
MC and TD Learning

We do not have access to Model Dynamics

- We want to estimate the value function without having access to the dynamics
model

- Interact with the environment and collect experiences
- We average sampled returns to calculate the expectations (earlier we used the

known probability distribution)

Prediction Problem vs Control Problem

- Prediction problem : Policy evaluation, calculating the value function of a given
policy pi (eg. Monte Carlo Prediction)

- Control problem : General policy iteration (GPI), getting the optimal policy (eg.
Monte Carlo Control)

Monte Carlo Methods

- All episodes must terminate (learning can only happen from complete trajectories)
- Only defined for episodic tasks
- Basic idea : Vπ(s) = mean return

Monte Carlo Prediction / Monte Carlo Policy
Evaluation

- Goal : Learn Vπ(s) using episodes under policy π
- Return:

- Value function using the expected return

- We use the empirical mean return to estimate the expected return

Every Visit vs First Visit MC

- Every visit : while averaging, consider returns for every time state s is visited in a
trajectory

- First visit : while averaging, consider returns only for the first time strate s is visited
in a trajectory

Monte Carlo Control

- Monte Carlo Prediction / Monte Carlo Policy Evaluation
- Policy Improvement Step : gredify with respect to the value or action value

function

Exploration Problem

- Dilemma : Policies need to act sub optimally in order to explore all actions

- Solutions :
- Exploring Starts : every state action pair has non-zero probability of being the start
- Epsilon Soft Policies : Policy never becomes deterministic, epsilon is always non-zero
- Off Policy : Use different policy to collect experiences (behavior policy) and then update

the target policy
- Importance Sampling : Weight returns by the ratio of probabilities of the same

trajectory under the two policies

Temporal Difference (TD) Learning

- General update equation:

- TD(0) / One Step TD :

TD Target :

TD Error :

TD Prediction / TD Policy Evaluation

- Goal : Learn Vπ(s) using episodes under policy π
- TD(0) uses:

Advantages of TD Learning

- Like MC, does not need to know the model dynamics
- Bootstrap : learning a guess from a guess
- Does not need to wait till the end of an episodes (some episodes can be really

long!)
- Requires lesser memory and computation
- In practice, converges faster than MC methods

Bias Variance Trade-Off between MC and TD

- MC has zero bias, high variance
- TD has low variance, some bias

SARSA and Q-Learning

- SARSA is On-Policy TD Control
- Q-Learning is Off-Policy TD Control

MCTS

Online Planning

- Concept of Ͽmental unrollingЀ
- Unroll the model of the environment forward in time to select the right action

sequences to achieve your goal

- Since we have the model, why not learn the value function of every state directly?
- Because there can be extremely large number of possible states

Limitation : Cannot Exhaustively Search

- Curse of dimensionality : not possible to search the entire tree

- Solution :
- Reduce Depth by truncating the search stree at a state s and then use the approximate

value of s
- Reduce Breadth by sampling actions from a policy pi(a|s) which is probability

distribution of actions given state s

Internal and External Policies

- Internal Policy : Keep track of action values for the root and nodes internal to the
tree (which is being expanded), and use these to improve the simulation policy
over time

- External Policy : We do not have Q estimates, therefore we use a random policy

Upper Confidence Bound

- Probability of choosing an action:
- Increases with a nodeЀs value : Qt(a) (exploitation)
- Decreases with number of visits : Nt(a) (exploration)

The 4 Steps

- Selection :
- For nodes we have seen before
- Pick actions according to UCB

- Expansion :
- Used when we reach the frontier
- Add one node per rollout

- Simulation :
- Used beyond the frontier
- Pick actions randomly

- Back-Propagation :
- After reaching a terminal node
- Update values and visits for selected and expanded states

Conor Igoe — April 2 2021

Review: REINFORCE, RwB, A2C
Recitation 7 10-403

• Shift in approach: most of the course up until REINFORCE focused on action-value methods for RL:

•  
 
  
 
 

• Different version based on: replacement frequency, Q function estimation (e.g. with or w/o function
approximation, with or w/o bootstrapping), behaviour & target policy construction

• Some example algorithms include tabular SARSA, tabular Q-Learning, semi-gradient N-step SARSA

• The important point is that the policy is always defined in terms of some sort of greedification
of a q function

REINFORCE, RwB, A2C
Overview

π0 = EG(Q0) π1 = EG(Qπ0
) π2 = EG(Qπ1

) π3 = EG(Qπ2
)

