

BASICS

® |ntuition: Habitual vs Goal-directed

® Learns an environment/dynamics model /network

® Function Approximation: F,: SXA — RxS’

* Model rollout: S; = A¢|mg(St) = Rt|P(p(St,At) - St+1|P(p(St;At) e

MODEL-BASED CONTROL

®* Model rollout from s

* Objective: min ||s;_; —s*|| or max Yi_g1;

QAg...AT—_1 Aag...dT—1

MPC

* so = aglmg(So) = S1|Pp (S, ap)

® Backpropagate using objective > mcallx Z;";:_ll 13 from model unrolling
1--0T-1

®Sp < S

® Repeat

ALEATORIC VS EPISTEMIC UNCERTAINTY

* Aleatoric def: Uncertainty due to system/environment(Latin: game of chance)
* Epistemic def: Uncertainty due to insufficient/biased data

® Compounding error(Long term)

® Probabilistic ensemble networks(Gaussian)

* E.g. PETS & MBPO

Algorithm 2 Model-Based Policy Optimization with Deep Reinforcement Learning

1: Initialize policy 7y, predictive model pg, environment dataset Dey,y, model dataset Diodel
2: for N epochs do

3: Train model pg on D,,, via maximum likelihood

4: for E steps do

5; Take action in environment according to 7; add to Depy

6: for M model rollouts do
7.
8
9

Sample s; uniformly from D,
Perform k-step model rollout starting from s; using policy 7y; add t0 Dodel
for G gradient updates do

10: Update policy parameters on model data: ¢ < ¢ — /\7,64, Fe (0 Do)

OFF-POLICY RL

DEFINITION

® Learns value of the optimal policy disregarding agent’s actions
® Behavior policy(Correlated with current)
® On policy algos: SARSA, policy gradient methods

* Off policy algos: Q-learning, soft a2¢c, DDPG

DEEP DETERMINISTIC POLICY GRADIENT (DDPG)

* Objective: max Ez <py) [X120 Q(se. ar)]

* VoE[%:01 Q(sp,ar)] = IE[ZZ::_Ol VatQ(St» a) Veat]
® Learns from experience tuples in a buffer(Not fixed)

® Extrapolation error: Distinguish good (s,a)s from the bad ones(states visited by
policy).

® Not truly off-policy

Algorithm 1 Deep Deterministic Policy Gradient

I: Input: initial policy parameters €, Q-function parameters ¢, empty replay buffer D
2: Set target parameters equal to main parameters €., « 0. Gpug ¢ ¢
3: repeat
4: Observe state s and select action a = clip(tg(s) + €. QLo @prign). Where € ~ N
5: Execute a in the environment
6: Observe next state s, reward r, and done signal d to indicate whether s is terminal
7. Store (s.a,r, s, d) in replay buffer D
8 If s’ is terminal, reset environment state.
9: if it’s time to update then
for however many updates do
Randomly sample a batch of transitions, B = {(s,a,r,s',d)} from D
Compute targets

y(r, s d) =1+ (1 = d) Qg (5 Hpars (5))

Update Q-function by one step of gradient descent using

Vore 3 (Qu(s:0) — y(r, 8 d))?

lBl (s,a,r,s" d)eB

Update policy by one step of gradient ascent using

Vorg 2 Quls.pol)

seB

Update target networks with

(;)tnrg — /"?l)t.arg + (1 — /))(,f)
emrg S /’Htarg 3 (1 - /’)H

end for
end if
: until convergence

DDPG EXTENSIONS

® Hindsight Experience Replay

® Twin Delayed Deep Deterministic Policy Gradients (TD3)

VISUAL
IMITATION
LEARNING

IDEA

® Use visual feature matching as dense reward shaping from a single

demonstration

® Grasp useful info from the real world(Computer vision)

SINGLE DEMONSTRATION AND MANY
INTERACTIONS

® Self-supervised visual learning

® 3D body pose inference through SMPL(a 3D human shape low-parametric

model), e.g. keypoint, segmentation and motion reprojections

®* PPO & iLQR

LARGE SCALE DEMONSTRATION COLLECTION

* No/Little interactions

® Challenges: Diversity(Behavioural strategies) & Suboptimality(Longer

trajectories)

® cVAE(conditional Variational Autoencoder): Generate all possible

subgoals(Diversity), Low-level goal-conditioning — unimodal

imitation(Suboptimality)

Review: LQR, iLQR

Conor Ilgoe — May 7 2021

Review
LQR Overview

» YouTube

Counteracting external
disturbances.

