
Markov Decision Processes, Value
Iteration, Policy Iteration

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon

School of Computer Science

Spring 2021, CMU 10-403

1. Learning from expert demonstrations (last lecture)  
Instructive feedback: the expert directly suggests correct actions, e.g.,
your advisor directly suggests to you ideas that are worth pursuing

2. Learning from rewards while interacting with the environment 
Evaluative feedback: the environment provides signal whether actions
are good or bad. E.g., your advisor tells you if your research ideas are
worth pursuing (but does not suggest to you other ideas).

Note: Evaluative feedback depends on the current policy the agent has: if
you never suggest good ideas, you will never have the chance to know
they are worthwhile. Instructive feedback is independent of the agent’s
policy.

Supervision for learning to act

A Finite Markov Decision Process is a tuple

• is a finite set of states

• is a finite set of actions

• is one step dynamics function

• is a reward function

• is a discount factor

(𝒮, 𝒜, T, r, γ)

𝒮

𝒜

p

r

γ γ ∈ [0,1]

Finite Markov Decision Process

Agent: an entity that is equipped with sensors, in order to sense the
environment, and end-effectors in order to act in the environment, and
goals that he wants to achieve

Policy: a mapping function from observations (sensations, inputs of the
sensors) to actions of the end effectors.

Model: the mapping function from states/observations and actions to
future states/observations

Planning: unrolling a model forward in time and selecting the best action
sequence that satisfies a specific goal

Plan: a sequence of actions

Definitions

• A state captures whatever information is available to the agent at step t
about its environment.

• The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations, memories etc.

• A state should summarize past sensations so as to retain all “essential”
information, i.e., it should have the Markov Property:

•   
 
 for all , and all histories

• We should be able to throw away the history once state is known

ℙ [Rt+1 = r, St+1 = s′￼|S0, A0, R1, …, At−1, Rt, St, At] = ℙ [Rt+1 = r, St+1 = s′￼|St, At]

s′￼∈ 𝒮, r ∈ R

Markovian States

Definition: A policy is a distribution over actions given states,

• A policy fully defines the behavior of an agent

• The policy is stationary (time-independent)

• During learning, the agent changes his policy as a result of
experience

Special case: deterministic policies

π(a |s) = Pr(At = a |St = s), ∀t

π(s) = the action taken with prob = 1 when St = s

The agent learns a Policy

Rewards are scalar values provided by the environment to the agent that
indicate whether goals have been achieved, e.g., 1 if goal is achieved, 0
otherwise, or -1 for overtime step the goal is not achieved

• Goals specify what the agent needs to achieve, not how to achieve it.

• The simplest and cheapest form of supervision, and surprisingly general:
All of what we mean by goals and purposes can be well thought of as
the maximization of the cumulative sum of a received scalar signal
(reward):

Goal seeking behaviour, achieving purposes and expectations can be
formulated mathematically as maximizing expected cumulative sum of
scalar values…

r(s, a) = 𝔼[Rt+1 |St = s, At = a]

Rewards reflect goals

Episode: A sequence of interactions based on which the reward will be
judged at the end.

Episodic tasks: interaction breaks naturally into episodes, e.g., plays of a
game, trips through a maze.

In episodic tasks, we almost always use simple total reward:

where T is a final time step at which a terminal state is reached, ending an
episode.

Gt = Rt+1 + Rt+2 + ⋯ + RT

Returns - Episodic tasksGt

Continuing tasks: interaction does not have natural episodes, but just goes
on and on…just like real life

In continuing tasks, we often use simple total discounted reward:

 
Why temporal discounting?

Episodes can have finite or infinite length. For infinite length, the
undercounted sum blows up, thus we add discounting to prevent this,
and treat both cases in a similar manner.

Gt = Rt+1 + γRt+2 + … = ∑∞
k=0 γkRt+k+1

Returns - Continuing tasksGt

Mountain Car

Get to the top of the hill

as quickly as possible.

reward = −1 for each step where not at top of hill
⇒ return = − number of steps before reaching top of hill

Return is maximized by minimizing

number of steps to reach the top of the hill.

• Definition: The state-value function of an MDP is the expected
return starting from state s, and then following policy :

•

• The action-value function is the expected return starting from
state s, taking action a, and then following policy:

•

• Q: What are the expectations over (what is stochastic)?

vπ(s)
π

vπ(s) = 𝔼[Gt |St = s]

qπ(s, a)

qπ(s, a) = 𝔼[Gt |St = s, At = a]

Value Functions are Expected Returns

• Definition: The optimal state-value function is the maximum value
function over all policies:

• The optimal action-value function is the maximum action-value
function over all policies:

v*(s)

v*(s) = maxπ vπ(s)

q*(s, a)

q*(s, a) = maxπ qπ(s, a)

Optimal Value Functions are Best Achievable Expected
Returns

• Prediction: Given an MDP and a policy

find the state and action value functions.

