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Gaussian Processes & RL
Overview

• Main focus: aleatoric & epistemic uncertainty in RL intuition


• GP basics


• Two major types of uncertainty in RL


• GP-based active exploration algorithms for simple continuous problem


• GP limitations for RL
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GP basics

• Excellent reference:


• C. E. Rasmussen & C. K. I. Williams, 
Gaussian Processes for Machine Learning, 
the MIT Press, 2006


• Chapters 1, 2 & 4

http://www.gaussianprocess.org/gpml/chapters/RW.pdf
http://www.gaussianprocess.org/gpml/chapters/RW.pdf
http://www.gaussianprocess.org/gpml/chapters/RW.pdf
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• Multivariate Gaussians


•  random -dimensional vector 


•  realisation of 


•  mean vector


•  covariance matrix 


•

x k

x ∈ ℝk x

μ ∈ ℝk

Σ ∈ 𝕊k
++

p(x = x; μ, Σ) = (2π) k
2 det(Σ)exp (− 1

2 (x − μ)TΣ−1(x − μ))
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• Multivariate Gaussians

 , μ = 02 Σ = I2
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• Multivariate Gaussians

 , μ = 05 Σ = I5
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• Multivariate Gaussians

 , μ = 05 Σ = Σexp , μ = 05 Σ = Σexp , μ = 05 Σ = Σexp



• Multivariate Gaussians
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 , μ = 05 Σ = Σexp

 =Σexp



• Multivariate Gaussians
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 , μ = 05 Σ = Σexp

Σexp[i, j] = exp( − (i − j)2)



• Multivariate Gaussians
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 , μ = 05 Σ = Σexp
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• Multivariate Gaussians

 , μ = 05 Σ = Σexp , μ = 025 Σ = Σexp



Questions?
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• Multivariate Gaussians


• 1st important property:


• If we have  

 
then 

[x1
x2] ∼ 𝒩 ([μ1

μ2], [
Σ1,1, Σ1,2

Σ1,2, Σ2,2])
x1 ∼ 𝒩(μ1, Σ1,1)
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• Multivariate Gaussians

Each marginal is also a gaussian
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• Multivariate Gaussians


• 2nd important property:


• If we have  

 
then  
 
where    ,   

[x1
x2] ∼ 𝒩 ([μ1

μ2], [
Σ1,1, Σ1,2

Σ1,2, Σ2,2])
x1 |x2 = x2 ∼ 𝒩(μ̃, Σ̃)

μ̃ = μ1 + Σ1,2Σ−1
2,2(x2 − μ2) Σ̃ = Σ1,1 − Σ1,2Σ−1

2,2Σ
T
1,2

information from x2prior reduction in uncertaintyprior
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• Multivariate Gaussians

 , μ = 05 Σ = Σexp , μ = 025 Σ = Σexp

x1 = 10
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• Multivariate Gaussians

 , μ = 05 Σ = Σexp , μ = 025 Σ = Σexp

• Gaussian processes generalise this to infinitely many indices


• Set of indices (or “inputs”)  


• 


• 


• 


• …


• For multivariate Gaussians, need ; for GPs, need: 


• 


•

𝒳

𝒳 = ℕ

𝒳 = ℝ

𝒳 = ℝd

μ, Σ

m : 𝒳 → ℝ

k : 𝒳 × 𝒳 → ℝ

m(x) = μ[x]

k(x, x′ ) = Σ[x, x′ ]

𝒳 = [k]
(for multivariate Gaussians)
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• Gaussian Process: Definitions & Examples


• Definition: a Gaussian Process is a set of random variables, every finite subset of 
which are jointly Gaussian.  

• Individual random variables in the set are denoted  , indexed by 


• Mean function 


• Covariance function (kernel)  
                                                           


•  &  fully define a GP, and we usually write: 

f(x) x ∈ 𝒳

m(x) := 𝔼[ f(x)]

k(x, x′ ) := Cov(f(x), f(x′ ))
= 𝔼 [(f(x) − m(x)) (f(x′ ) − m(x′ ))]

m k f(x) ∼ 𝒢𝒫 (m(x), k (x, x′ ))
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• Gaussian Process: Definitions & Examples


• Definition: a Gaussian Process is a set of random variables, every finite subset of 
which are jointly Gaussian.  

• Example:


• 


•  


•

𝒳 = ℝ

m(x) = 0 ∀x ∈ 𝒳

k(x, x′ ) = exp (−(x − x′ )2) ∀x, x′ ∈ 𝒳
95% confidence region
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• Gaussian Process: Definitions & Examples


• Definition: a Gaussian Process is a set of random variables, every finite subset of 
which are jointly Gaussian.  

• Example:


• 


•  


•

𝒳 = ℝ2

m(x) = 0 ∀x ∈ 𝒳

k(x, x′ ) = exp (−∥x − x′ ∥2
2) ∀x, x′ ∈ 𝒳
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• Gaussian Process: Definitions & Examples


• Definition: a Gaussian Process is a set of random variables, every finite subset of 
which are jointly Gaussian.  

