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Agenda

Intelligent Exploration

Offline RL

Sim2Real

Visual Imitation Learning
Self-supervised Visual Learning



Intelligent Exploration

e Extrinsic Motivation
o External reward, problem: sparse
e |Intrinsic Motivation
o Motivated by curiosity, enjoyability, etc.
o Task independent, general, no supervision
e How to frame intrinsic motivation mathematically?
o Q@ function ensembles, visit counts, reachability, etc.



Model Prediction Error as Intrinsic Motivation

e Add exploration bonus to states that will cause transition model to fail

e How to formulate exploration bonus?
o Predict entire observation?
o Predict latent state?

e Limitations of prediction error
o Noisy TV



Curiosity Through Reachability

e Store non-parametric memory structure of past image embeddings
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Offline RL

e Great summary here: https://arxiv.org/abs/2005.01643
e How can we extract effective policies from previously collected data, without

additional experience collection?
o  Would facilitate usage of large datasets collected under some different policy

e How does this differ from the “off-policy” algorithms we have seen before?



https://arxiv.org/abs/2005.01643

Extrapolation Error and Batch-Constrained RL

e Q function on fixed experience has bad estimates on actions not in buffer
o Leads to poor Q estimates
e Solution?

o  Only traverse transitions contained in batch
O

Q(s,a) + (1—a)Q(s,a)+a(r+~ e BBX Q(s',a")).



BCQ

e Train model to generate actions that are contained within the batch

e Four key components
o cVAE to generate actions conditioned on state
o Perturbation model to add diversity to actions
o Two Q networks as in clipped double Q learning

e Go through paper/algorithm?



IRIS

e High-level Idea: Train High-Level Goal Proposal, Low-Level Controller

o Low-level controller trained via imitation learning
o High-level Goal Proposal trained as cVAE
o Generate proposals for the low level controller to reach

e Go through paper/algorithm?



Sim2Real

e The very large number of samples required by many model-free RL algorithm
is often only possible in simulations (simulator acts as “model”)

e Idea: We can train our policies in simulation then transfer to the real world

Simulation Real World




Sim2Real

Idea: We can train our policies in simulation then transfer to the real world

Pros: Cons:
e \We can afford many samples e Creating simulators is expensive
e Exploration is safe e Discrepancy in observations
e Avoids wear and tear on robot e Discrepancy in dynamics
e Can explore with different configs

Result: Policies learnt in simulation usually do not transfer well. ..



Sim2Real: Domain Adaptation
« Idea: Sample from a large set

of simulation environments by
randomizing the simulator
parameterization (dynamics,
visuals)

e By learning from many
different environments we
hope to improve transfer
performance




Sim2Real: Automatic Domain Randomization

Algorithm 1 ADR

Require: ¢° > Initial parameter values
Require: {DF, DI}e | > Performance data buffers
Require: m, ty, ty, where ty < ty > Thresholds
Require: A > Update step size
¢ — ¢° sample environment config
repeat /
A~ Py

i~U{l,...,d},x ~U(0,1)
if z < 0.5 then

D; < DE, X+ oF > Select the lower bound in “boundary sampling”
else

D; + DH, )\, «+ ¢F > Select the higher bound in “boundary sampling”
end if
p <~ EVALUATEPERFORMANCE(\) > Collect model performance on environment parameterized by A
D; < D; U {p} > Add performance to buffer for \;, which was boundary sampled

if LENGTH(D;) > m then
P < AVERAGE(D;)
CLEAR(D;) . . .
ifp>tythen increase configuration space
i — i + A
else if p < ¢, then
i — i — A
end if Resolves need for manual

end if configuration

until training is complete




Visual Imitation Learning

e Learning skills by watching people or other agents performing the skill

human demonstration robot’s imitation

e Central difficulty in visual imitation is perceiving the world state: where are the
objects, in which pose, what velocities, etc.
e \We use Computer Vision to learn a suitable representation



