Gaussian Processes & RL 10-403 Recitation 2

Conor Igoe — 02 / 12 / 21

Gaussian Processes & RL Overview

- Main focus: aleatoric & epistemic uncertainty in RL intuition
 - GP basics
 - Two major types of uncertainty in RL

 - GP limitations for RL

• GP-based active exploration algorithms for simple continuous problem

- Excellent reference:
 - <u>C. E. Rasmussen & C. K. I. Williams</u>, Gaussian Processes for Machine Learning, the MIT Press, 2006
 - Chapters 1, 2 & 4

Gaussian Processes for Machine Learning

Carl Edward Rasmussen and Christopher K. I. Williams

- Multivariate Gaussians
 - **x** random *k*-dimensional vector
 - $x \in \mathbb{R}^k$ realisation of **x**
 - $\mu \in \mathbb{R}^k$ mean vector
 - $\Sigma \in \mathbb{S}_{++}^k$ covariance matrix

• $p(\mathbf{x} = x; \mu, \Sigma) = (2\pi)^{\frac{k}{2}} \det(\Sigma) \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$

Multivariate Gaussians

 $\Sigma_{exp}[i,j] = \exp(-(i-j)^2)$

- Multivariate Gaussians
 - 1st important property:

• If we have
$$\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \right)$$

then
$$\mathbf{x}_1 \sim \mathcal{N}(\mu_1, \Sigma_{1,1})$$

 $\left[\begin{array}{c} \Sigma_{1,1}, \Sigma_{1,2} \\ \Sigma_{1,2}, \Sigma_{2,2} \end{array}\right]\right)$

- Multivariate Gaussians
 - 2nd important property:

• If we have
$$\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \right)$$

then $\mathbf{x}_1 | \mathbf{x}_2 = x_2 \sim \mathcal{N}(\tilde{\mu}, \tilde{\Sigma})$
where $\tilde{\mu} = \mu_1 + \Sigma_{1,2} \Sigma_{2,2}^{-1}(x_2 - \tilde{\mu})$

 $\left[\begin{array}{c} \Sigma_{1,1}, \Sigma_{1,2} \\ \Sigma_{1,2}, \Sigma_{2,2} \end{array}\right]$

 μ_2), $\tilde{\Sigma} = \Sigma_{1 1} - \Sigma_{1} \Sigma_{-1}^{-1} \Sigma_{-1}^{T}$ 1.2

prior

reduction in uncertainty

- Gaussian processes generalise this to infinitely many indices
- Set of indices (or "inputs") ${\mathscr X}$
 - $\mathcal{X} = \mathbb{N}$
 - $\mathcal{X} = \mathbb{R}$ (for multivariate Gaussians)
 - $\mathcal{X} = [k]$ • $\mathcal{X} = \mathbb{R}^d$
 - ...
- For multivariate Gaussians, need μ , Σ ; for GPs, need:
 - $m: \mathcal{X} \to \mathbb{R}$ $m(x) = \mu[x]$
 - $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ $k(x, x') = \Sigma[x, x']$

- Gaussian Process: Definitions & Examples
 - Definition: a Gaussian Process is a set of random variables, every finite subset of which are jointly Gaussian.
 - Individual random variables in the set are denoted f(x), indexed by $x \in \mathcal{X}$
 - Mean function $m(x) := \mathbb{E}[f(x)]$
 - Covariance function (kernel) k(x, x') :=

• m & k fully define a GP, and we usually v

$$Cov(f(x), f(x'))$$
$$\mathbb{E}\left[\left(f(x) - m(x)\right)(f(x') - m(x'))\right]$$
write: $f(x) \sim \mathcal{GP}\left(m(x), k(x, x')\right)$

- Gaussian Process: Definitions & Examples
 - which are jointly Gaussian.

- Example:
 - $\mathcal{X} = \mathbb{R}$
 - $m(x) = 0 \quad \forall x \in \mathcal{X}$
 - $k(x, x') = \exp\left(-(x x')^2\right) \quad \forall x, x' \in \mathcal{X}$

Definition: a Gaussian Process is a set of random variables, every finite subset of

- Gaussian Process: Definitions & Examples
 - which are jointly Gaussian.