• Example:


• 


•  


•

𝒳 = ℝd

m(x) = 0 ∀x ∈ 𝒳

k(x, x′ ) = exp (−∥x − x′ ∥2
2) ∀x, x′ ∈ 𝒳



Questions?
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• Gaussian Processes: Learning / Inference


• Intuitively, imagine nature draws a function 


• i.e. nature jointly draws  


• Then we are given a data set   , where 


• We might be interested in making inferences for another set of inputs 


• Thanks to Gaussian conditional & marginalisation properties, inference is straightforward


• Doesn’t matter that there are infinitely many random variables 


• We can just focus on the “training set” RVs  , and the “test set” RVs 

f ∼ 𝒢𝒫(m, k)

{f(x)}x∈𝒳

𝒟 = {xi , yi}N
i=1

yi = f(xi)

{x̃i}M
i=1

{f(x)}x∈𝒳

{f(xi)}N
i=1 {f(x̃i)}M

i=1



• Gaussian Processes: Learning / Inference


• Focus on the “training set”  , and the “test set” {f(xi)}N
i=1 {f(x̃i)}M

i=1
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f(x1)
⋮

f(xN)
f(x̃1)

⋮
f(x̃M)

∼ 𝒩 [μ1
μ2], [

Σ1,1, Σ1,2

Σ2,1, Σ2,2] = 𝒩

m(x1)
⋮

m(xN)
m(x̃1)

⋮
m(x̃M)

,

k(x1, x1) … k(x1, xN) k(x1, x̃1) … k(x1, x̃M)
⋮ … ⋮ ⋮ … ⋮

k(xN, x1) … k(xN, xN) k(xN, x̃1) … k(xN, x̃M)
k(x̃1, x1) … k(x̃1, xN) k(x̃1, x̃1) … k(x̃1, x̃M)

⋮ … ⋮ ⋮ … ⋮
k(x̃M, x1) … k(x̃M, xN) k(x̃M, x̃1) … k(x̃M, x̃M)

μ1
μ2

Σ1,1

Σ1,2

Σ1,2

Σ2,2



• Gaussian Processes: Learning / Inference


• We can condition the test RVs on the observed training RVs

f(x1)
⋮

f(xN)
f(x̃1)

⋮
f(x̃M)

∼ 𝒩 [μ1
μ2], [

Σ1,1, Σ1,2

Σ2,1, Σ2,2] = 𝒩

m(x1)
⋮

m(xN)
m(x̃1)

⋮
m(x̃M)

,

k(x1, x1) … k(x1, xN) k(x1, x̃1) … k(x1, x̃M)
⋮ … ⋮ ⋮ … ⋮

k(xN, x1) … k(xN, xN) k(xN, x̃1) … k(xN, x̃M)
k(x̃1, x1) … k(x̃1, xN) k(x̃1, x̃1) … k(x̃1, x̃M)

⋮ … ⋮ ⋮ … ⋮
k(x̃M, x1) … k(x̃M, xN) k(x̃M, x̃1) … k(x̃M, x̃M)
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μ1
μ2

Σ1,1

Σ1,2

Σ1,2

Σ2,2



• Gaussian Processes: Learning / Inference


• We can condition the test RVs on the observed training RVs


• 


• where          ,            

f(x̃1), …, f(x̃M) | f(x1) = y1, …, f(xN) = yN ∼ 𝒩(μ̃, Σ̃)

μ̃ = μ2 + Σ1,2 Σ−1
1,1 (y − μ1) Σ̃ = Σ2,2 − Σ1,2Σ−1

1,1Σ
T
1,2
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• Gaussian Processes: Learning / Inference
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{x̃i}M
i=1

= {−10, − 9.99,…,9.99,10}



• Gaussian Processes: Kernels


• Kernel defines main characteristic behaviour


• See The Kernel Cookbook

Gaussian Processes & RL
GP basics

https://www.cs.toronto.edu/~duvenaud/cookbook/


• Gaussian Processes


• See RW text for details on inference for noisy observations, relationship to 
other statistical models & overview of theoretical results


• Later, we’ll see why Gaussian Processes are not a panacea

Gaussian Processes & RL
GP basics



Questions?



• Aleatoric Uncertainty:


• Inherent, unavoidable randomness in environment


• Example:

Gaussian Processes & RL
Two major types of uncertainty in RL

Bernoulli trial, with success probability = 0.5



• Aleatoric Uncertainty:


• In RL, we typically have two types of Markov state transition functions:


•                     (deterministic transition)


•               (stochastic transition)


• Where  is the set of probability distributions defined on a set 


• We also have two different types of instantaneous reward functions:


•              (deterministic reward)


•        (stochastic reward)


• We say the environment has aleatoric uncertainty when at least one of these functions is stochastic.

