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Gaussian Processes & RL

Overview

 Main focus: aleatoric & epistemic uncertainty in RL intuition
 GP basics
 Two major types of uncertainty in RL
 GP-based active exploration algorithms for simple continuous problem

e GP limitations for RL
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e Excellent reference:

 C.E.Rasmussen & C. K. |. Williams,
Gaussian Processes for Machine Learning,
the MIT Press, 2006

e Chapters 1,2 &4

Carl Edward Rasmussen and Christopher K. I. Williams



http://www.gaussianprocess.org/gpml/chapters/RW.pdf
http://www.gaussianprocess.org/gpml/chapters/RW.pdf
http://www.gaussianprocess.org/gpml/chapters/RW.pdf
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e st important property:
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Each marginal is also a gaussian
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e 2nd Important property:

X 201 1, 2
fwe have| | ~ A 1 , bl
° X2 /42 21,2, 22,2
then X; | X, = x, ~ N (i, 2)

where ﬂ — K + 21,225,5()62 o /’tZ) ’ i — Z1,1 o 21,225,52{,2

VN VNG

prior information from X, prior reduction in uncertainty
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e (Gaussian processes generalise this to infinitely many indices
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* Gaussian Process: Definitions & Examples

 Definition: a Gaussian Process is a set of random variables, every finite subset of
which are jointly Gaussian.

» Individual random variables in the set are denoted f(x) , indexed by x € &

» Mean function m(x) := [E[ f(x)]

 Covariance function (kernel) k(x, x") := Cov (f (x),f (X’))
= E [ (f5) = m() (fx) = () |

. m & k fully define a GP, and we usually write: f(x) ~ &% (m(x), k (x, x’))
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* (Gaussian Process: Definitions & Examples

* Definition: a Gaussian Process is a set of random variables, every finite subset of
which are jointly Gaussian.
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95% confidence region



Gaussian Processes & RL
GP basics

* (Gaussian Process: Definitions & Examples

* Definition: a Gaussian Process is a set of random variables, every finite subset of
which are jointly Gaussian.

 Example:
+ X =R°
e mx) =0 VxeI
e k(x,x") =exp (—Hx — x’\l%) Vx,x' e X
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* Definition: a Gaussian Process is a set of random variables, every finite subset of
which are jointly Gaussian.

 Example:
+ X =R
e mx) =0 Vxed
e k(x,x") =exp (—Hx — x’H%) Vx,x' e X
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* (Gaussian Processes: Learning / Inference
» Intuitively, imagine nature draws a function f ~ &% (m, k)

« I.€. nature jointly draws {f(x)} cq
X

N

. Then we are given a data set & = {xl- : yl-}. , where y. = f(x;)
=

M
« We might be interested in making inferences for another set of inputs {xi}

=1

 Thanks to Gaussian conditional & marginalisation properties, inference is straightforward

» Doesn’t matter that there are infinitely many random variables { f(x)} o
X

N M
. We can just focus on the “training set” RVs {f(xl-)}, | and the “test set” RVs {f()'c”i)}, |
1= 1=
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* (Gaussian Processes: Learning / Inference

N M
. Focus on the “training set” {f(xi)}, . » and the “test set” {f(xi)}, |
1= =

f(xy) m(x;) k(xp,x1) ... k(xp,xy) k(X)) ..o k(xg, X))

flxn) o [/h] 2 15210 _ m(x) k(xn, X)) oo k(o xn)  kGoy, X)) ... k(xy, Xyy)
(X)) ’ m(x,) ’ k(X,x1) ... k(X;,xy) k(X;,x) ... k(X;,%X)

f(Xp) m(X,) k(Xyx1) ... k(Xy,xn) k(X X)) ... k(X3 X,)
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* (Gaussian Processes: Learning / Inference

* We can condition the test RVs on the observed training RVs

f(xy) m(x;) k(xp,x1) ... k(xp,xy) k(X)) ..o k(xg, X))

flxn) o [/h] 2 15210 _ m(x) k(xn, X)) oo k(o xn)  kGoy, X)) ... k(xy, Xyy)
(X)) ’ m(x,) ’ k(X,x1) ... k(X;,xy) k(X;,x) ... k(X;,%X)

f(Xp) m(X,) k(Xyx1) ... k(Xy,xn) k(X X)) ... k(X3 X,)
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* (Gaussian Processes: Learning / Inference

 We can condition the test RVs on the observed training RVs

o fX)), - fED ) = yps o s flxy) = yy ~ N (@, Z)
. Where i = /1, + 2, 21—}1 y—py) , 2 = — 21,221—}12{,2
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* (Gaussian Processes: Learning / Inference

Samples from the posterior
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e (Gaussian Processes: Kernels

e Kernel defines main characteristic behaviour

e See The Kernel Cookbook

\/
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by David Duvenaud
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https://www.cs.toronto.edu/~duvenaud/cookbook/
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e (Gaussian Processes

o See RW text for details on inference for noisy observations, relationship to
other statistical models & overview of theoretical results

o |Later, we’'ll see why Gaussian Processes are not a panacea
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Two major types of uncertainty in RL

* Aleatoric Uncertainty:

 |nherent, unavoidable randomness in environment

 Example:

Bernoulli trial, with success probability = 0.5
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Two major types of uncertainty in RL

* Aleatoric Uncertainty:

