Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control

Monte Carlo Learning and Temporal
Difference Learning

Spring 2021, CMU 10-403

Katerina Fragkiadaki

Summary so far

e So far, to estimate value functions we have been using dynamic
programming with known rewards and dynamics functions:

V[k+1](S) = 2 n(a S)(”(S, a) + }’ZP(S'I S, a)v[k](s’)), Vs

Viy1)(8) = max (r(s, a)+vy Z p(s’|s, a)v[k](s’)), Vs

Ko/
ac sSeS

Q: Was our agent interacting with the world? Was our agent exploring?

A: 1) No. 2) No, if you know everything, there is nothing to explore.

Coming up

e So far, to estimate value functions we have been using dynamic
programming with known rewards and dynamics functions:

vﬂ,[k+1](s) = Z 71'((1 | S)(V(S, Cl) + VZP(S’| S, d)vﬂ’[k](S')>, Vs

V[k+1](s) = max <r(s, a)+y Z p(s’| s, a)v[k](s’)>, Vs
aed

s'es

e Next: estimate value functions and policies from interaction experience,
without known rewards or dynamics.

e How? By sampling all the way. Instead of probabilities distributions
to compute expectations, we will use empirical expectations by
averaging sampled returns.

Monte Carlo (MC) Methods

 Monte Carlo methods are learning methods

 Experience = values, policy

 Monte Carlo methods learn from complete sampled trajectories and
their returns.

 Only defined for episodic tasks .

o All episodes must terminate.

« Monte Carlo uses the simplest possible idea: value = mean return

Monte-Carlo Policy Evaluation

 Goal: learn v_(s) from episodes of experience under policy :

51, Al, R2, ooy Sk ~ T
e Remember that the return is the total discounted reward:
Gy = R R 1R
t = Rep1 +YReg2 + oo T T

« Remember that the value function is the expected return:

v (s) = E, [G: | S = 5]

 Monte-Carlo policy evaluation uses empirical mean return instead of
expected return

Monte-Carlo Policy Evaluation

 Goal: learn v_(s) from episodes of experience under policy :

o |dea: Average returns observed after visits to s:

 Every-Visit MC: average returns for every time s is visited in an episode

 First-visit MC: average returns only for first time s is visited in an
episode

e Both converge asymptotically based on the law of large numbers

https://en.wikipedia.org/wiki/Law_of_large_numbers
https://en.wikipedia.org/wiki/Law_of_large_numbers

First-Visit MC Policy Evaluation

e To evaluate state s

* The first time-step t that state s is visited in an episode,

e Increment counter: N(s) < N(s)+1
» Increment total return: 5(s) < S(s) + G;
» Value is estimated by mean return V(s) = S(s)/N(s)

» By law of large numbers V(s) — vi(s) as N(s) — oo

Law of large numbers

https://en.wikipedia.org/wiki/Law_of_large_numbers
https://en.wikipedia.org/wiki/Law_of_large_numbers

Every-Visit MC Policy Evaluation

e To evaluate state s

e Every time-step t that state s is visited in an episode,

* Increment counter: N(s) < N(s) + 1

e Increment total return: ~ §(s) < S(s) + G;

» Value is estimated by mean return V/(s) = S(s)/N(s)

e By law of large numbers V/(s) — v (s) as N(s) — oo

Incremental Mean

e The mean y, of a sequence Xx; ... X, can be computed incrementally:

Monte Carlo Prediction

« Update V(s) incrementally after episode 51, A1, Ry, ..., 5T
* For each state St with return Gt
N(S:) <+ N(S¢) + 1

1
N(S¢)

V(S:) < V(S:) A (G: — V(S5¢))

* |n non-stationary problems, it can be useful to track a running mean, i.e.
forget old episodes.

V(S:) < V(S5¢) + a(G: — V(S:))

Backup Diagram for Monte Carlo

e Entire rest of episode included

e Only one choice considered at each state (unlike DP)

not used to inform the values of nearby states.