Q0 Qπ0
Qπ1

Qπ2

Collect data using π0

Collect data using π1

Collect data using π2

• Shift in approach: most of the course up until REINFORCE focused on action-value methods for RL:

•  
 
  
 
 

• Different version based on: replacement frequency, Q function estimation (e.g. with or w/o function
approximation, with or w/o bootstrapping), behaviour & target policy construction

• Some example algorithms include tabular SARSA, tabular Q-Learning, semi-gradient N-step SARSA

• The important point is that the policy is always defined in terms of some sort of greedification
of a q function

REINFORCE, RwB, A2C
Overview

π0 = EG(Q0) π1 = EG(Qπ̃0
) π2 = EG(Qπ̃1

) π3 = EG(Qπ̃2
)

Q0 Qπ̃0
Qπ̃1

Qπ̃2

π̃0 = G(Q0) π̃1 = G(Qπ̃0
) π̃2 = G(Qπ̃1

) π̃3 = G(Qπ̃2
)

Behavior Policies

Target Policies

Collect data using π0

Collect data using π1

Collect data using π2

REINFORCE, RwB, A2C, N-step A2C
Overview

•  
 vs 

• Advantages:

• trivial to consider continuous action spaces

• gives us an opportunity to inject domain knowledge into the problem

πθ Qθ

REINFORCE, RwB, A2C, N-step A2C
Overview

REINFORCE, RwB, A2C, N-step A2C
Overview

• Formal Setup

• Policy Gradient Theorem Recap

• Obtaining Estimators from the Policy Gradient Theorem

• REINFORCE

• REINFORCE with Baseline (RwB)

• (N-step) Advantage Actor Critic (A2C)

REINFORCE, RwB, A2C, N-step A2C
Formal Setup
• Finite episodic MDP

• , , , ,

• For every initial condition , no matter what sequence of actions
taken, guaranteed to reach terminal state in finitely many
timesteps

• “Nice” stochastic policy class parameterised by

• differentiable in for every

• All policies in output non-zero probabilities for all actions in all states

|!| < ∞ |#| < ∞ |ℛ| < ∞ max(ℛ) < ∞ min(ℛ) > − ∞
s0 ∈ !

s ∈ !term ⊂ !

Π θ

πθ(a |s) θ (s, a)
Π

REINFORCE, RwB, A2C, N-step A2C
Formal Setup
• Objective function: 
 

 ,

• is a probability distribution over trajectories

•

•

•

• is random (depends on whether , but guaranteed to be finite)

J(θ) =)τ∼ℙπθ {
T

∑
t=0

γtRt} γ ∈ (0,1)

ℙπθ
τ = S0, A0, R1, …, ST−1, AT−1, RT

S0 ∼ ρ0(⋅)
At ∼ πθ(⋅ |St) ∀t ≥ 0
(St+1, Rt+1) ∼ p(⋅ , ⋅ |St, At) ∀t ≥ 0

T St ∈ !term

REINFORCE, RwB, A2C, N-step A2C
Policy Gradient Theorem Recap
• Policy Gradient Theorem (version 1)

•

•

• We derived this in class; relies on the log ratio trick and decomposition of
 into policy and dynamics components.

∇θJ(θ) =)τ∼ℙπθ {G0

T−1

∑
t=0

∇θlog (πθ(At |St))}
Gt =

T

∑
k=t+1

γk−t−1Rk

ℙπθ

REINFORCE, RwB, A2C, N-step A2C
Policy Gradient Theorem Recap
• Policy Gradient Theorem (version 2)

•  

• Didn’t derive in class but often shows up in literature so good to know
(not on quiz)

• is the discounted state-action “visitation” distribution under policy

∇θJ(θ) = 1
1 − γ

)(S,A)∼μπθ {qπθ
(S, A)∇θlog (πθ(A |S))} {

j

∑
i }

μπθ
πθ

REINFORCE, RwB, A2C, N-step A2C
Policy Gradient Theorem Recap
• Policy Gradient Theorem (version 2)

•

•

• Draw a timestep

• Then deploy for timesteps and observe

• will be distributed according to

∇θJ(θ) = 1
1 − γ

)(S,A)∼μπθ {qπθ
(S, A)∇θlog (πθ(A |S))} {

j

∑
i }

μπθ
(s, a) = (1 − γ)

∞

∑
t=0

γtℙ(St = s, At = a)

M ∼ Geometric(1 − γ)
πθ M S0, A0, R1, …, SM−1, AM−1

(SM−1, AM−1) μπθ

REINFORCE, RwB, A2C, N-step A2C
Policy Gradient Theorem Recap
• Policy Gradient Theorem (version 2)