LQR-Assisted Whole-Body Control
of a Wheeled Bipedal Robot
with Kinematic Loops

Victor Klemm, Alessandro Morra, Lionel Gulich, Dominik Mannhart,
David Rohr, Mina Kamel, Yvain de Viragh, and Roland Siegwart

September 2019

»

<
m - <40 ® = LQR-Assisted Whole-Body Control of a Wheeled Bipedal Robot with Kinematic Loops (RA-L /
e - . Q S C - | . I O ICRA 2020) Chapters X
== APUYE LEYS LANSI IS

Eidgenossische Technische Hochschule Zurich

&
Swiss Federal Institute of Technology Zurich Autonomous Systems Lab AR il 487 &2 P SHARE =i SAVE ... ' - 1:28

Review

LQR Overview

x,u=s,a:;: x€R,ueRF
X,.1 = Ax, + Bu, Linear dynamics
c(x,, u) = x! Ox, + u! Ru, Quadratic costs (can think of as negative of MDP rewards)

Bellman Equation for deterministic policy 7 (in cost form):
e VA(x) = x1Ox + n(x)' Rn(x) + V*(Ax + Ba(x))
* Note: discounting not necessary provided the system is “controllable”

Bellman Optimality Equation (in cost form):

. V*(x) = minx'Ox + u’ Ru + V*(Ax + Bu)

u

As usual, solving the Bellman Optimality Equation gives us the optimal policy

* Often this involves solving something known as an Algebraic Ricatti Equation

Review

Algebraic Ricatti Equation Overview

X, 1 = Ax, + Bu,

c(x,u,) = x'Ox, + u' Ru,

e Suppose that V* can be expressed as a quadratic form (this turns out to be true):

. V) =xTP*x = minx'Ox + u’ Ru + (Ax + Bu)! P*(Ax + Bu) = min f(x,u)

u u

Notice that f(x, 1) is convex in u (this follows from assumptions on (), R), so we can take gradients and set to zero to solve RHS:
e V, f(x,u) =2Ru+ 2BTP*(Ax + Bu) 0= u*= —(R+B'P*B)"'B"P*Ax = —Kx

* Plugging back into the Bellman Optimality Equation:

V) =xTP*x = minx’'Ox + u’ Ru + (Ax + Bu)! P*(Ax + Bu)

u

= xTOx + u*'Ru* + (Ax + Bu™)!' P*(Ax + Bu™)

= x"Ox + x"K'TRKx + (Ax — BKx)! P*(Ax — BKx)

* This yields the following matrix equation (if we solve this then we solve the Bellman Optimality Equation):

e P* = O+K'RK+(A — BK)'P*(A — BK) (where K = (R + B' P*B~")B' P*A)

Substituting K for the full expression and manipulating we arrive at the Discrete-time Algebraic Ricatti Equation (DARE).

e P*=0+ATP*A - (ATP*B)YR+ B'P*B)"{(BTP*A)

Once we solve for P* we can then easily find K (also known as the gain matrix) to find the optimal policy 7*(x) = —Kx

Review

LQR Extensions

® @ scipy.linalg.solve_continuous X @ scipy.linalg.solve_discrete_a X -+

& C & docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_discrete_are.html

[scPyorg 1 Docs | Sy .63 Reference Guide | Linear algeba scpyinaig)] index 1" moduies | next] preous

scipy.linalg.solve_discrete_are

scipy.linalg.solve_discrete_are(a, b, g, r, e=None, s=None, balanced=True) [source]

Solves the discrete-time algebraic Riccati equation (DARE).

