Homework 1 10-403 Recitation 3

Homework 1 Clarifications

• Boltzman exploration:

•
$$\mathbb{P}(A_t = a) = \pi_t(a) = \frac{\exp(Q_t(a)T)}{\sum_{a'} \exp(Q_t(a')T)}$$

- As $T \rightarrow 0$, behaviour converges to uniformly at random policy
- As $T \to \infty$, behaviour converges to pure greedy policy
- *c*-greedy exploration:

• w.p.
$$1 - \epsilon : A_t = \arg \max_a Q_t(a)$$

• w.p. $\epsilon : A_t \sim \text{Uniform}(\{a_1, \dots, a_N\})$

Homework 1 Clarifications

• Boltzman exploration:

$$\mathbb{P}(A_t = a) = \pi_t(a) = \frac{\exp(Q_t(a)T)}{\sum_{a'} \exp(Q_t(a')T)}$$

- As $T \rightarrow 0$, behaviour converges to uniformly at random policy
- As $T \to \infty$, behaviour converges to pure greedy policy
- *e*-greedy exploration:

• w.p.
$$1 - \epsilon : A_t = \arg \max_a Q_t(a)$$

• w.p. $\epsilon : A_t \sim \text{Uniform}(\{a_1, ..., a_N\} - \{\arg\max Q_t(a)\})$

Both forms or ϵ -greedy are acceptable But previous slide is easier to implement

Homework 1 Clarifications

- "Fraction of population to keep at each iteration: 10%"
 - \implies Elite Size = 10

Homework 1 Reminder

• Please respond to Team Information poll on Piazza!