•

•

• See Sham Kadade’s RL Theory Notes for derivation (Theorem 9.4)

∇θJ(θ) = 1
1 − γ

)(S,A)∼μπθ {qπθ
(S, A)∇θlog (πθ(A |S))} {

j

∑
i }

μπθ
(s, a) = (1 − γ)

∞

∑
t=0

γtℙ(St = s, At = a)

REINFORCE, RwB, A2C, N-step A2C
Obtaining Estimators from the Policy Gradient Theorem

• Policy Gradient Theorem gives us a starting point to build an estimators:

• E.g. using version 1:

•

•

∇θJ(θ) =)τ∼ℙπθ {G0

T

∑
t=0

∇θlog (πθ(At |St))}
̂g = G0

T−1

∑
t=0

∇θlog (πθ(At |St)) (Take a single sample from the RV in the Policy Gradient Theorem)

REINFORCE, RwB, A2C, N-step A2C
Obtaining Estimators from the Policy Gradient Theorem

• Policy Gradient Theorem gives us a starting point to build estimator:

• E.g. using version 1:

•

•

∇θJ(θ) =)τ∼ℙπθ {G0

T

∑
t=0

∇θlog (πθ(At |St))}
̂g =

T−1

∑
t=0

Gt ∇θlog (πθ(At |St)) (Inject temporal structure; this is the REINFORCE policy gradient
estimate; note that it is basically a single sample estimator of the
Expectation from the PG theorem, so expect very high variance!)

REINFORCE, RwB, A2C, N-step A2C
REINFORCE

REINFORCE, RwB, A2C, N-step A2C
RwB

• Subtracting a state dependent baseline doesn’t affect bias

•

• Convenient to choose

• Baseline can be learned using Monte Carlo methods, or semi-gradient TD
methods; both are known as RwB

• Everything else exactly the same as REINFORCE

̂g =
T−1

∑
t=0

(Gt − b(St))∇θlog (πθ(At |St))

b(s) = ̂Vϕ(s)

• Take a look at the following version of the true Policy Gradient (with a baseline):

•

• The true Policy Gradient involves taking an expectation over several terms. In Vanilla
REINFORCE with Baseline, we really were just using a single sample from the random
variable under the expectation (in blue) as our estimator

• The main idea with Actor-Critic methods is to do the same thing, but using a critic to
approximately perform part of this expectation by relying on previous data to reduce
the variability coming from terms i.e. use an estimate of instead of

∇θJ(θ) =)τ∼ℙπθ {
T−1

∑
t=0

(Gt − b(St))∇θlog (πθ(At |St))}

Gt){Gt |St, At} Gt

REINFORCE, RwB, A2C, N-step A2C
(N-step) A2C

• Take a look at the following version of the true Policy Gradient (with a baseline):

•

• The true policy gradient involves taking an expectation over several terms. In
Vanilla REINFORCE with Baseline, we really were just drawing a single sample from
the random variable under the expectation (in blue) and then calling it a day

• The main idea with Actor-Critic methods is to use a critic to approximately perform
part of this expectation by relying on previous data to reduce the variability coming
from the terms (in green)

∇θJ(θ) =)τ∼ℙπθ {
T−1

∑
t=0

(Gt − b(St))∇θlog (πθ(At |St))}

Gt

REINFORCE, RwB, A2C, N-step A2C
(N-step) A2C

• If we use to construct estimates of by bootstrapping then we call a critic (and
 an actor)

• For example: (high variance but unbiased)  
 (lower variance but biased)

• Bootstrapping for 1 time-step = Advantage Actor-Critic (A2C)

• Bootstrapping for N time-steps = N-step A2C

̂Vϕ(s)){Gt |St, At} ̂Vϕ
πθ

){Gt |St, At} ≈ Rt+1 + γRt+2 + γ2Rt+3 + …γT−tRT
){Gt |St, At} ≈ Rt+1 + γ ̂Vϕ(St+1)

• Take a look at the following version of the true Policy Gradient (with a baseline):

•

• The true policy gradient involves taking an expectation over several terms. In
Vanilla REINFORCE with Baseline, we really were just drawing a single sample from
the random variable under the expectation (in blue) and then calling it a day

• The main idea with Actor-Critic methods is to use a critic to approximately perform
part of this expectation by relying on previous data to reduce the variability coming
from the terms (in green)

∇θJ(θ) =)τ∼ℙπθ {
T−1

∑
t=0

(Gt − b(St))∇θlog (πθ(At |St))}

Gt

REINFORCE, RwB, A2C, N-step A2C
(N-step) A2C

• Why do we say has lower variance?

