
MBRL

BASICS

• Intuition: Habitual vs Goal-directed

• Learns an environment/dynamics model/network

• Function Approximation: !!: #×% → '×#′
• Model rollout: #" → %"|*#(#") → '"|!! #", %" → #"$%|!! #", %" → ⋯

MODEL-BASED CONTROL

• Model rollout from /&
• Objective: min'!…'"#$

‖/)*% − ‖/∗ or max'!…'"#$
∑",&)*% 8"

MPC

• /& → 9&|*# /& → /%|!! /&, 9&
• Backpropagate using objective max'$…'"#$

∑",%)*% 8" from model unrolling

• /& ← /%
• Repeat

ALEATORIC VS EPISTEMIC UNCERTAINTY

• Aleatoric def: Uncertainty due to system/environment(Latin: game of chance)

• Epistemic def: Uncertainty due to insufficient/biased data

• Compounding error(Long term)

• Probabilistic ensemble networks(Gaussian)

• E.g. PETS & MBPO

OFF-POLICY RL

DEFINITION

• Learns value of the optimal policy disregarding agent’s actions

• Behavior policy(Correlated with current)

• On policy algos: SARSA, policy gradient methods

• Off policy algos: Q-learning, soft a2c, DDPG

DEEP DETERMINISTIC POLICY GRADIENT (DDPG)

• Objective: max# ;- ∼/%(-)[∑",&)*%=(/", 9")]

• ∇#; ∑",&)*%=(/", 9") = ; ∑",&)*%∇'&=(/", 9") ∇#9"
• Learns from experience tuples in a buffer(Not fixed)

• Extrapolation error: Distinguish good (s,a)s from the bad ones(states visited by
policy).

• Not truly off-policy

DDPG EXTENSIONS

• Hindsight Experience Replay

• Twin Delayed Deep Deterministic Policy Gradients (TD3)

VISUAL
IMITATION
LEARNING

IDEA

• Use visual feature matching as dense reward shaping from a single
demonstration

• Grasp useful info from the real world(Computer vision)

SINGLE DEMONSTRATION AND MANY
INTERACTIONS

• Self-supervised visual learning

• 3D body pose inference through SMPL(a 3D human shape low-parametric
model), e.g. keypoint, segmentation and motion reprojections

• PPO & iLQR

LARGE SCALE DEMONSTRATION COLLECTION

• No/Little interactions

• Challenges: Diversity(Behavioural strategies) & Suboptimality(Longer
trajectories)

• cVAE(conditional Variational Autoencoder): Generate all possible
subgoals(Diversity), Low-level goal-conditioning → unimodal
imitation(Suboptimality)

Conor Igoe — May 7 2021

Review: LQR, iLQR
Recitation 9 10-403

Review
LQR Overview

• ;

• Linear dynamics

• Quadratic costs (can think of as negative of MDP rewards)

• Bellman Equation for deterministic policy (in cost form):

•

• Note: discounting not necessary provided the system is “controllable”

• Bellman Optimality Equation (in cost form):

•

• As usual, solving the Bellman Optimality Equation gives us the optimal policy

• Often this involves solving something known as an Algebraic Ricatti Equation

x, u = s, a x ∈ ℝd, u ∈ ℝk

xt+1 = Axt + But

c(xt, ut) = xT
t Qxt + uT

t Rut

π

Vπ(x) = xTQx + π(x)TRπ(x) + Vπ(Ax + Bπ(x))

V⋆(x) = min
u

xTQx + uTRu + V⋆(Ax + Bu)

Review
LQR Overview

• Suppose that can be expressed as a quadratic form (this turns out to be true):

•

• Notice that is convex in (this follows from assumptions on), so we can take gradients and set to zero to solve RHS:

•

• Plugging back into the Bellman Optimality Equation:

•  
 
  
 

• This yields the following matrix equation (if we solve this then we solve the Bellman Optimality Equation):

• (where)

• Substituting for the full expression and manipulating we arrive at the Discrete-time Algebraic Ricatti Equation (DARE):

•

• Once we solve for we can then easily find (also known as the gain matrix) to find the optimal policy

