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Overview

Focus: Provide an overview of some
important bandit algorithms

e Stochastic bandits
 Contextual bandits

Bayesian bandits
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Some references

e Sutton & Barto, Chapter 2

Sutton, Richard S., and Andrew G. Barto. Reinforcement
learning: An introduction. MIT press, 2018.

* A comprehensive reference

Lattimore, Tor, and Csaba Szepesvari. Bandit algorithms.

Cambridge University Press, 2020.

* The bandit framework allows to
analyze diverse repeated 1-step
interaction problems

Bandit
Algorithms
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http://incompleteideas.net/book/RLbook2020.pdf
https://tor-lattimore.com/downloads/book/book.pdf

What is a Bandit problem?

Sequential game between an agent and an environment

Round 1 2 3 4 H § 7 8 9 10

LEFT 0 10 0 0 10

RIGHT 10 0 0O 0 0

Source: Lattimore & Szepesvari



https://tor-lattimore.com/downloads/book/book.pdf

What is a Bandit problem?

Sequential game between a agent and an environment

Ineachroundt =1, ...,n:

- Agent chooses action A, € A

- Environment reveals reward X; € R

History up to time t: Ht = (Al, Xl, ce ,At_l, Xt—l)
Policy: mapping from history to action

Environment: mapping from history & action to reward

Env. class: € describes a family of similar environments

Source: Lattimore & Szepesvari



https://tor-lattimore.com/downloads/book/book.pdf

Example: Gaussian Bandits

e Fachaction A € {1,...,k} returnsareward X ~ N(pa,0%)

* At each step, the reward distribution is identical
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Source: Sutton


http://www.incompleteideas.net/book/RLbook2020.pdf

How to evaluate bandit algo.?

DEFINITION 1.1. The regret of the learner relative to a policy 7 (not necessarily
that followed by the learner) is the difference between the total expected reward

using policy 7 for n rounds and the total expected reward collected by the learner
over n rounds. The regret relative to a set of policies II is the maximum regret
relative to any policy m € II in the set.

* Total expected reward: S,, = E[Z X4
t=1

* Our total expected reward depends on the policy induced
by the bandit algo. and randomness in the environment

* Competitor class I1: a set of policies to benchmark against

Source: Lattimore & Szepesvari



https://tor-lattimore.com/downloads/book/book.pdf

How to evaluate a bandit algo.?

* Regret: 12, = max i, DY X -E[> X
n t=1 t=1

* Worst-case regret: Max. regret over all environments in £

e A good bandit algorithm achieves sublinear regret:

lim, oo R,/n=0 => R, =o0(n)

Can we do better (R,, = O(y/n), R,, = O(log(n)), ...)?

Source: Lattimore & Szepesvari



https://tor-lattimore.com/downloads/book/book.pdf

Example: Gaussian Bandits

* Want to do as well as the optimal action (IT = {1, ..., k})

* R t:
egret:
R, = nmax [ — S X
3
2
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* Question: Why has ¢-Greedy linear regret?

Source: Sutton


http://www.incompleteideas.net/book/RLbook2020.pdf

Stochastic Finite Bandits

Defined via a set of distributions v = (P4 : a € A)
Each action A € {1,...,k} returnsareward X ~ P4

At each step, the reward distribution is identical
Want to do as well as the best action (IT = {1, ..., k})
Regret:

R, = nmaX g —

3
2
X () :
Z : | .
= a.(9)
(1

Gaussian Bandit

Source: Lattimore & Szepesvari



https://tor-lattimore.com/downloads/book/book.pdf

Upper Confidence Bound (UCB)

* |dea: Optimism in the face of uncertainty ©

* T;(t): number of times arm i has been sampled

1 n
* [i1;(t): sample mean fi;(t) = — ) X;
fi;(t): samp fis(t) ”;:1:

Assign each ¢ a value which is likely to be an overestimate

00 if T;(t—1)=0

UCB;(t —1,0) = i
( | {ﬁi(t — 1)+ 2{}1:)?{(_1?()5 otherwise .

exploration parameter

Source: Lattimore & Szepesvari
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Upper Confidence Bound (UCB)

1: Input k£ and ¢

2: fortel,...,ndo

3: Choose action A; = argmax, UCB;(t — 1,9)

4: Observe reward X; and update upper confidence bounds
5: end for

Algorithm 3: UCB(9).