• Optimal control: given an MDP , find the optimal policy
(aka the planning problem). Compare with the learning problem with
missing information about rewards/dynamics.

(𝒮, 𝒜, T, r, γ)

π(a |s) = ℙ [At = a |St = s]

(𝒮, 𝒜, T, r, γ)

Solving MDPs

• Value functions measure the goodness of a particular state or state/
action pair: how good is for the agent to be in a particular state or
execute a particular action at a particular state, for a given policy.

• Optimal value functions measure the best possible goodness of states or
state/action pairs under all possible policies.

 Value Functions

state

values

action
values

prediction

control q⇤v⇤

v⇡ q⇡v⇡

v⇤

Value functions capture the knowledge of the agent regarding how good is
each state for the goal he is trying to achieve.

Why Value Functions are useful

Horde: A Scalable Real-time Architecture for Learning Knowledge from Unsupervised Sensorimotor Interaction, Sutton et al.

“…knowledge is represented as a large number of
approximate value functions learned in parallel…”

Why Value Functions are useful
An optimal policy can be found by maximizing over :

An optimal policy can be found from the model dynamics using one step look
ahead:

• If we know , we immediately have the optimal policy, we do not need
the dynamics!

• If we know , we need the dynamics to do one step lookahead, to choose
the optical action.

q*(s, a)

π*(a |s) = {1, if a = argmaxa∈𝒜 q*(s, a)
0, otherwise.

π*(a |s) = 1, if a = argmaxa∈𝒜 (∑s′￼,r p (s′￼, r |s, a) (r + γv* (s′￼)))
0, otherwise

q * (s, a)

v * (s)

q_*(s,a) = \max_\pi q_\pi(s,a)

The value of a state, given a policy: 

The value of a state-action pair, given a policy: 

The optimal value of a state: 

The optimal value of a state-action pair: 

Optimal policy: is an optimal policy if and only if 
  

in other words, is optimal iff it is greedy w.r.t. .

vπ(s) = 𝔼 {Gt |St = s, At:∞ ∼ π} vπ : 𝒮 → ℜ

qπ(s, a) = 𝔼 {Gt |St = s, At = a, At+1:∞ ∼ π} qπ : 𝒮 × 𝒜 → ℜ

v*(s) = max
π

vπ(s) v* : 𝒮 → ℜ

q*(s, a) = max
π

qπ(s, a) q* : 𝒮 × 𝒜 → ℜ

π*
π*(a |s) > 0 only where q*(s, a) = max

b
q*(s, b) ∀s ∈ 𝒮

π* q*

Value Functions are Expected Returns

• Computing state and state-action value functions by solving linear systems
of equations.

• We will then realize matrix inversion is too costly-> iterative estimation->
Bellman backup operation.

• We will then realize we cannot possibly visit every state (too many states)
-> selective backups on state-actions that the agent visits as opposed to all.

• We will give up on our assumption of knowing dynamics (monte carlo
learning, td learning).

• We will eventually give up on tabular representations and use functions to
represent state value functions as opposed to exhaustive
enumeration of .

V(s, θ), q(s, a, ϕ)
v(s), q(s, a)

Roadmap

• Computing state and state-action value functions by solving linear systems
of equations.

• We will then realise matrix inversion is too costly-> iterative estimation->
Bellman backup operation.

• We will then realise we cannot possibly visit every state (too many states)
-> selective backups on state-actions that the agent visits as opposed to all.

• We will give up on our assumption of knowing dynamics (monte carlo
learning, td learing).

• We will eventually give up on tabular representations and use functions to
represent state value functions as opposed to exhaustive
enumeration of .

