(\tau \hat{q}_{a,t})}{\sum_{a' \in \mathcal{A}} \exp(\tau \hat{q}_{a',t})}$$

- As $\tau \to 0$, converges to uniform random policy
- As $\tau \to \infty$, converges to pure greedy policy
- Recent analysis of convergence properties: Cesa-Bianchi et al.

Example: artwork selection

For a particular <u>title</u> and a particular <u>user</u>, we can use the contextual bandit framework to decide what image to show.

 <u>Context</u>: user attributes, language preferences, previously watched movies, time and day of week, ...

Stochastic Contextual Bandits

<u>Context</u>: $C \in C$ information observed by the agent <u>Reward function</u>: $r : C \times A \rightarrow \mathbb{R}$ <u>Noise</u>: $\eta_t \sim P_\eta$

In each round t = 1, ..., n:

- Environment determines $C_t \in \mathcal{C}$

we will need additional assumptions on reward function for analysis

- Agent chooses action $A_t \in \mathcal{A}$
- Agent receives *reward* $X_t = r(C_t, A_t) + \eta_t$

<u>History</u> up to time $t: H_t = (C_1, A_1, X_1, \dots, C_{t-1}, A_{t-1}, X_{t-1})$ <u>Regret</u>: $\begin{bmatrix} n \\ n \end{bmatrix}$

$$R_n = \mathbb{E}\left[\sum_{t=1}^n \max_{a \in [k]} r(C_t, a) - \sum_{t=1}^n X_t\right]$$
 Optimal action depends on context

Bayesian Bandits

- Assume a prior Θ on the parametric reward distribution $X_i \sim P(X \mid \theta_i)$ and $\theta_i \sim \Theta$
- Use observed history $D = (A_1, X_1, \dots, A_{t-1}, X_{t-1})$ to compute posterior using <u>Bayes rule</u>

$$p_t(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{p(D)} \propto p(D \mid \theta) \cdot p(\theta)$$
posterior
$$p(D \mid \theta) \sim p(\theta)$$
likelihood prior

• Idea: Use posterior to guide the exploration

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

Source: <u>Balcan</u>

Conjugate Priors

- A *prior* and *model* are called a <u>conjugate pair</u> if the *posterior* has the same parametric form as the prior distribution
- This allows a closed-form expression of posterior
- Example: The beta distribution is a <u>conjugate</u> <u>prior</u> for the Bernoulli distribution

Assume $\theta \sim \text{Beta}(\beta_{\text{H}}, \beta_{\text{T}})$ I.e., $P(\theta) = \frac{\theta^{\beta_{\text{H}}-1}(1-\theta)^{\beta_{\text{T}}-1}}{B(\beta_{\text{H}}, \beta_{\text{T}})}$ More concentrated as values

of β_H , β_T increase

heta biased coin -- each arm can be though of as different coin

$$a_H = \sum X_i$$

 $a_T = \sum (1 - X_i)$

 $P(\theta|D) \propto \theta^{\alpha_{H}+\beta_{H}-1}(1-\theta)^{\alpha_{T}+\beta_{T}-1} \sim \text{Beta}(\alpha_{H}+\beta_{H},\alpha_{T}+\beta_{T})$

Interpretation: like MLE, but hallucinating $\beta_H - 1$ additional heads & $\beta_T - 1$ additional tails

$$\widehat{\theta}_{MAP} = \frac{\alpha_{H} + \beta_{H} - 1}{(\alpha_{T} + \beta_{T} - 1) + (\alpha_{H} + \beta_{H} - 1)}$$

Note: as we get more sample effect of prior washed out.

Assume $\theta \sim \text{Beta}(\beta_{\text{H}}, \beta_{\text{T}})$ I.e., $P(\theta) = \frac{\theta^{\beta_{\text{H}}-1}(1-\theta)^{\beta_{\text{T}}-1}}{B(\beta_{\text{H}}, \beta_{\text{T}})}$

Likelihood function $P(D|\theta) = \theta^{\alpha_H}(1-\theta)^{\alpha_T}$ (Binomial)

 $P(\theta|D) \propto P(D|\theta)P(\theta)$

Conjugate Priors

Source: Balcan

Posterior:

Thompson Sampling

Explores based on posterior reward distribution

In each round t = 1, ..., n:

- For $A \in \mathcal{A}$ agent samples $\theta_{A,t} \sim P(\theta_A \mid D_t)$

- Agent selects $A_t \in \arg \max_{A \in \mathcal{A}} \mathbb{E}_{\theta_{A,t}}[X_A] = \arg \max_{A \in \mathcal{A}} \mu_{\theta_{A,t}}$

- Agent observes reward

- Agent updates posterior distribution

Regret analysis: Agrawal & Goyal

Questions?