The DARE is defined as
ATXA - X - (A"XB)(R+ BYXB) ' (B"XA)+ Q=0

The limitations for a solution to exist are :

 All eigenvalues of A outside the unit disc, should be controllable.
* The associated symplectic pencil (See Notes), should have eigenvalues sufficiently away from the unit
circle.

Moreover, if e and s are not both precisely None, then the generalized version of DARE
A"XA - E"XE - (APXB 1 S)(R+BPXB) Y (BIXA+S%)+Q=0
is solved. When omitted, e is assumed to be the identity and s is assumed to be the zero matrix.
Parameters: a : (M, M) array_like
Square matrix

b : (M, N) array_like

Input

q : (M, M) array_like

Input

r : (N, N)array_like
Square matrix

* Many variants on the LQR setting, including:

e Continuous-time LQR (requires solving CARE instead of DARE)

Previous topic

scipy.linalg.solve_continuous_are

Next topic

scipy.linalg.solve_continuous_lyapt

Quick search

search

&

C

@ scipy.linalg.solve_continuous. X @ scipy.linalg.solve_discrete_arc X -+

& docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_continuous_are.html w P 2 U W

[scPyorg 1 Docs | Sy .63 Reference Guide | Linear algeba scpyinaig_)] [index 1 moduies | next] preious]

scipy.linalg.solve_continuous_are Previous topic

scipy.linalg.solve_sylvester
sc1py.Ima[g.SOlve_ContinuOUS_are(a_, b, g, r, e=None, s=None, balanced=True) [source])
Solves the continuous-time algebraic Riccati equation (CARE). Next topic
The CARE is defined scipy.linalg.solve_discrete_are
e is defined as
Quick search

XA+ A"X - XBR'BIX+ Q=0

The limitations for a solution to exist are :

e All eigenvalues of A on the right half plane, should be controllable. search

* The associated hamiltonian pencil (See Notes), should have eigenvalues sufficiently away from the
imaginary axis.

Moreover, if e or s is not precisely None, then the generalized version of CARE
E¥XA+ A"XE - (EYXB+ S)R"YBYXE 1+ S")+ Q=0

is solved. When omitted, e is assumed to be the identity and s is assumed to be the zero matrix with sizes
compatible with a and b, respectively.
Parameters: a : (M, M) array_like
Square matrix
b : (M, N) array_like
Input
q : (M, M) array_like
Input

r : (N, N)array_like

Moncinaular coiiara matriv

 Time-varying LQR with varying dynamics A,, B, (e.g. imagine an ageing motor)

» Requires a different solution method and yields { K,} instead of constant K as in vanilla LQR

* Having non-zero, time-varying regulation points (vanilla LQR assumes we always wish to keep the state at the origin)

« If at time ¢ the regulation point is x,* then we take action —K(x, — x;*) where K is from vanilla LQR

Review
ILQR Overview

* In practice, few systems are truly linear throughout all state-action space

* Popular algorithm: iLQR (similar to Differential Dynamic Programming, DDP). Note that iLQR is a form of Model Predictive
Control. Note also that iLQR assumes that the dynamics model is known perfectly (various papers have addressed
model misspecification issues and robustness; however we will just focus on the vanilla iLQR algorithm)

Input: initial action sequence {u(()), s ug_l} and state trajectory {xg, ...,xg_l}, goal state trajectory {xg(, ...,x;f_l}
Fori=0,1,...,1
1. Linearise fat each (x/, u') yielding { (A; = D_f(x!,u!),B' = D, f(x!, ut’)) }ZOI (use finite differences or auto-diff software)
2. Solve a time-varying LQR problem using {(Ati, Bti)} and O, R yielding {K,f th_Ol (see lecture notes for backward pass equations)