V(s, θ), q(s, a, ϕ)
v(s), q(s, a)

Roadmap

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 +
= Rt+1 + γ (Rt+2 + γRt+3 + γ2Rt+4 +)
= Rt+1 + γGt+1

Recursive relationships for returns

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 +
= Rt+1 + γ (Rt+2 + γRt+3 + γ2Rt+4 +)
= Rt+1 + γGt+1

Recursive relationships for returns

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 +
= Rt+1 + γ (Rt+2 + γRt+3 + γ2Rt+4 +)
= Rt+1 + γGt+1

Recursive relationships for returns

By conditioning on a state and taking expectations:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 +
= Rt+1 + γ (Rt+2 + γRt+3 + γ2Rt+4 +)
= Rt+1 + γGt+1

𝔼[Gt |St = s] = 𝔼[Rt+1 + γGt+1 |St = s]

vπ(s) = 𝔼[Rt+1 + γvπ(St+1)]

vπ(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r + γvπ(s′￼)]

Recursive relationships for returns

By conditioning on a state and action and taking expectations:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 +
= Rt+1 + γ (Rt+2 + γRt+3 + γ2Rt+4 +)
= Rt+1 + γGt+1

𝔼[Gt |St = s, At = a] = 𝔼[Rt+1 + γGt+1 |St = s, At = a]

qπ(s, a) = 𝔼[Rt+1 + γqπ(St+1, At+1) |St = s, At = a]

qπ(s, a) = ∑
s′￼,r

p(s′￼, r |s, a)[r + γ∑
a′￼

π(a′￼|s)qπ(s′￼, a′￼)]

Recursive relationships for returns

vπ(s) = 𝔼 [Rt+1 + γvπ (St+1)]
vπ(s) = ∑

a

π(a |s)∑
s′￼,r

p (s′￼, r |s, a) [r + γvπ (s′￼)]

Bellman Expectation Equations

qπ(s, a) = ∑
r,s′￼

p(r, s′￼|s, a)(r + γ∑
a′￼

π(a′￼|s′￼)qπ(s′￼, a′￼))

vπ(s) = 𝔼 [Rt+1 + γvπ (St+1)]
vπ(s) = ∑

a

π(a |s)∑
s′￼,r

p (s′￼, r |s, a) [r + γvπ (s′￼)]

Bellman Expectation Equations

qπ(s, a) = ∑
r,s′￼

p(r, s′￼|s, a)(r + γ∑
a′￼

π(a′￼|s′￼)qπ(s′￼, a′￼))

Q: how do we compute the state values?

This is a set of linear equations, one for each state.

The state value function for is its unique solution.π

qπ(s, a) = 𝔼 [Rt+1 + γqπ (St+1, At+1) |St = s, At = a]

qπ(s, a) = ∑
s′￼,r

p (s′￼, r |s, a) [r + γ∑
a′￼

π(a′￼|s)qπ (s′￼, a′￼)]

Bellman Expectation Equations

qπ(s, a) = ∑
r,s′￼

p(r, s′￼|s, a)(r + γ∑
a′￼

π(a′￼|s′￼)qπ(s′￼, a′￼))

This is a set of linear equations, one for each state and action.

The state-action value function for is its unique solution.π

Back-up diagram for value functions

r

v⇡(s)

v⇡(s
0)

The probabilities of landing on each of the leaves sum to 1

All actions listed with their probabilities

0.3 0.7

0.5 0.5

All possible next states
listed with their probabilities

0.90.1

vπ(s) = ∑
a

π(a |s)∑
s′￼,r

p (s′￼, r |s, a) [r + γvπ (s′￼)]

Back-up diagram for value functions

r

v⇡(s)

v⇡(s
0)

The probabilities of landing on each of the leaves sum to 1

qπ(s, a) = ∑
r,s′￼

p(s′￼, r |s, a)(r + γ∑
a′￼

π(a′￼|s′￼)qπ(s′￼, a′￼))

All actions listed with their probabilities

0.3 0.7

0.90.1 0.5 0.5

All possible next states
listed with their probabilities

All possible next states
listed with their probabilities

0.5 0.5

All actions listed with their
probabilities

0.3 0.7

vπ(s) = ∑
a

π(a |s)∑
s′￼,r

p (s′￼, r |s, a) [r + γvπ (s′￼)]

Relating state and state/action value functions

v⇡(s) All actions listed with their probabilities

0.3 0.7

vπ(s) = ∑
a∈𝒜

π(a |s)qπ(s, a)

Bellman Optimality Equations for

r

v⇤(s)

v⇤(s
0)

For the Bellman
expectation
equations we
sum over all the
leaves, here we
choose only the
best action
branch!

The value of a state under an optimal policy must equal the expected
return for the best action from that state

max

v*

v*(s) = max
a∈𝒜 ∑

s′￼,r

p(s′￼, r |s, a)(r + γv*(s′￼))

v* is the unique solution of this system of nonlinear equations

Bellman Optimality Equations for q*

q*(s, a) = 𝔼[Rt+1 + γ max
a′￼∈𝒜

q*(St+1, a′￼) |St = s, At = a]

= ∑
s′￼,r

p(s′￼, r |s, a)[r + γ max
a′￼

q*(s′￼, a′￼)]

max max

q* is the unique solution of this system of nonlinear equations

Relating Optimal State and Action Value Functions

v⇤(s)

max

v* (s′￼) = max
a

q*(s, a)

Relating Optimal State and Action Value Functions

v⇤(s
0)

q*(s, a) = ∑
s′￼,r

p(s′￼, r |s, a)(r + γv*(s′￼))

• Actions: north, south, east, west; deterministic.