• Because it is a lower variance estimate of , and has averaged over much of the
randomness that previously existed in

• Why do we say using introduces bias?

• Imagine using a really inexpressive network for . Then our estimates for will be very
poor and we can never hope to estimate the policy gradient well!

Rt+1 + γ ̂Vϕ(St+1)

){Gt |St, At} ̂Vϕ(s)
Gt

Rt+1 + γ ̂Vϕ(St+1)
̂Vϕ(s)){Gt |St, At}

• Take a look at the following version of the true Policy Gradient (with a baseline):

•

• The true policy gradient involves taking an expectation over several terms. In
Vanilla REINFORCE with Baseline, we really were just drawing a single sample from
the random variable under the expectation (in blue) and then calling it a day

• The main idea with Actor-Critic methods is to use a critic to approximately perform
part of this expectation by relying on previous data to reduce the variability coming
from the terms (in green)

∇θJ(θ) =)τ∼ℙπθ {
T−1

∑
t=0

(Gt − b(St))∇θlog (πθ(At |St))}

Gt

REINFORCE, RwB, A2C, N-step A2C
(N-step) A2C

•

• Note that the critic network is used in two places: baseline & to bootstrap an
estimate for

̂g =
T−1

∑
t=0

(Rt+1 + γ ̂Vϕ(St+1) − ̂Vϕ(St))∇θlog (πθ(At |St))

){Gt |St, At}

Yuning Wu, 4/2/2021

Natural PG, TRPO, PPO
–
A review

Choosing a proper stepsize in policy gradient is critical.
Too big, can’t recover from bad moves.
Too small, low sample efficiency.

The spirit of natural policy gradient, is to take a constrained GD step.
Euclidean distance in parameter space as constraint is unfavorable.
The threshold is hard to pick.
Perform badly in ill-conditioned curvature.

Bounce around in high curvature direction. Make slow progress in low curvature direction.

–
Natural PG

The spirit of natural policy gradient, is to take a constrained GD step.
Use KL-divergence in distribution space.
The threshold is easy to pick.
Solves the curvature issue.

θnew = θold + d*
θ′ = θ + d*

d* = arg max
KL[πθ∥πθ+d]≤ϵ

U(θ + d)

Two questions.
1. What is the natural policy gradient? (Direction)
2. What is the stepsize? (Scale)

d* = arg max
d

U(θ + d) − λ (KL [πθ∥πθ+d] − ϵ)

Answer to 1st question, three ingredients.
1. Turning a constrained objective into unconstrained penalized objective.
2. Taylor expansion.
3. KL-divergence Hessian / Fisher Information matrix.

d* ≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d − 1

2 λ (d⊤ ⋅ ∇2
θKL [πθold

∥πθ] θ=θold

⋅ d) + λϵ

Answer to 1st question, three ingredients.
1. Turning a constrained objective into unconstrained penalized objective.
2. Taylor expansion.

Please refer to lecture slides for thorough expansion.
If you have hesitation about Taylor expansion, please come to OH.

3. KL-divergence Hessian / Fisher Information matrix.

Answer to 1st question, three ingredients.
1. Turning a constrained objective into unconstrained penalized objective.
2. Taylor expansion.
3. KL-divergence Hessian / Fisher Information matrix.

Just plug in the definition of KL-divergence.

d* ≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d − 1

2 λ (d⊤ ⋅ ∇2
θKL [πθold

∥πθ] θ=θold

⋅ d) + λϵ

Answer to 1st question, three ingredients.
1. Turning a constrained objective into unconstrained penalized objective.
2. Taylor expansion.
3. KL-divergence Hessian / Fisher Information matrix.

Just plug in the definition of KL-divergence.

∇2
θKL [πθold

∥πθ] θ=θold

=)x∼πθold [∇θ log πθ(x) |θ=θold
⋅ ∇θ log πθ(x) |⊤

θ=θold]

Answer to 1st question, three ingredients.
1. Turning a constrained objective into unconstrained penalized objective.
2. Taylor expansion.
3. KL-divergence Hessian / Fisher Information matrix.

Just plug in the definition of KL-divergence.
This is just the Fisher Information matrix! [post link]

)x∼πθold [∇θ log πθ(x) |θ=θold
⋅ ∇θ log πθ(x) |⊤

θ=θold] = F

Answer to 1st question, three ingredients.
1. Turning a constrained objective into unconstrained penalized objective.
2. Taylor expansion.
3. KL-divergence Hessian / Fisher Information matrix.