3. Set a to some positive value and line search over a until we find an action sequence with better total cost:

3.1. Rollout {aK!}'Z from x, using {xJ, ..., x_,} to obtain {u”rl y thll} and {x”rl ZTJ:11} ut = ul—aK'(x™ — x! — xX)
a
i+1 i+1
4. Break if stopping criteria met (e.g. changes in { y oo Up g small)

Return u(l)

Review
ILQR Overview

* In practice, few systems are truly linear throughout all state-action space

* Popular algorithm: iLQR (similar to Differential Dynamic Programming, DDP). Note that iLQR is a form of Model Predictive
Control. Note also that iLQR assumes that the dynamics model is known perfectly (various papers have addressed
model misspecification issues and robustness; however we will just focus on the vanilla iLQR algorithm)

Input: initial action sequence {u(()), - ug_l} and state trajectory {xg, ...,xg_l}, goal state trajectory {xg, ...,x}(_l}
Fori=0,1,...,1
1. Linearise fat each (x/, u') yielding { (A; = D_f(x!,u!),B' = D, f(x!, ut’)) }ZT;OI (use finite differences or auto-diff software)
2. Solve a time-varying LQR problem using {(Ati, B,f)} and (), R yielding {Kti th_Ol (see lecture notes for backward pass equations)

3. Set a to some positive value and line search over a until we find an action sequence with better total cost:

3.1. Rollout {aK!}'Z from x, using {xJ, ..., x_,} to obtain {u“rl ’+1 1} and {x”rl ’+1} ut = ul—aK'(x"! — x! — x*)
a
3.2. 00 < —
2 1. —x* because not interested in regulating to origin
4 Break if st + ; H itr1 itrl I 2. —xti because LQR solution is w.r.t. linearisation point
reak If stopping criteria me (€. g. changes in { > T—l} small) 3. a because our linearisation may not hold well and

we need to act more closely to the linearisation point
Return u; 4. u! because LQR solution is w.r.t. linearisation point

Il

Review
ILQR Overview

e |ssues with iLQR:

 Computationally expensive: requires calculating multiple Jacobians and
solving multiple LQR problems every time we need to take an action.

* Mostly suited to “regulator like” problems (i.e. not Atari playing) as
ultimately is depending on smoothness in underlying domain to perform
well (the “larger” the non-linearity in dynamics the poorer iLQR will perform,
although still better than vanilla LQR)

Review
ILQR Overview

o Still, lots of robotics problems leverage ideas from ILQR

 Boston Dynamics recently disclosed Atlas control detalils, likely builds off
ILQR ideas: https://www.youtube.com/watch?v=EGABAx52GKI

Nonlinear momentum dynamics

O © B "Recent Progress on Atlas, t! X L‘i Atlas® | Boston Dynamics X -+

< C @& youtube.com/watch?v=EGABAX52GKI & v R IR IR B

« |teratively inearize and solve

« Exploit problem structure for speed =

« Optimize touchdown configurations

P Pl o) 31:57/1:1807 - Scott's Talk > 0 @ & [« o ;] I3

) | RI Seminar: Sidd Srinivasa:
A Robotic Manipulation...
7 N -ENUVERTORS cmurobotics
Smee—— 8 OK views * 4 years ago

:,\' ;

"Recent Progress on Atlas, the World’s Most Dynamic Humanoid Robot" - Scott Kuindersma

9,900 views * Jun 30, 2020 iy 238 &2) SHARE =i SAVE ...

Boston Dynamics

CURTOSITY DRIVEN EXPLORATION

TYPES OF MOTIVATION

Extrinsic Motivation : pursuit of an external reward (such rewards can be sparse)

Intrinsic Motivation : pursuit because the task is inherently enjoyable (curiosity,
novelty, surprise)

Benefits of Intrinsic Motivation :
Task independent
Free of human supervision

Does not require reward functions to incentivize agent

CURIOSITY

Seek novelty / surprise
Visit novel states

Observe novel state transitions

CURIOSITY DRIVEN EXPLORATION

Ensembles of Q functions
State counting
Model prediction error

Episodic curiosity through reachability

ENSEMBLE OF Q-FUNCTIONS

We are looking to model the uncertainty of Q values

Train multiple Q-functions each one using different subset of data (can also have a
shared backbone)

Use posterior sampling to sample a Q-function (Q ~ P(Q))
Choose actions according to the sampled Q-function

Update the Q distribution using the collected experience tuples

Entropy of predictions of the network is high in areas where lesser data has been
previously collected, thus encouraging exploration

When Q-functions agree on actions, entropy is lower and there we exploit instead of
explore

EXPLORATION REWARD

Independent of the task in hand!