• If would take agent off the grid: no move but reward = –1

• Other actions produce reward = 0, except actions that move agent out
of special states A and B as shown.

Gridworld-value function

State-value function

for equiprobable

random policy;

γ = 0.9

8.83 = 10 + 0.9 * (−1.3)

• Actions: north, south, east, west; deterministic.

• If would take agent off the grid: no move but reward = –1

• Other actions produce reward = 0, except actions that move agent out
of special states A and B as shown.

Gridworld-value function

State-value function

for equiprobable

random policy;

γ = 0.9

4.43 = 0.25 * (0+0.9 * 5.3+
0+0.9 * 2.3+
0+0.9 * 8.8+

−1+0.9 * 4.4)

Any policy that is greedy with respect to is an optimal policy.v*

Therefore, given , one-step-ahead search produces the

long-term optimal actions.

v*

Gridworld - optimal value function

a) gridworld b) V* c) !*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A'

B'+10

+5

v* π*

24.4 = 10 + 0.9 * (16.0)

Gridworld - optimal value function

a) gridworld b) V* c) !*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A'

B'+10

+5

v* π*

22.0 = max(0+0.9 * 19.4,
0+0.9 * 19.8,
0+0.9 * 24.4,

−1+0.9 * 22.0)

Any policy that is greedy with respect to is an optimal policy.v*

Therefore, given , one-step-ahead search produces the

long-term optimal actions.

v*

Solving the Bellman Equations

MDPs to MRPs

Expected reward at state s:

State transition dynamics:

MDP under a fixed policy becomes Markov Reward Process (MRP):

vπ(s) = ∑
a

π(a |s)∑
s′￼,r

p (s′￼, r |s, a) [r + γvπ (s′￼)]

vπ(s) = ∑
a∈𝒜

π(a |s)(r(s, a) + γ ∑
s′￼∈𝒮

T (s′￼|s, a) vπ (s′￼))
= ∑

a∈𝒜

π(a |s)r(s, a) + γ ∑
a∈𝒜

π(a |s) ∑
s′￼∈𝒮

T (s′￼|s, a) vπ (s′￼)

= rπ
s + γ ∑

s′￼∈𝒮

Tπ
s′￼svπ (s′￼)

rπ
s = ∑

a∈𝒜

π(a |s)r(s, a)

Tπ
s′￼s = ∑

a∈𝒜

π(a |s)T (s′￼|s, a)

The Bellman expectation equation can be written concisely as a system
of linear equations

with direct solution

of complexity

vπ = rπ + γTπvπ

vπ = (I − γTπ)−1 rπ

𝒪(|S |3)

Matrix Form

• Computing state and state-action value functions by solving linear systems
of equations.

• We will then realist matrix inversion is too costly-> iterative estimation->
Bellman backup operation.

• We will then realise we cannot possibly visit every state (too many states)
-> selective backups on state-actions that the agent visits as opposed to all.

• We will give up on our assumption of knowing dynamics (monte carlo
learning, td learing).

• We will eventually give up on tabular representations and use functions to
represent state value functions as opposed to exhaustive
enumeration of .

V(s, θ), q(s, a, ϕ)
v(s), q(s, a)

Roadmap

vπ(s) = ∑
a

π(a |s)∑
r,s′￼

p(s′￼, r |s, a)(r + γvπ(s′￼))

vπ(s) = ∑
a

π(a |s) r(s, a) + γ∑
r,s′￼

p(s′￼|s, a)vπ(s′￼)

Iterative Methods: Recall the Bellman Equation

Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Iterative Policy Evaluation

Iterative Policy Evaluation (2)

a

r

vk+1(s) � s

vk(s0) � s0

vk+1(s) =
X

a2A
⇡(a|s)

Ra

s + �
X

s02S
Pa
ss0vk(s

0)

!

vk+1 = R⇡R⇡R⇡ + �P⇡P⇡P⇡vk

v⇡(s) s

v⇡(s0) s0
r

Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Iterative Policy Evaluation

Iterative Policy Evaluation (2)

a

r

vk+1(s) � s

vk(s0) � s0

vk+1(s) =
X

a2A
⇡(a|s)

Ra

s + �
X

s02S
Pa
ss0vk(s

0)