T : 𝒮 × 𝒜 → 𝒮

T : 𝒮 × 𝒜 → Δ(𝒮)

Δ(𝒳) 𝒳

r : 𝒮 × 𝒜 × 𝒮 → ℝ

r : 𝒮 × 𝒜 × 𝒮 → Δ(ℝ)
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• Epistemic Uncertainty:


• Uncertainty about which environment we’re really in


• Example:

Gaussian Processes & RL
Two major types of uncertainty in RL



• Epistemic Uncertainty:


• If we are not sure what the true transition function  or reward function  is (or both) then we say we 
have epistemic uncertainty


• One of the biggest challenges in RL today is coming up with better ways of expressing and 
leveraging descriptions of epistemic uncertainty


• Sample efficient exploration & safety


• In tabular settings, we may have a belief over the true transition matrix


• In continuous settings, we may have a belief over the true parameters of the state transition function


• Or we might describe our belief over the state transition function using a Gaussian Process with 
an appropriate kernel!

T r
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Two major types of uncertainty in RL



• Aleatoric Uncertainty & Epistemic Uncertainty:


• Many problems have both forms of uncertainty


• Example:

Gaussian Processes & RL
Two major types of uncertainty in RL



Questions?



π1 π2

Gaussian Processes & RL
GP-based active exploration algorithms for simple continuous problem

vs.



π1
π2

$

ℙ

Gaussian Processes & RL
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π1 π2vs.
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π1 π2vs.
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🏆 ,  {st, at, rt, s′ t}T
t=1



π1
π2

$

ℙ

Gaussian Processes & RL
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π1 π2vs.



π1

π2

$

ℙ
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GP-based active exploration algorithms for simple continuous problem

π1 π2vs.

🏆 ,  {st, at, rt, s′ t}T
t=1



• Using GPs to model epistemic uncertainty


• 


•

T(s, a) = cos(sa)

r(s, a) = − s2

Gaussian Processes & RL
GP-based active exploration algorithms for simple continuous problem

s

a

s’



• Initialise  


• For  in :


1. Use CMA-ES / CEM / NES to approximately solve 




2. Deploy action sequence in true environment, observe  
 and add  to  

𝒟 = ∅

i [E]

max
ai

1,…,ai
T

𝔼
T

∑
t=1

r(si
t , ai

t) 𝒟

Ri {si
t , ai

t , si
t+1}

T
t=0 𝒟

Gaussian Processes & RL
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s

a

s’



• Initialise  ,  , 


• For  in :


1. Use CMA-ES / CEM / NES to approximately solve 




2. Deploy action sequence in true environment, observe  
 and add  to  


3. If , set  , 

𝒟 = ∅ R* = Rlower A* = ∅

i [E]

max
ai

1,…,ai
T

𝔼 max (
T

∑
t=1

r(si
t , ai

t)) − R* , 0 𝒟

Ri {si
t , ai

t , si
t+1}

T
t=0 𝒟

Ri > R* R* = Ri A* = {ai
1, …, ai

T}

Gaussian Processes & RL
GP-based active exploration algorithms for simple continuous problem

s

a

s’
“Expected Improvement”, 

encourages more optimism



• Classical RL approach would spend most of the 
early stage of learning by acting randomly


• Previous slides describe an approach that 
incorporates prior knowledge and explicitly 
leverages it for more intelligent exploration


• Possible due to having a full probability 
distribution over Markov transition functions 
that permits tractable inference and sampling

Gaussian Processes & RL
GP-based active exploration algorithms for simple continuous problem

s

a

s’
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• Many interesting algorithms with theoretical guarantees on sample complexity 
in the Bayesian Reinforcement Learning Literature 


• Most (if not all) are inappropriate for interesting DRL problems


• (Optional reading, not part of the course)
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https://arxiv.org/pdf/1609.04436.pdf


• Some problems make sense to use standard kernels (e.g. PILCO)


• But for most problems of interest to DRL, hard to find appropriate kernel


• Computational complexity of inference is   (matrix inversion)


• Very challenging to design differentiable policy / action-sequence optimisation techniques


• Designing multi-variate GPs is a big challenge (co-krigging), but is necessary for most interesting control problems

𝒪(n3)
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http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
https://arxiv.org/pdf/1805.07633.pdf


• So why cover GPs?


• Serves as a conceptual gold-standard to compare against, a rare setting 
where we can fully express epistemic uncertainty


• Different approaches make different sacrifices to full representations of 
epistemic uncertainty (e.g. by only representing epistemic uncertainty at 
the marginal state-action level, or by avoiding a Bayesian treatment 
altogether)


• Highlights how truly challenging it is to “solve” the full reinforcement 
learning problem
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https://arxiv.org/pdf/1710.07283.pdf
https://arxiv.org/pdf/1710.07283.pdf
https://arxiv.org/pdf/1710.07283.pdf
https://arxiv.org/pdf/2005.13239.pdf
https://arxiv.org/pdf/2005.13239.pdf
https://arxiv.org/pdf/2005.13239.pdf
https://arxiv.org/pdf/2005.13239.pdf


Questions?