Just plug in the definition of KL-divergence.
This is just the Fisher Information matrix! [post link]

d* ≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d − 1

2 λ (d⊤ ⋅ F ⋅ d) + λϵ

Answer to 1st question, a standard optimization problem now.
1. Take gradient.
2. Set to zero.

d* ≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d − 1

2 λ (d⊤ ⋅ F ⋅ d) + λϵ

d* ≈ arg max
d

∇θU(θ) |θ=θold
⋅ d − 1

2 λ (d⊤ ⋅ F ⋅ d)

Answer to 1st question, solved.

 is the natural gradient we are looking for.gN

d* = 2
λ

⋅ F−1 ∇θU(θ) |θ=θold

d* = 2
λ

⋅ gN

Answer to 2nd question, the stepsize .

Assumption: we want the KL-divergence between old and new policy to be at most .
Use second-order Taylor expansion again.

α
ϵ

KL [πθold
∥πθ] ≈ 1

2 (αgN)⊤F(αgN) ≈ ϵ

Answer to 2nd question, the stepsize , solved.

Assumption: we want the KL-divergence between old and new policy to be at most .
Use second-order Taylor expansion again.

α
ϵ

α = 2ϵ
g⊤

NF−1gN

–
TRPO

Natural PG (NPG) is a major ingredient of TRPO.
NPG
Monotonic improvement theorem. [post link]
Line search of parameter.

NPG is a major ingredient of TRPO.
NPG
Monotonic improvement theorem. [post link]
Line search of parameter.

NPG

Line search

Issues with TRPO.
Calculation of fisher information matrix (second order) is expensive!
Is there a cheaper first order method that could achieve similar performance?

–
PPO

Two types of PPO.
Adaptive KL-penalty
Clipped objective

Objective

Need to update to enforce KL constraintβ

LKLPEN(θ) =)̂t [πθ(at |st)
πθold

(at |st)
̂At − βKL [πθold

∥πθ]]

d =)̂t [KL [πθold
∥πθ]]

- If ,

- If ,
d < dtarget /1.5 β ← β/2
d < dtarget × 1.5 β ← β × 2

Two types of PPO.
Adaptive KL-penalty
Clipped objective

ObjectiveLCLIP(θ) =)̂t min πθ(at |st)
πθold

(at |st)
̂At, clip (πθ(at |st)

πθold
(at |st)

,1 − ϵ,1 + ϵ) ̂At

The clipping version vs. the KL penalty version.
Clipping version is easier to implement.
Generally speaking, clipping is working almost as well as KL penalty version in practice.
Strongly recommend reading the original PPO [paper].

DQN

Q-LEARNING

• !! ", $ = &! [∑"#$%)"*" | ", $]
• !! ", $ = &&!,(!,) -(", $) +)!! "*, $′ ", $]
• !∗ ", $ = &&!,) [-(", $) + max(!

!∗ "*, $* |", $]

• 5! ", $ ← *(", $) +)max
(!

5! "*, $*

• 5! ", $ ← 5! ", $ + 7[*(", $) +)max
(!

5! "*, $* − 5! ", $]

Q-LEARNING: OFF POLICY

Exploration

Exploitation

Q-LEARNING -> DQN

Pros
• Same principal but use function approximation
• Large scale problems, huge (Continuous) state space
• More flexible data(e.g. Images, signals)
• Stability boost: Replay buffer & Target network
• Efficiency boost: Output array of Qs

Issues
• Limited to discrete action space
• Bad for large action space

DQN IMPLEMENTATION

Loss reduced from
2D data

ONLY update on ONE
ACTION, NO CHANGE
to other Qs

MODEL-BASED RL

IDEA

• Learns an environment/dynamics model/network
• Function Approximation: !!: #×% → '×#′
• Model rollout: #" → %"|*#(#") → '"|!! #" , %" →
#"$%|!! #" , %" → ⋯

• (Probabilistic) Ensemble networks

MBRL VS MODEL FREE: INTUITION

• Psychology: Unconscious vs Conscious
• Biology: Habitual vs Goal-directed

• More sample efficient(Short term)
• Compounding error(Stochasticity & Environment variety)
• Challenge: State representation & Use of prior domain knowledge

• Legged robot application: MBRL to stand and Model free RL to
walk(Surrounding obstacles)

MBRL VS MODEL FREE