>l
e Does not bootstrap from successor state’s values
(unlike DP), i.e., the value estimates of later states are
 Value is estimated by mean return.

terminal state

Summary so far

e Unknown dynamics: estimate value functions and optimal policies using
Monte Carlo

e Monte Carlo Prediction: estimate the value function of a given policy
by deploying it, collect episodes and average their returns.

e Next: Monte Carlo control: find optimal policies by interaction

Monte-Carlo Control

E | E | E | E
MO — Qg —> M1 —> G, —> Ty —> =+ — Ty — (x

evaluation
Q ~ g

7r Q

improvement

« MC policy iteration step: Policy evaluation using MC methods followed
by policy improvement

e Policy improvement step: greedify with respect to value (or action-value)
function

Greedy Policy

* For any action-value function q, the corresponding greedy policy is the
one that:

 For each s, deterministically chooses an action with maximal action-
value:

m(s) = argmaxq(s,a).
a

« Policy improvement then can be done by constructing each 7z, ,as the
greedy policy with respect to G i

MC Estimation of Action Values (Q)

e Monte Carlo (MC) is most useful when a model is not available

« We want to learn g * (s, a) because then we can get an optimal policy
without knowing dynamics.

 q,(s,a) - average return starting from state s and action a following

@r(s,a) = Eg|Rip1 +yvr(Se41) | Si=s, Ay =a]
— Zp(s', r|s,a) [r + 'y'uﬂ(s')] .

 Converges asymptotically if every state-action pair is visited.

* Q: Is this possible if we are using a deterministic policy?

Consider a deterministic Does this deterministic policy
dynamics model for our little make sense?
MDP.

0N A

In trial and error learning the state are not revealed to you unless you visit them!

Consider a deterministic
dynamics model for our little
MDP.

In trial and error learning the state are not revealed to you unless you visit them!

The Exploration problem

e If we always follow the deterministic policy to collect experience, we
will never have the opportunity to see and evaluate (estimate q) of
alternative actions...

e ALL learning methods face a dilemma: they seek to learn action values
conditioned on subsequent optimal behaviour but they need to act
suboptimally in order to explore all actions (to discover the optimal
actions). The exploration-exploitation dilemmma.

e Q: Does a learning algorithm know when the optimal policy has been
reached to stop exploring?

The Exploration problem

e If we always follow the deterministic policy to collect experience, we will never
have the opportunity to see and evaluate (estimate q) of alternative actions...

e ALL learning methods face a dilemma: they seek to learn action values
conditioned on subsequent optimal behaviour but they need to act
suboptimally in order to explore all actions (to discover the optimal actions).
The exploration-exploitation dilemma.

e Solutions:

1. exploring starts: Every state-action pair has a non-zero probability of
being the starting pair

2. Give up on deterministic policies and only search over e-soft policies

3. Off-policy: use a different policy to collect experience than the one you
care to evaluate

Monte Carlo Exploring Starts

Initialize, for all s € 8, a € A(s): Fixed point is optimal
Q(s,a) < arbitrary olicv rt*
7(s) < arbitrary pOLLY
Returns(s, a) < empty list

Repeat forever:
Choose Sy € 8§ and Ag € A(Sy) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ag, following 7
For each pair s, a appearing in the episode:
(G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s, a))
For each s in the episode:
7(s) < argmax, Q(s,a)

Convergence of MC Control

* Greedified policy meets the conditions for policy improvement:

qr, (S, argmax qr, (s, a))
a

Max gr, (s, a)

Gy, (S, Tht1(8))

qwk(saﬂ-k(s))

U, (8).

AVARAV,

e And thus must be = 7.

e This assumes exploring starts and infinite number of episodes for MC
policy evaluation

On-policy Monte Carlo Control

 On-policy: learn about policy currently executing
e How do we get rid of exploring starts?

e The policy must be eternally soft: z(a | s) > O for all s and a.

e For example, for g-soft policy, probability of an action, mt(als),

A1 0T T)
non-max max (greedy)

* Similar to GPI: move policy towards greedy policy

 Converges to the best e-soft policy.