* In RL, we typically have two types of Markov state transition functions:
e T: XA > & (deterministic transition)
e T: 88X - A(S) (stochastic transition)

« Where A(X) is the set of probability distributions defined on a set X

* We also have two different types of instantaneous reward functions:
e 7 dXIXS >R (deterministic reward)

e r: XA XS > A(R)  (stochastic reward)

* We say the environment has aleatoric uncertainty when at least one of these functions is stochastic.
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Two major types of uncertainty in RL

e Epistemic Uncertainty:
* Uncertainty about which environment we’re really Iin

 Example:
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Two major types of uncertainty in RL

* Epistemic Uncertainty:

* |f we are not sure what the true transition function 1" or reward function r is (or both) then we say we
have epistemic uncertainty

* One of the biggest challenges in RL today is coming up with better ways of expressing and
leveraging descriptions of epistemic uncertainty

 Sample efficient exploration & safety
* In tabular settings, we may have a belief over the true transition matrix
* |In continuous settings, we may have a belief over the true parameters of the state transition function

* Or we might describe our belief over the state transition function using a Gaussian Process with
an appropriate kernel!
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Two major types of uncertainty in RL

» Aleatoric Uncertainty & Epistemic Uncertainty:

 Many problems have both forms of uncertainty

 Example:
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GP-based active exploration algorithms for simple continuous problem

71'1 Vs. 71'2
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GP-based active exploration algorithms for simple continuous problem

Jl1 vs.




Gaussian Processes & RL

GP-based active exploration algorithms for simple continuous problem

Q‘y? T
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71'1 Vs. 71'2
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GP-based active exploration algorithms for simple continuous problem

* Using GPs to model epistemic uncertainty

e 1(s,a) = cos(sa)

. 7(s,a) = —s°
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GP-based active exploration algorithms for simple continuous problem

o |nitialise Y = @&
e Foriin|[E]:

1. Use CMA-ES / CEM / NES to approximately solve
T

max [ Zr(st’, a,) |9

=1

l
Als...,A7

2. Deploy action sequence in true environment, observe
R'and add {s/,a/, s}, ,},_,t0 D
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GP-based active exploration algorithms for simple continuous problem

.+ Initialise 2 = @, R* = R, A* = @ cncourages more optimis .
e Foriin|[E]:
1. Use CMA-ES / CEM / NES to approximately solve
T
max [E 4 max Z r(s;,,a;)) | —R*,0||<

l
ai,...,ar

=1

2. Deploy action sequence In true environment, observe
R'and add {s/,a/, s}, ,},_,t0 D

3. |le > R*, set R* = Ri , A® = {Cl{, ---9a§"}
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GP-based active exploration algorithms for simple continuous problem

e Classical RL approach would spend most of the
early stage of learning by acting randomly

* Previous slides describe an approach that
Incorporates prior knowledge and explicitly
leverages it for more intelligent exploration

* Possible due to having a full probability
distribution over Markov transition functions
that permits tractable inference and sampling
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Toy Problem: T(s, a) = cos(sa), r(s, a) = — s?
(Mean & 95% C.I. over 10 independent runs)
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Toy Problem: T(s, a) = cos(sa), r(s, a) = — s?
(Mean & 95% C.I. over 10 independent runs)
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Toy Problem: T(s, a) = cos(sa), r(s, a) = — s?
(Mean & 95% C.I. over 10 independent runs)
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Toy Problem: T(s, a) = cos(sa), r(s, a) = — s?
(Mean & 95% C.I. over 10 independent runs)
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Toy Problem: T(s, a) = cos(sa), r(s, a) = — s?
(Mean & 95% C.I. over 10 independent runs)
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GP-based active exploration algorithms for simple continuous problem

 Many interesting algorithms with theoretical guarantees on sample complexity
in the Bayesian Reinforcement Learning Literature

 Most (if not all) are inappropriate for interesting DRL problems

* (Optional reading, not part of the course)


https://arxiv.org/pdf/1609.04436.pdf
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GP limitations for RL

 Some problems make sense to use standard kernels (e.g. PILCQO)

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

Figure 3. Real cart-pole system. Snapshots of a controlled trajectory of 20 s length after having learned the task. To solve
the swing-up plus balancing, PILCO required only 17.5s of interaction with the physical system.

 But for most problems of interest to DRL, hard to find appropriate kernel
. Computational complexity of inference is O(n>) (matrix inversion)
* Very challenging to design differentiable policy / action-sequence optimisation techniques

* Designing multi-variate GPs is a big challenge (co-krigging), but is necessary for most interesting control problems



http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
https://arxiv.org/pdf/1805.07633.pdf
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 So why cover GPs”?

* Serves as a conceptual gold-standard to compare against, a rare setting
where we can fully express epistemic uncertainty

» Different approaches make different sacrifices to full representations of
epistemic uncertainty (e.g. by only representing epistemic uncertainty at
the marginal state-action level, or by avoiding a Bayesian treatment
altogether)

* Highlights how truly challenging it is to “solve” the full reinforcement
learning problem


https://arxiv.org/pdf/1710.07283.pdf
https://arxiv.org/pdf/1710.07283.pdf
https://arxiv.org/pdf/1710.07283.pdf
https://arxiv.org/pdf/2005.13239.pdf
https://arxiv.org/pdf/2005.13239.pdf
https://arxiv.org/pdf/2005.13239.pdf
https://arxiv.org/pdf/2005.13239.pdf

Questions?