 0: confidence level that controls degree of exploration

fi(t—1) 44/ Q%O(g’rt(i/l()s otherwise .

exploration parameter

UCB;(t — 1,6) =

Source: Lattimore & Szepesvari
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UCB: Regret bound

DEFINITION 5.2 (Subgaussianity). A random variable X is o-subgaussian if for

all A € R, it holds that E [exp(AX)] < exp (A\?0?/2). S—

0.7 — superGaussian ||
- - - subGaussian

-> Tails decay at least as fast as a Gaussian 08
o

0.1

0 A
-5 0

. . . S : S th
Useful concentration inequality: OUree: 29enam

COROLLARY 5.5. Assume that X; — p are independent, o-subgaussian random
variables. Then for any € > 0,

ne 2 ne

2
i > < - 1<p—e¢)< -5
]P’(,u,,quE)exp( 202) and P(a<p E)C}{p( 202) ,

7 e j ] — l n
where L = =%, X;i.

Source: Lattimore & Szepesvari
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https://www.researchgate.net/publication/2380682_Connection-level_Analysis_and_Modeling_of_Network_Traffic

UCB: Regret bound

* Suboptimality gap: A, = 1™ — g

LEMMA 4.5 (Regret decomposition lemma). For any policy m and stochastic
bandit environment v with A finite or countable and horizon n € N, the regret
R,, of policy m in v satisfies

R, = Z A E [Ta(n)] . (45)
acA

* Environment class £ of interest: subgaussian distributions

14
Source: Lattimore & Szepesvari
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UCB: Regret bound

THEOREM 7.1. Consider UCB as shown in Algorithm 3 on a stochastic k-armed
1-subgaussian bandit problem. For any horizon n, if § = 1/n?, then

k : ,
Rn<_:3ZA3-+ Z %M.

i=1 i:A; >0

k
* Regret decomposition: i, =)~ AE[T;(n)]

i=1

* For each arm i prove that E|[7;(¢)] is small
* Question: When does UCB select arm ¢ ?

Source: Lattimore & Szepesvari
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UCB: Regret bound

* For ¢ to be selected at least one of the following must hold:

(a) The index of action 7 is larger than the true mean of a specific optimal arm.
(b) The index of a specific optimal arm is smaller than its true mean.

* Without loss of generality assume 11 = p*
* (7, describes an event in which we select A, over A;

(a) (b)
2 1
G = {m < min UCB4 (t, §) }m {,uw + \/mg (—) < ,ul},
te[n) Uj )

We will choose an u; € {1,...,n} later Average of observed

rewards for arm

Source: Lattimore & Szepesvari
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UCB: Regret bound

Game Plan: We will show two things

1 If G; occurs, then arm 7 will be played at most w; times: T;(n) < u;.

2 The complement event G¢ occurs with low probability (governed in some way
yet to be discovered by wu;).

Because T;(n) < n no matter what, this will mean that

E[Ti(n)] = E[I{G:} Ti(n)] + E[I{G7} Ti(n)] < u; + P (G7) n. (7.5)

17
Source: Lattimore & Szepesvari
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UCB: Regret bound

1 If G; occurs, then arm 7 will be played at most u; times: T;(n) < u;.

By contradiction: Assume G, holds and T;(n) > u;

It follows: 9100(1/3
UCB;(t—1,6) = p;(t — 1) + % (definition of UCB,(t — 1,4))
2log(1/0
= fiu; + M (since T;(t — 1) = u;)
u;
< U (definition of G;)
< UCB(t —1,96). (definition of G;)

Hence A; = argmax; UCB;(t — 1,0) # 4, which is a contradiction. Therefore if
(G; occurs, then T;(n) < u;.