V⋆

V⋆(x) = xTP⋆x = min
u

xTQx + uTRu + (Ax + Bu)TP⋆(Ax + Bu) = min
u

f(x, u)

f(x, u) u Q, R

∇u f(x, u) = 2Ru + 2BTP⋆(Ax + Bu) set= 0 ⟹ u⋆ = −(R + BTP⋆B)−1BTP⋆Ax = −Kx

V⋆(x) = xTP⋆x = min
u

xTQx + uTRu + (Ax + Bu)TP⋆(Ax + Bu)

= xTQx + u⋆TRu⋆ + (Ax + Bu⋆)TP⋆(Ax + Bu⋆)

= xTQx + xTKTRKx + (Ax − BKx)TP⋆(Ax − BKx)

P⋆ = Q+KTRK+(A − BK)TP⋆(A − BK) K = (R + BTP⋆B−1)BTP⋆A

K

P⋆ = Q + ATP⋆A − (ATP⋆B)(R + BTP⋆B)−1(BTP⋆A)
P⋆ K π⋆(x) = −Kx

Review
Algebraic Ricatti Equation Overview

xt+1 = Axt + But
c(xt, ut) = xT

t Qxt + uT
t Rut

• Many variants on the LQR setting, including:

• Continuous-time LQR (requires solving CARE instead of DARE)

• Time-varying LQR with varying dynamics (e.g. imagine an ageing motor)

• Requires a different solution method and yields instead of constant as in vanilla LQR

• Having non-zero, time-varying regulation points (vanilla LQR assumes we always wish to keep the state at the origin)

• If at time the regulation point is then we take action where is from vanilla LQR

At, Bt

{Kt} K

t x⋆
t −K(xt − x⋆

t) K

Review
LQR Extensions

• In practice, few systems are truly linear throughout all state-action space

• Popular algorithm: iLQR (similar to Differential Dynamic Programming, DDP). Note that iLQR is a form of Model Predictive
Control. Note also that iLQR assumes that the dynamics model is known perfectly (various papers have addressed
model misspecification issues and robustness; however we will just focus on the vanilla iLQR algorithm)

Review
iLQR Overview

Input: initial action sequence and state trajectory , goal state trajectory

For :

1. Linearise at each yielding (use finite differences or auto-diff software)

2. Solve a time-varying LQR problem using and yielding (see lecture notes for backward pass equations)

3. Set to some positive value and line search over until we find an action sequence with better total cost:

3.1. Rollout from using to obtain and :

3.2.

4. Break if stopping criteria met (e.g. changes in small)

Return

{u0
0 , …, u0

T−1} {x0
0 , …, x0

T−1} {x⋆
0 , …, x⋆

T−1}

i = 0,1,…, I

f (xi
t , ui

t) {(Ai
t = Dx f(xi

t , ui
t), Bi

t = Du f(xi
t , ui

t))}T−1
t=0

{(Ai
t , Bi

t)} Q, R {Ki
t}T−1

t=0

α α

{αKi
t}T−1

t=0 x0 {x⋆
0 , …, x⋆

T−1} {ui+1
0 , …, ui+1

T−1} {xi+1
0 , …, xi+1

T−1} ui+1
t = ui

t−αKi
t(xi+1

t − xi
t − x⋆

t)

α ← α
2

{ui+1
0 , …, ui+1

T−1}

uI
0

• In practice, few systems are truly linear throughout all state-action space

• Popular algorithm: iLQR (similar to Differential Dynamic Programming, DDP). Note that iLQR is a form of Model Predictive
Control. Note also that iLQR assumes that the dynamics model is known perfectly (various papers have addressed
model misspecification issues and robustness; however we will just focus on the vanilla iLQR algorithm)

Review
iLQR Overview

Input: initial action sequence and state trajectory , goal state trajectory

For :

1. Linearise at each yielding (use finite differences or auto-diff software)

2. Solve a time-varying LQR problem using and yielding (see lecture notes for backward pass equations)

3. Set to some positive value and line search over until we find an action sequence with better total cost:

3.1. Rollout from using to obtain and :

3.2.