R(s,a,s) = r(s,a,s") + PB'(s,a,s’)

S

extrinsic Intrinsic

Add exploration reward bonuses to the extrinsic (task-related) rewards

Exploration reward bonuses are non stationary

STATE COUNTING

Count states in latent space (not in image space)
Compression into latent space is important because the image space is very large
Use autoencoders to get the image encoding (based on reconstruction)

Try to visit states that have a lower count

downsample
&)

U6 x 6 el 6 G o 6 linear softmax

)
‘ YGOxSxS oY $12 W xSxS
96 x 11 x11 p Y 96 x 10 x 10

U 96 x 24 x 24 1024 ; 96 x 24 x 24
2400
1 x52x52 I xS52xS2 64x52x52

MODEL PREDICTION ERROR

We want a positive reinforcement whenever the system fails to correctly predict the
environment

Train a dynamics model alongside

Exploration reward bonuses encourage policy to visit states that cause the trained
dynamics model to fail

model error!

R'(s,a,s") = r(s,a,s) + B(||1(s,a;0) — s'||)

extrinsic intrinsic

LIMITATIONS OF PREDICTION ERROR AS BONUS

Agent can be rewarded even though the model can no longer improve

Agent is attracted to the most noisy states. This can be random noise with
unpredictable outcomes.

Noisy TV problem

EPISODIC CURIOSITY THROUGH REACHABILITY

R'(s,a,s") = r(s,a,s") + B'(s, M)

—

extrinsic intrinsic

Augmented rewards as before
M is a non-parametric memory populated with past image observations

Curiosity reward will use a comparator neural net that takes in two images and
predicts whether they are close (few actions apart) or far

Comparisons are done between current observation and observations in memory

EPISODIC CURIOSITY THROUGH REACHABILITY

At each timestep, agent compare current observation with the ones in memory

If current observation is novel, agent gets rewarded and novel observation is added
to the memory

) Far from memory —
Reaehable from memory 4 takes > k steps to reach
_in s k steps (not novel) , (novel)

SIM2REAL TRANSFER

CHOICES

Use a physics simulator to learn and then transfer to real world
Learn policies directly in the real world

Combine simulators with deeply learned residuals

PROS AND CONS OF SIMULATION

Can afford many samples Under modeling
Safe Large engineering effort

Allow more exploration Needs accurate parameters

STRATEGIES FOR SIM2REAL TRANSFER

1. Domain Randomization

2. Adaptive Domain Randomization

3. Residual Physics (combine analytical models with deeply learned residuals)

4. Abstraction

DOMAIN RANDOMIZATION

Create many version of simulation
environments by randomizing parameters

Parameters of the environment : camera
position and orientation, textures, lighting,
contrast

Train the detector on the diverse simulation
environments

ADAPTIVE DOMAIN RANDOMIZATION

Policy might fail if the distribution of environments is too wide
Widen the distribution as long as the policy succeeds

Increase the range of values of the parameters (that characterize the environment) if
the policy performs well

Y

Update Sample R Evaluate
Distribution Environment | Performance
A

Y

\ J

\ 4

Generate Data Optimize Model

RESIDUAL PHYSICS

Use neural networks to capture the residual between analytical physics models and
real world physics

Paper to read : “TossingBot : Learning to Throw Arbitrary Obijects with Residual
Physics”

RESIDUAL PHYSICS

& & &) ®
& &

Learned Physics @ Learned e Learned

Physics Physics

@ %)) (c)

(a) (d)