¢ — soft Policies

 They keep choosing suboptimal actions even when the best one has
been discovered.

e The second best action is as bad as the worst action.

 However, we will stick with them till we figure out better exploration
methods later in the course.

On-policy Monte Carlo Control

Initialize, for all s € 8, a € A(s):
Q(s,a) < arbitrary
Returns(s, a) < empty list
m(a|s) < an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s,a appearing in the episode:
(G < return following the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
(c) For each s in the episode:
A* < argmax, Q(s,a)
For all a € A(s):
1—e+¢/|lA(s)| if a= A"
m(als) { e/|A(s)] e if @ # A*

Off-policy methods

e Learn the value of the target policy 7 from experience due to behavior
policy pu.
e For example, 7 is the greedy policy (and ultimately the optimal policy)

while u is exploratory (e.g., €-soft) policy

* |n general, we only require coverage, i.e., that y generates behavior that
covers, or includes, r:

u(als) > 0 for every s,a at which w(als) > 0

e Q: can | average returns as before to obtain the value function of 7 ?

Off-policy methods

e Learn the value of the target policy 7 from experience due to behavior
policy pu.
e For example, 7 is the greedy policy (and ultimately the optimal policy)

while u is exploratory (e.g., €-soft) policy

* |n general, we only require coverage, i.e., that y generates behavior that
covers, or includes, r:

u(als) > 0 for every s,a at which w(als) > 0

e |dea: Importance Sampling:

 Weight each return by the ratio of the probabilities of the trajectory
under the two policies.

Expectations

f(z)

Estimating Expectations

» General Idea: Draw independent samples {71, . ., z""}from distribution p(z)

to approximate expectation:
51/ = [£z ~

| — .
< 2 [=1
n=1

p(2) f(z)

Estimating Expectations

» General Idea: Draw independent samples {71, . ., z""}from distribution p(z)

to approximate expectation:
51/ = [£z ~

| — .
< 2 [=1
n=1

p(2) f(z)

%, Note that:

so the estimator has correct mean (unbiased).

e The variance: A 1

varlf] = E[(f — E[f))?].

e Variance decreases as 1/N.

Estimating Expectations

» General Idea: Draw independent samples {71, . ., z""}from distribution p(z)

to approximate expectation:
51/ = [£z ~

1 N
N > fEM =1
n=1
%, Note that:
so the estimator has correct mean (unbiased). t[f] — 4”[f]'
e The variance: A | i
varlf] = <E[(f — E[f])’]

e Variance decreases as 1/N.

« Remark: The accuracy of the estimator does not depend on
dimensionality of z.

Importance Sampling

e Suppose we have an easy-to-sample proposal distribution g(z), such that

q(z) >0 if p(z) > 0. 3 f] = /f(z)p(z)dz

=/<>Mq<>z

q(z
Z péz: 2"~ q(z).

 The quantities

w" = p(2")/q(z")

are known as importance weights.

R

Importance Sampling

e Let our proposal be of the form: ¢(2) = §(2)/ 2,

= [tz = [15 0 :—/f
2,

Z, 1 p(z™) Zq 1
= Nzn:c’j(z”) =7 Nzw ASh

 But we can use the same weights to approximate Z_/Z, .

i—zziq/ﬁ(z)dz/% dzN p

e Hence:
N

Elf] = Y —

N
n=1 Zmzl w'

n

g w™.
T

Importance Sampling Ratio

« Probability of the rest of the trajectory, after S,, under policy
PI‘{At, St+1, At+1, ¢« ooy ST | St, At:T—l ~ ’/T}

= W(Atlst)p(st+1|sta At)’/T(At+1|St+1) " 'P(5T|ST—1, AT—l)
T—-1

| [(AkISk)p(Sk+1/Sk, Ar),
k=t

* Importance Sampling: Each return is weighted by the relative probability
of the trajectory under the target and behavior policies

ol — Hf‘f 7 (Ak|Sk)P(Sk+1|5k, Ak) _ qﬁ m(Ag|Sk)
Hk =t 'u'(Sk)p(Sk+1 SkaAk) k—t 'U’(Ak Sk)

e This is called the Importance Sampling Ratio

Importance Sampling

* Ordinary importance sampling forms estimate
T'(t)
. Ztéﬂ'(s) py Gy
T(s)

 New notation: time steps increase across episode boundaries:

V(s)

= oSa@. ag...s....4. ..