18
Source: Lattimore & Szepesvari
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UCB: Regret bound

2 The complement event G occurs with low probability (governed in some way
yet to be discovered by u;).

(a) (b)

2log(1/d
20B(1f3)

By definition: G§ = {m > min UCB (¢, 5)} U < fliu, + \/

te[n]

Analyze term (a):

2log(1/6
P (r”’l > min UCB, (t, 5)) <Pl | {m > figs + \/”g(/)}
te(n] s

s€[n]

2log(1/6
P (P‘q > fl1s + \/Ob(/)) <nd. (7.7)
Eg
1

\

2
P(a<p—e)<exp (—282)
a

A

8

19
Source: Lattimore & Szepesvari
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UCB: Regret bound

Analyze term (b): Select u; large enough s.t. for some ¢ € (0,1)

2log(1/4)

Us

A; — > cA;

2og(1/5 2log(1/0
P(ﬁiut+\/ Ogtf'/):z}ﬂl)lp(ﬁ%mﬁ%’:)&z\/ O?’th/))

2 A2
<P (fbju; — i = cA;) < exp (u102 : )

202

?’LEZ) 7

P(p<p—e)<exp (

2N
Combining (a) and (b): P(G¢) < nd + exp (— ”’“’2&’5)

20
Source: Lattimore & Szepesvari
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UCB: Regret bound

We showed: E|[T;(n)] = E[I{G;} T;(n)] + E[I{GS}Ti(n)] < u; + P (GS)n

Ti(n) <wu; P(GY) < nd + exp (— UJELQA" )

C2A2
t follows: B(7,(n)] < u; +n (nd -+ exp (—utczﬂi ))

2log(1/4 ,
Set ui = {(1 gi)z/ﬁ)zw and c¢=1/2, it follows:
2
E[T;(n)] <wu; +1+ pl—2c¢*/(1—¢)* _ [(flog(;ﬂ)‘?w 41 4 pl2e/ (=)
—¢)2A:

16 log(n)

E[T;(n)] <3+ A2

Source: Lattimore & Szepesvari
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UCB: Regret bound

Completing the proof by substitution

A2

. i k
ELn) <3+ 8180 g — 3" AET(n))
i=1
L]

THEOREM 7.1. Consider UCB as shown in Algorithm 3 on a stochastic k-armed
1-subgaussian bandit problem. For any horizon n, if 6 = 1/n?, then

k ‘ .
R < 32Ai N Z lﬁlzg(n) |
1=1

i:A; >0 ¢

Problem: Bound is meaningless for small gaps A, = u* — g,

22
Source: Lattimore & Szepesvari
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UCB: Regret bound

THEOREM 7.2. If § = 1/n?, then the regret of UCB, as defined in Algorithm 3,
on any v € EE,(1) environment, is bounded by

S k
1-subgaussian R, < 8y/nklog(n)+ 3 Z A;.
1=1

* No inverse relationship to suboptimality gap ©

* Optimal algorithm for 1-subgaussian up to log(n) factor

23
Source: Lattimore & Szepesvari
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UCB: Regret bound

proof of Theolem 7.1 that fOI ca(,h hllb()p‘tllllcll arm ¢, we can bound

16 log(n)

ETi(n)] <3+ =5

Again, relying on the regret decomposition

R,;-ZAE[T n)= Y AET(n)]+ Y AE[T(n)

=1 ;<A A=A

< nA + Z (3ﬁi+%§(m)§nﬁ+%{)g(m+3zlﬁi

A=A i
k
< 8y/nklog(n) +3) A,
=1

where the first inequality follows because ) ;. A A Ti(n) < n and the last line by
choosing A = /16k log(n)/n. []