Pure learned model for predicting actions
Pure analytical physics model for predicting actions
Combination of analytical and learned model for predicting next state

Combination of analytical and learned model for predicting actions (TossingBot)

ABSTRACTION

Learn higher level policies instead of low level controllers

Paper to read : “Driving Policy Transfer via Modularity and Abstraction”

Image pixels to steering wheel mapping is not sim2real transferable
Image quality mismatch between simulation and real world

Dynamics mismatch (physics of the car and steering) between simulation and real world

“ || [l |:| Control

u

ABSTRACTION

Mapping of labelled map to waypoints is better sim2real transferable

Low level controller can take the car from waypoint to waypoint in the real world

Perception module Driving policy Controller

e et e g1 @
" [0) -

Image Segmentation - Waypoints Corltrol
i S Command ¢ W,

Graph Neural Network /

Learning from Demonstrations and
Task Rewards /

Adversarial Imitation Learning

A review

Yuning Wu, 5/7/2021

Graph Neural Network

Single CNN layer

with 3x3 filter: h 1

h
O
o

tion b I | y
incent g:f:'r:gﬂlin); O % ,I/

From CNN to GNN

Hidden layer activations of pixels/nodes /1, € RF

(+1) — (D, (1) Op 4 ... (D, (D)
WD = 6 (WORD + WORD 4 oo + WD)

o S — » « Different weight!

Undirected graph

o Do o P

O O O//\O

From CNN to GNN

Hidden layer activations of nodes &, € R’
Neighbor indices ./,

Fixed, trainable norm Cij

D = o | wyn® + Y _W Op®
l

]E/V « Sharing weight over neighboring locations
m— 7 » « Permutation invariant
e Linear complexity

Paper |
Interaction Networks for Learning about Objects, Relations and Physics, Battaglia
et al., 2016

e Object / object part = graph’s node
¢ |nput
e Object state
© Dynamic: position, velocity
o Static: mass, size, shape
e Relation attribute
o Coefficients of connectivity, restitution, spring constant, etc.
e Qutput: future velocity

Paper |
Interaction Networks for Learning about Objects, Relations and Physics, Battaglia

et al., 2016

e Relational / edge NN

¢ |nput
o Two object (two sides of an edge) states

O Relational attributes
e Qutput
O Feature vector N\

Paper |
Interaction Networks for Learning about Objects, Relations and Physics, Battaglia

et al., 2016

e Object/ node NN
¢ |nput
© One object state
o Summation of all incoming edge message

e Qutput
O Future object velocity O

Paper I
Long-term Visual Dynamics with Region Proposal Interaction Networks, Qi et al.,
2021

e | earning object interactions from visual input

¢ |nput
O Detected object appearance (ConvNet, pooling)
© Motion history

e Qutput
O Future motion trajectory

Paper I
Long-term Visual Dynamics with Region Proposal Interaction Networks, Qi et al.,

2021

Object Location Prediction

1 t t 1

Fxp Foei*y Ff*?) . F(x{*) FOxi™) F(x(*®) F(x*) F(xi*™")
‘: s a
"""""""""""""""" i) RN oy N (s I po
o J . 1 (1 [_____])
RolIPool RolPool RoIPool RolPool | -7 T
ob: Interaction Module
ject
ConvNet ConvNet ConvNet ConvNet Features f(xp x7) f(x1 %3)
(3
]] | |
1 X, /H N\ z,
X; —H [| | [F— z,
x z
3 \.ﬁ I 7 I H/ 3
f(x3,x1) f(x3,%;)

1t+1 1t+2 1t+3

Paper lll
Graph Networks as Learnable Physics Engines for Inference and Control,
Gonzalez et al., 2018

e Physical system’s bodies and joints = graph’s nodes and edges
¢ |nput
e Global feature
o None / Gravity, wind, density, etc.
® Node feature
o Dynamic: position, 4D quaternion orientation, linear and angular velocity
O Static: mass, inertia, etc.
e Edge feature
o Magnitude of action at joint, etc.
e Output: dynamic features, temporal difference.