B = 1234586 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27

tt N

T(s) = {4, 20} T(4)=9 T(20) = 25

set of start times next termination times

Importance Sampling

* Ordinary importance sampling forms estimate

return after t through
First time of termination T(t;J up ug

following time t

Every time: the set of all time
steps in which state s is visited

Importance Sampling Ratio

o All importance sampling ratios have expected value 1:

4‘
“Ap~p

Sk)

Sk)

Sk)

B . 7(a
= za:lt(ISk)M(

a|Sk)

Z m(a|Sk) = 1.

a

e Note: Importance Sampling can have high (or infinite) variance.

Importance Sampling

 Two ways of averaging weighted returns:

 Ordinary importance sampling forms estimate:

So far

« MC has several advantages over DP:
e Can learn directly from interaction with environment

e No need for full models

e MC methods provide an alternate policy evaluation process

 One issue to watch for: maintaining sufficient exploration

e Looked at distinction between on-policy and off-policy methods

MC and TD Learning

e Goal: learn v_(ss) from episodes of experience under policy z

* |ncremental every-visit Monte-Carlo:

 Update value V(S,) toward actual return G;:
V(S5¢) < V(S5¢) + a (G — V(5:))

e Simplest Temporal-Difference learning algorithm: TD(O)
* Update value V(St) toward estimated returns R, 1 + vV/(S¢41)
V(St) < V(5¢) + a(Rev1 + 7V (Se41) — V(St))

* Rii1 4+ vV(St41)is called the TD target
e 0t = Rey1 +vV(S5t+1) — V(S:) is called the TD error.

DP vs. MC vs. TD Learning

e Remember:

MC: sample average return

/ approximates expectation

vr(s) = EqlGt | St=s
- .
= Ly Z’Yth+k+1 St=3
Lk=0 .

TD: combine both: Sample
expected values and use a current

estimate V(S,,) of the true
V(Si41)

o0
e | Rg41 + 7y Z ’Yth+k+2 St=38

k=0 .

el Ris1 + Y0r(Si1) | Se=3].

\ DP: the expected values are

provided by a model. But we use a
current estimate V(S,,) of the
true v _(S,,) .

Dynamic Programming

V(S,) < Eﬂ[Rt+1 +)/V(SHl)] = Zﬂ(a]St) Zp(SlaT’St’ a)[r +~vV(s")]

Monte Carlo

V(S:) « V(S:) + a (G — V(S:))
St

Simplest TD(0) Method

V(St) <+ V(St) + a (R + 7 V(Sev1) — V(St))

TD Methods Bootstrap and Sample

 Bootstrapping: update involves an estimate
e MC does not bootstrap
e DP bootstraps

 TD bootstraps

o Sampling: update does not involve an expected value
e MC samples
« DP does not sample

e TD samples

TD Prediction

e Policy Evaluation (the prediction problem):

o for a given policy 7, compute the state-value function v_.

e Remember: Simple every-visit Monte Carlo method:

V(Sy) « V(S) + |Gy = V(S1)

4

/

target: the actual return after time t

e The simplest Temporal-Difference method TD(0):

V(St) ¢ V(S0) + a|Rep + 9V (Si41) = V(Sy)]
I |

target: an estimate of the return

Advantages of TD Learning

 TD methods do not require a model of the environment, only
experience

e TD, but not MC, methods can be fully incremental

* You can learn before knowing the final outcome
e Less memory

e Less computation

 You can learn without the final outcome

 From incomplete sequences

e Both MC and TD converge (under certain assumptions to be detailed
later), but which is faster?