- Example:
 - $\mathscr{X} = \mathbb{R}^2$
 - $m(x) = 0 \quad \forall x \in \mathcal{X}$
 - $k(x, x') = \exp\left(-\|x x'\|_2^2\right)$ $\forall x, x' \in \mathscr{X}$

Definition: a Gaussian Process is a set of random variables, every finite subset of

- Gaussian Process: Definitions & Examples
 - which are jointly Gaussian.

- Example:
 - $\mathscr{X} = \mathbb{R}^d$
 - $m(x) = 0 \quad \forall x \in \mathcal{X}$
 - $k(x, x') = \exp(-\|x x'\|_2^2) \quad \forall x, x' \in \mathcal{X}$

Definition: a Gaussian Process is a set of random variables, every finite subset of

- Gaussian Processes: Learning / Inference
 - Intuitively, imagine nature draws a function $f \sim \mathcal{GP}(m,k)$
 - i.e. nature jointly draws $\{f(x)\}_{x \in \mathscr{X}}$
 - Then we are given a data set $\mathscr{D} = \{x_i, y_i\}_{i=1}^N$, where $y_i = f(x_i)$
 - We might be interested in making inferences for another set of inputs $\{\tilde{x}_i\}_{i=1}^M$
 - Thanks to Gaussian conditional & marginalisation properties, inference is straightforward
 - Doesn't matter that there are infinitely many random variables $\{f(x)\}_{x \in \mathscr{X}}$

• We can just focus on the "training set" RVs $\{f(x_i)\}_{i=1}^N$, and the "test set" RVs $\{f(\tilde{x}_i)\}_{i=1}^M$

- Gaussian Processes: Learning / Inference
 - Focus on the "training set" $\{f(x_i)\}$

$$\left\{ S_{i=1}^{N} \right\}_{i=1}^{N}$$
 , and the "test set" $\left\{ f(ilde{x}_{i})
ight\}_{i=1}^{M}$

- Gaussian Processes: Learning / Inference
 - We can condition the test RVs on the observed training RVs

- Gaussian Processes: Learning / Inference
 - We can condition the test RVs on the observed training RVs
 - $f(\tilde{x}_1), \dots, f(\tilde{x}_M) \mid f(x_1) = y_1, \dots, f(x_M) \mid f(x_M) \mid f(x_M) = y_1, \dots, f(x_M) \mid f($
 - where $\tilde{\mu} = \mu_2 + \Sigma_{1,2} \Sigma_{1,1}^{-1} (y t)$

$$\tilde{Y}(x_N) = y_N \sim \mathcal{N}(\tilde{\mu}, \tilde{\Sigma})$$

 (μ_1) , $\tilde{\Sigma} = \Sigma_{2,2} - \Sigma_{1,2} \Sigma_{1,1}^{-1} \Sigma_{1,2}^T$

Gaussian Processes: Learning / Inference

Samples from the posterior

$$\left\{\tilde{x}_i\right\}_{i=1}^M = \{-10, -9.99, \dots, 9\}$$

- Gaussian Processes: Kernels
 - Kernel defines main characteristic behaviour
 - See The Kernel Cookbook

The Kernel Cookbook:

Advice on Covariance functions

by David Duvenaud

Squared Exponential Kernel

- Gaussian Processes
 - other statistical models & overview of theoretical results
 - Later, we'll see why Gaussian Processes are not a panacea

• See RW text for details on inference for noisy observations, relationship to

- Aleatoric Uncertainty:
 - Inherent, unavoidable randomness in environment
 - Example:

Bernoulli trial, with success probability = 0.5

- Aleatoric Uncertainty:
 - In RL, we typically have two types of Markov state transition functions:
 - $T: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$ (deterministic transition)
 - $T: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$ (stochastic transition)
 - Where $\Delta(\mathscr{X})$ is the set of probability distributions defined on a set \mathscr{X}
 - We also have two different types of instantaneous reward functions:
 - $r: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$ (deterministic reward)
 - $r: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \Delta(\mathbb{R})$ (stochastic reward)

• We say the environment has aleatoric uncertainty when at least one of these functions is stochastic.