Paper lll
Graph Networks as Learnable Physics Engines for Inference and Control,

Gonzalez et al., 2018

G.1. Dynamic graph

We retrieved the the absolute position, orientation, linear and angular velocities for each body:

e Global: None

e Nodes: (for each body)
Absolute body position (3 vars): mjData.xpos
Absolute body quaternion orientation position (4 vars): mjData.xquat
Absolute linear and angular velocity (6 vars): mj_objectVelocity (mjOBJ_XBODY, flg_local=False)

e Edges: (for each joint) Magnitude of action at joint: mjData.ctrl (0, if not applicable).

Paper lll
Graph Networks as Learnable Physics Engines for Inference and Control,
Gonzalez et al., 2018

G.2. Static graph

We performed an exhaustive selection of global, body, and joint static properties from mjModel:

e Global: mjModel.opt.{timestep, gravity, wind, magnetic, density, viscosity, impratio, o_margin, o_solref, o_solimp,
collision_type (one-hot), enableflags (bit array), disableflags (bit array)}.

e Nodes: (for each body) mjModel.body_{mass, pos, quat, inertia, ipos, iquat}.

e Edges: (for each joint)
Direction of edge (1: parent-to-child, -1: child-to-parent).
Motorized flag (1: if motorized, O otherwise).
Joint properties: mjModel.jnt_{type (one-hot), axis, pos, solimp, solref, stiffness, limited, range, margin}.
Actuator properties: mjModel.opt.actuator_{biastype (one-hot), biasprm, cranklength, ctrllimited, ctrlrange, dyntype
(one-hot), dynprm, forcelimited, forcerange, gaintype (one-hot), gainprm, gear, invweight0, lengthO, lengthrange}.

Paper lll

(b) Graph Network (GN) block
™
> f g > g

/ > {n}

N\

-
=
T~

A
\.\

/
7
-

t

Graph Networks as Learnable Physics Engines for Inference and Control,

Gonzalez et al., 2018

Algorithm 1 Graph network, GN

Input: Graph, G = (ga {n’i}a {eja Sjs rj})
for each edge {e;,s;,r;} do
Gather sender and receiver nodes ns,, N,
Compute output edges, €; = f.(g,ns;,n;,;, €;)
end for
for each node {n;} do
Aggregate e per receiver, &; =) j/ry=i e;
Compute node-wise features, n} = f,,(g,n;, €;)
end for
Aggregate all edges and nodes € = » . ej,n =), n;
Compute global features, g* = f,(g, N, e)
Output: Graph, G* = (g*7 {n;‘}a {e;a S35 rj})

« Relation between node, edge, global features

» « Sequence of update

» Architecture of GN block

Paper IV
Learning to Simulate Complex Physics with Graph Networks, Gonzalez et al.,
2020

e Object — graph of particles, scene — graph of all particles from all objects
¢ |nput

O Particle velocity of last 5 time steps
e Output: particle acceleration

Paper IV
Learning to Simulate Complex Physics with Graph Networks, Gonzalez et al.,

2020

e Particles are different from nodes. Only consider displacements.
® |nject noise to particle velocities during training time to tackle accumulating

error.
e Use edges to encode two particles’ relative position. No longer use absolute

position compared to previous papers’ node features. This is for translation

Invariance.
e Use multiple rounds of message passing, each round has different node, edge

weights.

Learning from Demonstrations and
Task Rewards

Learning from demonstrations

® Accelerate trial-and-error learning by suggesting good actions to try
e Train initial safe policies, to deploy in the real world

e Time consuming

e Sub-optimality, noise, diversity in performing task

e Can not surpass expert

Learning from task rewards

e Cheap supervision

e Right end task encoded via task rewards

e Sample inefficient

e Unsafe initial policy, unsafe to deploy in real world

Learning from demonstrations and task rewards

Major considerations

e Sample efficiency

e QOutperforming expert

e Safe to deploy in real world with good/safe initial performance

Learning from demonstrations and task rewards

e |nitialize the replay buffer with demonstrations

e Pre-train the model-free RL method with a demonstration only buffer, then fine-
tune it.

e Combine imitation and task rewards (see in later discussion)

e Exploit the temporal structure, and solve longer horizon tasks progressively,
rather than solving at once.