Source: Lattimore & Szepesvari
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Boltzmann Exploration

 Not covered in class, but similar to UCB
* Control degree of exploration using temperature param. 7 € RZO
 Resembles a “softmax” over action values
 Stochastic policy

exp(7qa,t)

A — H —
p( t a| t) ZaleA eXp(TqAa,”t)

e As7 — 0, converges to uniform random policy

* AsT — 00, converges to pure greedy policy

e Recent analysis of convergence properties: Cesa-Bianchi et al.


https://arxiv.org/pdf/1705.10257.pdf

Example: artwork selection

For a particular title and a particular user, we can use the
contextual bandit framework to decide what image to show.

* Context: user attributes, language preferences, previously
watched movies, time and day of week, ...

26



Stochastic Contextual Bandits

Context: ' € C information observed by the agent

Reward function: » : C x A — R Noise: n; ~ P,

Ineachroundt=1,....n

we will need additional

. . mption n reward
- Environment determines C; € C B anchion for amalyeis

- Agent chooses action A; € A /
- Agent receives reward X; = r(Cy, Ay) + 4

Historyuptotime ¢: [, = (Cy, A1, X4,...,Ci_1, Ai—_1, X1—_1)

Regret:
R,

Z max r(Cy,a) Z X
a€clk Optimal action depends

on context
Source: Lattimore & Szepesvari
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Bayesian Bandits

 Assume a prior © on the parametric reward distribution
X; ~P(X|6;) and 0, ~ ©

* Use observed history D = (A1, X1,..., A1, X¢1) tO
compute posterior using Bayes rule

p(010) = "2 D o yD16) - p16)

posterior likelihood prior

* |dea: Use posterior to guide the exploration

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
Londor, 53:370-418

28



Conjugate Priors

* A prior and model are called a conjugate pair if the posterior
has the same parametric form as the prior distribution

* This allows a closed-form expression of posterior carme form

¥ R
* Example: The beta distribution is a conjugate P(0) Pp(‘gt D)
prior osterior
prior for the Bernoulli distribution

Assume 6~Beta(Byy, Br)

Beta pdf

ok § 88 .

Beta pdf
NIITNTT

oPH~1(1-0)PT1
I.e-, P(B) —_ B(BH BT) 02 p&’:u:ﬂv:f;—) 08 02 ﬁ;’;ﬁ. o8

More concentrated as values -
of By, Bt increase o2

02 04 0.8 [T ] 1 T 02 04 0.8 0.8

paf

Beta pdf
- N O » o

Source: Balcan


https://www.cs.cmu.edu/~ninamf/courses/315sp19/lectures/prob-estim_01_29.pdf

Conjugate Priors

OPH—1(1-0)PT-

Assume O~Beta(By, Br) l.e., P(0) = B(Bu.BT)
H:PT

Likelihood function P(D|6) = 6% (1 — 6)%T (Binomial)

Posterior: P(6|D) «< P(D|B)P(6)

@) biased coin -- each
arm can be though
of as different coin

amg = ZX?’
ar =Yy (1-X;)

P(6|D) « foutPu-1(1 — g)ar+pr—1~Beta(ay + Py, ar + Pr)

Interpretation: like MLE, but hallucinating f;; — 1 additional heads &  — 1 additional tails

O{H‘|—BH—1

E)I\.'h"—'&P -

(ap+Br—1) + (ag+Pu — 1)

Note: as we get more sample effect of prior washed out.

Source: Balcan
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Thompson Sampling

Explores based on posterior reward distribution

Ineachroundt =1,...,n:
-For A € A agentsamples 04 ~ P(04 | D;)
- Agent selects A; € arg max Eq, ,[Xa] = arg aX fg 4.,

- Agent observes reward

- Agent updates posterior distribution

Regret analysis: Agrawal & Goyal



http://proceedings.mlr.press/v31/agrawal13a.pdf

Questions?