Bias-Variance Trade-Off

« Monte-Carlo: Update value V(S,) toward actual return G,
V(S:) « V(S:) +a(G — V(S))

* Return Gy = Ryp1 +YRiyo + ... + fyT_lR-,- is unbiased
Vﬂ_(St)Lc o]

e TD: Update value V(St) toward estimated returns Ri+1 + YV(St+1)
V(St) < V(S¢) + a(Reyr +7V(Se1) — V(Se))

o True TD target: R,,; + yv,(S,,,) is unbiased estimate of Vi (S¢)

 TD target: R, +7yV(S,,) is biased estimate of v_(S$,).

o TD target is much lower variance than the return:
e Return depends on many random actions, transitions, rewards

o TD target depends on one random action, transition, reward

Bias-Variance Trade-Off

 MC has high variance, zero bias
 Good convergence properties

 Even with function approximation
* Not very sensitive to initial value

* Very simple to understand and use

e TD has low variance, some bias

e Good Usually more efficient than MC
 TD(O) converges to v_(s)

e More sensitive to initial value

AB Example

e Suppose you observe the following 8 episodes:

A,0,B,0

B, 1

E’i V(B)? 0.75
B. 1 V(A)? 0
B, 1

B, 1

B.0O

« Assume Markov states, no discounting (y = 1)

AB Example

* The prediction that best matches the training data is V(A)=0
* This minimizes the mean-square-error on the training set

e This is what a batch Monte Carlo method gets

AB Example

V(A)? 075

r=20
O 100%

AB Example

e The prediction that best matches the training data is V(A)=0
* This minimizes the mean-square-error on the training set
e This is what a batch Monte Carlo method gets

e |f we consider the sequentiality of the problem, then we would set
V(A)=.75

e This is correct for the maximum likelihood estimate of a Markov
model generating the data

e i.e, if we do a best fit Markov model, and assume it is exactly correct,
and then compute what it predicts.

 This is called the certainty-equivalence estimate

e This is what TD gets

Summary so far

* |Introduced one-step tabular model-free TD methods

 These methods bootstrap and sample, combining aspects of DP and MC
methods

Unified View

Temporal- y |
difference programming
learning

height
(depth)
of backup

O .
® Exhaustive
Monte . search
Carlo O 5
[

. Y
. .
.)
. .
. . ’ .
. : . .

l Search, planning in a later lecture!

Learning An Action-Value Function

 Estimate g_for the current policy 7

e Can we come up with the TD update equation for Q values?

Learning An Action-Value Function

 Estimate g_for the current policy 7

- — S F—e St ® St ° AR ®
t St,At " St+1)At+1 w St+2,At+2 w St+3,At+3

After every transition from a nonterminal state, S, , do this:

0(S,.A) < O(S,.A)+a|R,, +70(S,,.A,)-0S,.A)]
If §,,, 1s terminal, then define Q(S,,,,A,,,)=0

r+1

SARSA: On-Policy TD Control

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S, A) + Q(S, A) + a|R+1Q(5", 4") — Q(S, A)]
S+ S A+ A

until S is terminal

Windy Gridworld

S G .

standard
moves

O 0 01 1 1 2 2 1 0

* undiscounted, episodic, reward = -1 until goal

Results of SARSA on the Windy Gridworld

170 -
150 -

100 -
Episodes

50 -

0 1000 2000 3000 4000 5000 6000 7000 8000
Time steps

Q: Can a policy result in infinite loops? What will MC policy iteration do then?

e |[f the policy leads to infinite loop states, MC control will get trapped as the episode
will not terminate.

e Instead, TD control can update continually the state-action values and switch to a
different policy.