4. Break if stopping criteria met (e.g. changes in small)

Return

{u0
0 , …, u0

T−1} {x0
0 , …, x0

T−1} {x⋆
0 , …, x⋆

T−1}

i = 0,1,…, I

f (xi
t , ui

t) {(Ai
t = Dx f(xi

t , ui
t), Bi

t = Du f(xi
t , ui

t))}T−1
t=0

{(Ai
t , Bi

t)} Q, R {Ki
t}T−1

t=0

α α

{αKi
t}T−1

t=0 x0 {x⋆
0 , …, x⋆

T−1} {ui+1
0 , …, ui+1

T−1} {xi+1
0 , …, xi+1

T−1} ui+1
t = ui

t−αKi
t(xi+1

t − xi
t − x⋆

t)

α ← α
2

{ui+1
0 , …, ui+1

T−1}

uI
0

1. because not interested in regulating to origin
2. because LQR solution is w.r.t. linearisation point
3. because our linearisation may not hold well and

we need to act more closely to the linearisation point
4. because LQR solution is w.r.t. linearisation point

−x⋆
t

−xi
t

α

ui
t

• Issues with iLQR:

• Computationally expensive: requires calculating multiple Jacobians and
solving multiple LQR problems every time we need to take an action.

• Mostly suited to “regulator like” problems (i.e. not Atari playing) as
ultimately is depending on smoothness in underlying domain to perform
well (the “larger” the non-linearity in dynamics the poorer iLQR will perform,
although still better than vanilla LQR)

Review
iLQR Overview

• Still, lots of robotics problems leverage ideas from iLQR

• Boston Dynamics recently disclosed Atlas control details, likely builds off
iLQR ideas: https://www.youtube.com/watch?v=EGABAx52GKI

Review
iLQR Overview

CURIOSITY DRIVEN EXPLORATION

TYPES OF MOTIVATION

• Extrinsic Motivation : pursuit of an external reward (such rewards can be sparse)

• Intrinsic Motivation : pursuit because the task is inherently enjoyable (curiosity,
novelty, surprise)

Benefits of Intrinsic Motivation :
• Task independent
• Free of human supervision
• Does not require reward functions to incentivize agent

CURIOSITY

• Seek novelty / surprise

• Visit novel states

• Observe novel state transitions

CURIOSITY DRIVEN EXPLORATION

1. Ensembles of Q functions

2. State counting

3. Model prediction error

4. Episodic curiosity through reachability

ENSEMBLE OF Q-FUNCTIONS
• We are looking to model the uncertainty of Q values

• Train multiple Q-functions each one using different subset of data (can also have a
shared backbone)

• Use posterior sampling to sample a Q-function (Q ~ P(Q))

• Choose actions according to the sampled Q-function

• Update the Q distribution using the collected experience tuples

• Entropy of predictions of the network is high in areas where lesser data has been
previously collected, thus encouraging exploration

• When Q-functions agree on actions, entropy is lower and there we exploit instead of
explore

EXPLORATION REWARD

• Add exploration reward bonuses to the extrinsic (task-related) rewards

• Exploration reward bonuses are non stationary

STATE COUNTING

• Count states in latent space (not in image space)

• Compression into latent space is important because the image space is very large

• Use autoencoders to get the image encoding (based on reconstruction)

• Try to visit states that have a lower count

MODEL PREDICTION ERROR

• We want a positive reinforcement whenever the system fails to correctly predict the
environment

• Train a dynamics model alongside

• Exploration reward bonuses encourage policy to visit states that cause the trained
dynamics model to fail

LIMITATIONS OF PREDICTION ERROR AS BONUS

• Agent can be rewarded even though the model can no longer improve

• Agent is attracted to the most noisy states. This can be random noise with
unpredictable outcomes.

• Noisy TV problem

EPISODIC CURIOSITY THROUGH REACHABILITY

• Augmented rewards as before

• M is a non-parametric memory populated with past image observations

• Curiosity reward will use a comparator neural net that takes in two images and
predicts whether they are close (few actions apart) or far

• Comparisons are done between current observation and observations in memory

EPISODIC CURIOSITY THROUGH REACHABILITY

• At each timestep, agent compare current observation with the ones in memory

• If current observation is novel, agent gets rewarded and novel observation is added
to the memory