Visual Imitation Learning

Paper: Playing exploration games by watching YouTube
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e Temporal distance classification: given two frames, clarify their temporal
distance into one of k intervals, e.g., {[0],[1],[2],[3—4],[5—20],[21-200]}

e Given one video demo, use visual similarity encoded as frame embedding
distance asimitation reward



Visual Imitation Learning

Paper: SFV: Reinforcement Learning of Physical Skills from Videos
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Visual Imitation Learning

Paper: SFV: Reinforcement Learning of Physical Skills from Videos

Video Poses
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Self-supervised Visual Learning

e Tryto learn good representation from unlabelled data
e Idea: Construct supervised learning tasks out of unsupervised datasets. We
call these tasks pretext tasks.

Why do we want to this?

e Data labeling is expensive and high-quality labeled datasets are limited
e Learning good representation makes it easier to transfer useful information to
downstream tasks (few-shot, zero-shot learning)



Self-supervised Visual Learning

Idea: Construct supervised learning tasks out of unsupervised datasets. We call
these tasks pretext tasks.

Step 1: Pre-train a model for a pretext task Step 2: Transfer to applications
Downstream
/’ Predictor Predictor | €«—— Fine-Tune
Transfer
Model —_— Model

Pre-training
Data

Task-specific
Data



Self-supervised Visual Learning

Self-prediction: Given one individual data sample, the task is to predict one
(unseen) part of the sample given the other part.

» Predict any part of the input from any
other part.

» Predict the future from the past.

1 —
» Predict the future from the recent past. | ! '
» Predict the past from the present. ﬁ

» Predict the (op from the bottom.

» Predict the occluded from the visible

» Pretend there is a part of the input you « Past Present Future —
don’t know and predict that. ) Slide: LeCun

(Famous illustration from Yann LeCun)

|



Self-supervised Visual Learning

Contrastive Learning: Learn representations such that embeddings of similar
sample pairs are close to each other while dissimilar ones are far apart
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Self-supervised Visual Learning

Contrastive Learning: Learn representations such that embeddings of similar
sample pairs are close to each other while dissimilar ones are far apart

e Contrastive Loss: Given two labeled sample«(x;, v;)

Leont (X, Xj, 0) =1[y; = }’j]

Ifo(x:) — fox)Il5

minimize

S - ﬂ[yl ;é y]] max(O, g —

an(x;,y;)

~~
N

Wo(x:) — fo(xj)|2

maximize

Chopra et al. 2005



Self-supervised Visual Learning

Contrastive Learning: Learn representations such that embeddings of similar
sample pairs are close to each other while dissimilar ones are far apart

e Triplet Loss: Minimize distance between anchor x and positive example x+
and maximize distance between anchor x and negative example x-

Lo x*,x7) = Y max (0, [If®) = F&HI2 = IIf®) = FxOI3 + )
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Negative m
Anchor (Schroff et al. 2015)

Anchor LEARNING

Positive Positive



Self-supervised Visual Learning

Contrastive Learning: Learn representations such that embeddings of similar
sample pairs are close to each other while dissimilar ones are far apart

e Visual Pretext: Use data augmentation to each image and consider its
distorted versions as similar pairs
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Self-supervised Visual Learning

e Visual Pretext:

Augmented Multiscale Deep InfoMax
(AMDIM; Bachman et al. 2019)

e Views from different augmentations

Contrastive Multiview Coding s | F s ;
(CMC; Tian et al. 2019) et neh  weh  dcR Tedheve
, , , areing views (Tian et al. 2019)
e Multiple views from different channels

Pretext Image | Standard Pretext Pretext Invariant
Transform Learning Representation Learning
S I It
Pretext-Invariant Representation Learning t

! .

ConvNet Er:‘vy
k 7 resentat 7 b (Representation )
E; Predict property of t

Encourage to be similar

(PIRL; Misra et al. 2019)
e Jigsaw transformation

(Misra et al. 2019)



Questions?