Q-Learning: Off-Policy TD Control

e One-step Q-learning:

Q(St, At) < Q(St, Ar) + a {Rt+1 +ymax Q(Sei1,a) — QS At)}

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’

Q(S,A) + Q(S,A) + a|R + ymax, Q(5",a) — Q(S, A)]

S+ S

until S is terminal

Remember SARSA: Q(S,A4) + Q(S,A) + a[R+vQ(S", A) — Q(S, A)]

Cliffwalking

R=-1
Safer path
Optimal path
S The Cliff *(,T
R =-100
Sarsa ¢ — greedy,e = 0.1
254
Sum of 504
rewards Q-learning
during
episode s
-100 : . . | |
0 100 200 300 400 500

Episodes

Back up Diagrams

I I
A\ /N

® o o ® o o
Q-learning Expected Sarsa

Figure 6.4: The backup diagrams for Q-learning and Expected Sarsa.

Maximization Bias

e We often need to maximize over our value estimates. The estimated
maxima suffer from maximization bias

 Consider a state for which all ground-truth g:(s, a) = 0. Our estimates
(s, a) are uncertain, some are positive and some negative.

_ QO(s,argmax O(s, a)) > 0 while g.(s, argmax g«(s, a)) = 0.

a a

e This is because we use the same estimate Q both to choose the
argmax and to evaluate it.

100%;

» N(-0.1,1)
B e)—=(A)——O
75%! | N\ ; left right
% left |
actions 50%| .
from A ~Q-learning
- Double '
25% Q-learning
5700»————————————4——————————'————’———'————'—optimal
1 100 200 300

Episodes

Double Q-Learning

e Train 2 action-value functions, Q1 and Q2
Do Q-learning on both, but
e never on the same time steps (Q1 and Q2 are independent)

e pick Q1 or Q2 at random to be updated on each step

o |f updating Q1, use Q2 for the value of the next state:

Q1(St, At) < Q1(St, A¢) +
+a (Rt+1 +Q2(St+1, argmax Q1(Si41,a)) — Q1(St, At))

o Action selections are e-greedy with respect to the sum of Q1 and Q2

Double Tabular Q-Learning

Initialize Q1(s,a) and Q2(s,a),Vs € 8,a € A(s), arbitrarily
Initialize Q1 (terminal-state,-) = Q2(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from)1 and Q)2 (e.g., e-greedy in Q1 + Q)2)
Take action A, observe R, S’
With 0.5 probabilility:

Ql(sv A) — Ql(sa A) + &(R =+ ’YQQ (Sla argmax, Ql(sla a)) o Ql(S7 A))
else:

QQ(Sa A) A Q2(S7 A) =+ Oé(R + ’le (Sla argimnax , QZ(Sla CL)) o QZ(Sv A))
S« 5

until S is terminal

Hado van Hasselt 2010

Expected Sarsa

e |nstead of the sample value-of-next-state, use the expectation!

Q(St, Ar) <+ Q(St, Ay) + :Rt+1 + YE[Q(St41, Atr1) | Sia1] — Q(St, At)}

— Q(S5t, Ar) + a :Rt+1 + ’YZW(CL‘SHJ)Q(SHM a) — Q(St, At)}

e Expected Sarsa performs better than Sarsa (but costs more)
e Q: why?

Q: Is expected SARSA on policy or off policy?
What if & is the greedy deterministic policy?

Performance on the Cliff-walking Task

0
e e A S e S e S/ S
. Expected Sarsa
40 L Asymptotic Performance P
®
888883 8 58— 88 1
Q-learning LT sarsay,
Reward " T R AR AR\ J- S
A R TREE = EEN = A -
per -80F xgY _D“.m---‘:'"'m Q-learning)
: S VAR = i
episode x vV g
x g Interim Performance
120;_";7.‘ (after 100 episodes) |
n
V- -
m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Summary

e |Introduced one-step tabular model-free TD methods

 These methods bootstrap and sample, combining aspects of DP and MC
methods

 TD methods are computationally congenial

 Extend prediction to control by employing some form of GPI
 On-policy control: Sarsa

o Off-policy control: Q-learning