- Epistemic Uncertainty:
 - Uncertainty about which environment we're really in
 - Example:

- Epistemic Uncertainty:
 - have epistemic uncertainty
 - leveraging descriptions of epistemic uncertainty
 - Sample efficient exploration & safety
 - In tabular settings, we may have a belief over the true transition matrix
 - - an appropriate kernel!

• If we are not sure what the true transition function T or reward function r is (or both) then we say we

• One of the biggest challenges in RL today is coming up with better ways of expressing and

• In continuous settings, we may have a belief over the true parameters of the state transition function

• Or we might describe our belief over the state transition function using a Gaussian Process with

- Aleatoric Uncertainty & Epistemic Uncertainty:
 - Many problems have both forms of uncertainty
 - Example:

Gaussian Processes & RL

- Using GPs to model epistemic uncertainty
 - $T(s, a) = \cos(sa)$

•
$$r(s,a) = -s^2$$

- Initialise $\mathcal{D} = \mathcal{O}$
- For i in [E]:
 - Use CMA-ES / CEM / NES to approximately solve $\max_{a_1^i,\ldots,a_T^i} \mathbb{E} \left\{ \begin{array}{l} \sum_{t=1}^T r(s_t^i, a_t^i) \middle| \mathcal{D} \end{array} \right\}$
 - 2. Deploy action sequence in true environment, observe R^{i} and add $\{s_{t}^{i}, a_{t}^{i}, s_{t+1}^{i}\}_{t=0}^{T}$ to \mathcal{D}

GP-based active exploration algorithms for simple continuous problem

- Initialise $\mathcal{D}=\mathcal{O}$, $R^*=R_{lower}$, $A^*=\mathcal{O}$
- For *i* in [*E*]:
 - 1. Use CMA-ES / CEM / NES to approximately solve $\max_{a_1^i,\ldots,a_T^i} \mathbb{E} \left\{ \max\left(\left(\sum_{t=1}^T r(s_t^i, a_t^i) \right) - R^*, 0 \right) \middle| \mathcal{D} \right\} \right\}$
 - 2. Deploy action sequence in true environment, observe R^i and add $\{s_t^i, a_t^i, s_{t+1}^i\}_{t=0}^T$ to \mathcal{D}
 - 3. If $R^i > R^*$, set $R^* = R^i$, $A^* = \{a_1^i, ..., a_T^i\}$

Gaussian Processes & RL

- Classical RL approach would spend most of the early stage of learning by acting randomly
- Previous slides describe an approach that incorporates prior knowledge and explicitly leverages it for more intelligent exploration
 - Possible due to having a full probability distribution over Markov transition functions that permits tractable inference and sampling

GP-based active exploration algorithms for simple continuous problem

Toy Problem: $T(s, a) = \cos(sa), r(s, a) = -s^2$

- in the Bayesian Reinforcement Learning Literature
- Most (if not all) are inappropriate for interesting DRL problems
- (Optional reading, not part of the course)

Many interesting algorithms with theoretical guarantees on sample complexity

Gaussian Processes & RL **GP** limitations for **RL**

Some problems make sense to use standard kernels (e.g. <u>PILCO</u>) •

Figure 3. Real cart-pole system. Snapshots of a controlled trajectory of 20s length after having learned the task. To solve the swing-up plus balancing, PILCO required only 17.5 s of interaction with the physical system.

- But for most problems of interest to DRL, hard to find appropriate kernel
- Computational complexity of inference is $\mathcal{O}(n^3)$ (matrix inversion)
- Very challenging to design differentiable policy / action-sequence optimisation techniques

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

• Designing multi-variate GPs is a big challenge (<u>co-krigging</u>), but is necessary for most interesting control problems

Gaussian Processes & RL **GP** limitations for **RL**

- So why cover GPs?
 - Serves as a conceptual gold-standard to compare against, a rare setting where we can fully express epistemic uncertainty
 - Different approaches make different sacrifices to full representations of epistemic uncertainty (e.g. by only representing epistemic uncertainty at the marginal state-action level, or by avoiding a Bayesian treatment altogether)
 - Highlights how truly challenging it is to "solve" the full reinforcement learning problem