SIM2REAL TRANSFER

CHOICES

1. Use a physics simulator to learn and then transfer to real world

2. Learn policies directly in the real world

3. Combine simulators with deeply learned residuals

PROS AND CONS OF SIMULATION

Pros Cons

Can afford many samples Under modeling

Safe Large engineering effort

Allow more exploration Needs accurate parameters

STRATEGIES FOR SIM2REAL TRANSFER

1. Domain Randomization

2. Adaptive Domain Randomization

3. Residual Physics (combine analytical models with deeply learned residuals)

4. Abstraction

DOMAIN RANDOMIZATION

• Create many version of simulation
environments by randomizing parameters

• Parameters of the environment : camera
position and orientation, textures, lighting,
contrast

• Train the detector on the diverse simulation
environments

ADAPTIVE DOMAIN RANDOMIZATION

• Policy might fail if the distribution of environments is too wide

• Widen the distribution as long as the policy succeeds

• Increase the range of values of the parameters (that characterize the environment) if
the policy performs well

RESIDUAL PHYSICS

• Use neural networks to capture the residual between analytical physics models and
real world physics

•Paper to read : “TossingBot : Learning to Throw Arbitrary Objects with Residual
Physics”

RESIDUAL PHYSICS

a) Pure learned model for predicting actions

b) Pure analytical physics model for predicting actions

c) Combination of analytical and learned model for predicting next state

d) Combination of analytical and learned model for predicting actions (TossingBot)

ABSTRACTION

• Learn higher level policies instead of low level controllers

• Paper to read : “Driving Policy Transfer via Modularity and Abstraction”

• Image pixels to steering wheel mapping is not sim2real transferable
• Image quality mismatch between simulation and real world
• Dynamics mismatch (physics of the car and steering) between simulation and real world

ABSTRACTION

• Mapping of labelled map to waypoints is better sim2real transferable

• Low level controller can take the car from waypoint to waypoint in the real world

Yuning Wu, 5/7/2021

Graph Neural Network /
Learning from Demonstrations and
Task Rewards /
Adversarial Imitation Learning
–
A review

–
Graph Neural Network

From CNN to GNN

Hidden layer activations of pixels/nodes hi ∈ ℝF

h(l+1)
4 = σ (W(l)

0 h(l)
0 + W(l)

1 h(l)
1 + ⋯ + W(l)

8 h(l)
8)

• Different weight!

From CNN to GNN

Hidden layer activations of nodes
Neighbor indices
Fixed, trainable norm

hi ∈ ℝF

$i
cij

h(l+1)
i = σ W0

(l)h(l)
i + ∑

j∈$i

1
cij

W1
(l)h(l)

j

Undirected graph

• Sharing weight over neighboring locations

• Permutation invariant

• Linear complexity

W0

W1 W1

W1
W1

Paper I
Interaction Networks for Learning about Objects, Relations and Physics, Battaglia
et al., 2016

• Object / object part → graph’s node
• Input

• Object state
Dynamic: position, velocity
Static: mass, size, shape

• Relation attribute
Coefficients of connectivity, restitution, spring constant, etc.

• Output: future velocity

Paper I
Interaction Networks for Learning about Objects, Relations and Physics, Battaglia
et al., 2016

• Relational / edge NN
• Input

Two object (two sides of an edge) states
Relational attributes

• Output
Feature vector

Paper I
Interaction Networks for Learning about Objects, Relations and Physics, Battaglia
et al., 2016

• Object / node NN
• Input

One object state
Summation of all incoming edge message

• Output
Future object velocity

Paper II
Long-term Visual Dynamics with Region Proposal Interaction Networks, Qi et al.,
2021

• Learning object interactions from visual input
• Input

Detected object appearance (ConvNet, pooling)
Motion history

• Output
Future motion trajectory

Paper II
Long-term Visual Dynamics with Region Proposal Interaction Networks, Qi et al.,
2021

Paper III
Graph Networks as Learnable Physics Engines for Inference and Control,
Gonzalez et al., 2018

• Physical system’s bodies and joints → graph’s nodes and edges
• Input

• Global feature
None / Gravity, wind, density, etc.

• Node feature
Dynamic: position, 4D quaternion orientation, linear and angular velocity
Static: mass, inertia, etc.

• Edge feature
Magnitude of action at joint, etc.

• Output: dynamic features, temporal difference.