Adversarial Imitation Learning

D tries to make
: D(G(z)) near 0,
D(x) tries to be G tries to make
< near 1 > D(G(z)) near 1
f f
Differentiable
< function D) (= >
o Z sam Ied from x sam ltzd from .
I .- ‘ (cli)a’ca,) (nf)odel) b ¥
A A =
(Differentiable)
Generative Adversarial Nets (GAN) funct;on G
(Input noise 2)
Discriminator D

Generator &

mgn max V(D,G) =E,., wllogDX)]+E,, ,[log(1-D(G(x)))]

e Please refer to lecture slides for explanation of min-max game, which is very
clear and specific.

e We usually use Adam (adaptive optimizer) to train discriminator and generator
simultaneously.

e |t is important to maintain a balance between the discriminator and generator,
l.e. avoiding one being much stronger than the other.

Generative Adversarial Imitation Learning (GAIL)

Discriminator D¢

O Distinguish between state-action pairs from expert demonstrations and ones
generated/visited by agent policy 7,

Generator 7
© Policy network that conditions on state 7,(s)

Reward (s, a) = log D¢(S, a),(s,a) ~ m

O “The reward for the policy optimization is how well | matched the
demonstrator’s trajectory distribution, else, how well | confused the
discriminator.”

Generative Adversarial Imitation Learning (GAIL)
How to update the discriminator D¢ ?

E s ar-Dem [V SJog(1=D(s. a))] +Egaer [V Jog D,(s. a)

How to update the generator / policy 7, ? Policy gradient (e.g. REINFORCE)
[E(S,a)efl_ [Vylog nylog D(pm(s, a)]

GAIL vs. BC (Behavior Cloning)

GAIL outperforms BC, why?
e GAIL has more interaction with environment
e BC reduces imitation learning to supervised learning w.r.t. single action.

GAIL vs. BC (Behavior Cloning)

7 Discussion and outlook

As we demonstrated, our method is generally quite sample efficient in terms of expert data. However,
it is not particularly sample efficient in terms of environment interaction during training. The number
of such samples required to estimate the imitation objective gradient (18) was comparable to the
number needed for TRPO to train the expert policies from reinforcement signals. We believe that we
could significantly improve learning speed for our algorithm by initializing policy parameters with
behavioral cloning, which requires no environment interaction at all.

Fundamentally, our method is model free, so it will generally need more environment interaction than
model-based methods. Guided cost learning [7], for instance, builds upon guided policy search [13]
and inherits its sample efficiency, but also inherits its requirement that the model is well-approximated
by iteratively fitted time-varying linear dynamics. Interestingly, both our Algorithm 1 and guided cost
learning alternate between policy optimization steps and cost fitting (which we called discriminator
fitting), even though the two algorithms are derived completely differently.

Our approach builds upon a vast line of work on IRL [31, 1, 29, 28], and hence, just like IRL,
our approach does not interact with the expert during training. Our method explores randomly
to determine which actions bring a policy’s occupancy measure closer to the expert’s, whereas
methods that do interact with the expert, like DAgger [24], can simply ask the expert for such actions.
Ultimately, we believe that a method that combines well-chosen environment models with expert
interaction will win in terms of sample complexity of both expert data and environment interaction.

Combining imitation and task rewards

Original reward
r(s,a) = log D¢(S, a), (s,a) ~ m,

Combined reward
r(s,a) = Argap(s,a) + (1 — Dr, 4(s,a), 4 € [0,1]

Paper
Reinforcement and Imitation Learning for Diverse Visuomotor Skills, Zhu et al.,
2018

e Combines imitation and task rewards
e Start episodes by setting the world in states of the demonstration trajectories.
e Please review the paper.

Thank you

A review

Yuning Wu, 5/7/2021