Paper III
Graph Networks as Learnable Physics Engines for Inference and Control,
Gonzalez et al., 2018

Paper III
Graph Networks as Learnable Physics Engines for Inference and Control,
Gonzalez et al., 2018

Paper III
Graph Networks as Learnable Physics Engines for Inference and Control,
Gonzalez et al., 2018

• Relation between node, edge, global features

• Sequence of update

• Architecture of GN block

Paper IV
Learning to Simulate Complex Physics with Graph Networks, Gonzalez et al.,
2020

• Object → graph of particles, scene → graph of all particles from all objects
• Input

Particle velocity of last 5 time steps
• Output: particle acceleration

Paper IV
Learning to Simulate Complex Physics with Graph Networks, Gonzalez et al.,
2020

• Particles are different from nodes. Only consider displacements.
• Inject noise to particle velocities during training time to tackle accumulating

error.
• Use edges to encode two particles’ relative position. No longer use absolute

position compared to previous papers’ node features. This is for translation
invariance.

• Use multiple rounds of message passing, each round has different node, edge
weights.

–
Learning from Demonstrations and
Task Rewards

Learning from demonstrations
• Accelerate trial-and-error learning by suggesting good actions to try
• Train initial safe policies, to deploy in the real world
• Time consuming
• Sub-optimality, noise, diversity in performing task
• Can not surpass expert

Learning from task rewards
• Cheap supervision
• Right end task encoded via task rewards
• Sample inefficient
• Unsafe initial policy, unsafe to deploy in real world

Learning from demonstrations and task rewards

Major considerations
• Sample efficiency
• Outperforming expert
• Safe to deploy in real world with good/safe initial performance

Learning from demonstrations and task rewards

• Initialize the replay buffer with demonstrations
• Pre-train the model-free RL method with a demonstration only buffer, then fine-

tune it.
• Combine imitation and task rewards (see in later discussion)
• Exploit the temporal structure, and solve longer horizon tasks progressively,

rather than solving at once.

–
Adversarial Imitation Learning

Generative Adversarial Nets (GAN)

Discriminator
Generator

• Please refer to lecture slides for explanation of min-max game, which is very
clear and specific.

• We usually use Adam (adaptive optimizer) to train discriminator and generator
simultaneously.

• It is important to maintain a balance between the discriminator and generator,
i.e. avoiding one being much stronger than the other.

D
G

min
G

max
D

V(D, G) = %x∼pdata(x)[log D(x)] + %z∼pz(z)[log(1−D(G(x)))]

Generative Adversarial Imitation Learning (GAIL)

Discriminator
Distinguish between state-action pairs from expert demonstrations and ones
generated/visited by agent policy

Generator
Policy network that conditions on state

Reward
“The reward for the policy optimization is how well I matched the
demonstrator’s trajectory distribution, else, how well I confused the
discriminator.”

Dϕ

πθ
πθ

πθ(s)

r(s, a) = log Dϕ(s, a), (s, a) ∼ πθ

Generative Adversarial Imitation Learning (GAIL)

How to update the discriminator ?

How to update the generator / policy ? Policy gradient (e.g. REINFORCE)

Dϕ

%(s,a)∼Demo [∇ϕlog(1−Dϕ(s, a))] + %(s,a)∈τi [∇ϕlog Dϕ(s, a)]
πθ

%(s,a)∈τi [∇θlog πθ log Dϕi+1
(s, a)]

GAIL vs. BC (Behavior Cloning)

GAIL outperforms BC, why?
• GAIL has more interaction with environment
• BC reduces imitation learning to supervised learning w.r.t. single action.

GAIL vs. BC (Behavior Cloning)

Combining imitation and task rewards

Original reward

Combined reward

r(s, a) = log Dϕ(s, a), (s, a) ∼ πθ

r(s, a) = λrGAIL(s, a) + (1 − λ)rtask(s, a), λ ∈ [0,1]
rGAIL(s, a) = − log(1 − D(s, a))

Paper
Reinforcement and Imitation Learning for Diverse Visuomotor Skills, Zhu et al.,
2018

• Combines imitation and task rewards
• Start episodes by setting the world in states of the demonstration trajectories.
• Please review the paper.

Yuning Wu, 5/7/2021

Thank you
–
A review