!

vk+1 = R⇡R⇡R⇡ + �P⇡P⇡P⇡vk

r

Given an expected value function at iteration k, we back up the expected
value function at iteration k+1:

Iterative Methods: Backup Operation

v[k+1] sv[k+1](s) s

v[k](s
0) s0

v[k+1](s) = ∑
a

π(a |s) r(s, a) + γ∑
r,s′￼

p(s′￼|s, a)v[k](s′￼)

A sweep consists of applying the backup operation for all the
states in

Applying the back up operator iteratively

A full policy evaluation backup:

v → v′￼

𝒮

v[0] → v[1] → v[2] → …vπ

Iterative Methods: Sweep

v[k+1](s) = ∑
a

π(a |s) r(s, a) + γ∑
r,s′￼

p(s′￼|s, a)v[k](s′￼) , ∀s

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Actions that would take the agent off the grid leave the state unchanged

• Reward is -1 until the terminal state is reached

A Small-Grid World

R

γ = 1

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Actions that would take the agent off the grid leave the state  
unchanged

• Reward is -1 until the terminal state is reached

Policy , an equiprobable random actionπ

Iterative Policy Evaluation for the

random policy
v[k]

1

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Actions that would take the agent off the grid leave the state  
unchanged

• Reward is -1 until the terminal state is reached

Iterative Policy Evaluation for the

random policy
v[k]

1

Policy , an equiprobable random actionπ

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Actions that would take the agent off the grid leave the state  
unchanged

• Reward is -1 until the terminal state is reached

Iterative Policy Evaluation for the

random policy
v[k]

1

Policy , an equiprobable random actionπ

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Actions that would take the agent off the grid leave the state  
unchanged

• Reward is -1 until the terminal state is reached

Iterative Policy Evaluation for the

random policy
v[k]

1

Policy , an equiprobable random actionπ

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Actions that would take the agent off the grid leave the state  
unchanged

• Reward is -1 until the terminal state is reached

Iterative Policy Evaluation for the

random policy
v[k]

1

Policy , an equiprobable random actionπ

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Actions that would take the agent off the grid leave the state  
unchanged

• Reward is -1 until the terminal state is reached

Iterative Policy Evaluation for the

random policy
v[k]

1

Policy , an equiprobable random actionπ

Iterative Policy Evaluation
86 CHAPTER 4. DYNAMIC PROGRAMMING

Input ⇡, the policy to be evaluated
Initialize an array V (s) = 0, for all s 2 S+

Repeat
� 0
For each s 2 S:

v V (s)
V (s)

P
a
⇡(a|s)

P
s0,r p(s0

, r|s, a)
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)
Output V ⇡ v⇡

Figure 4.1: Iterative policy evaluation.

Another implementation point concerns the termination of the algorithm.
Formally, iterative policy evaluation converges only in the limit, but in practice
it must be halted short of this. A typical stopping condition for iterative policy
evaluation is to test the quantity maxs2S |vk+1(s)�vk(s)| after each sweep and
stop when it is su�ciently small. Figure 4.1 gives a complete algorithm for
iterative policy evaluation with this stopping criterion.

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r = !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

R

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions pos-
sible in each state, A = {up, down, right, left}, which deterministically
cause the corresponding state transitions, except that actions that would take
the agent o↵ the grid in fact leave the state unchanged. Thus, for instance,
p(6|5, right) = 1, p(10|5, right) = 0, and p(7|7, right) = 1. This is an undis-
counted, episodic task. The reward is �1 on all transitions until the terminal
state is reached. The terminal state is shaded in the figure (although it is
shown in two places, it is formally one state). The expected reward function is
thus r(s, a, s

0) = �1 for all states s, s
0 and actions a. Suppose the agent follows

the equiprobable random policy (all actions equally likely). The left side of
Figure 4.2 shows the sequence of value functions {vk} computed by iterative
policy evaluation. The final estimate is in fact v⇡, which in this case gives for
each state the negation of the expected number of steps from that state until

An operator on a normed vector space is a -contraction,  
for provided for all :

 
Theorem (Contraction mapping) 
For a -contraction in a complete normed vector space :

• converges to a unique fixed point in ,

• at a linear convergence rate .

F 𝒳 γ
0 < γ < 1 x, y ∈ 𝒳

∥F(x) − F(y)∥ ≤ γ∥x − y∥

γ F 𝒳

F 𝒳

γ

Contraction Mapping Theorem

• Consider the vector space over value functions.

• There are dimensions.

• Each point in this space fully specifies a value function .

• Bellman backup brings value functions closer in this space.

• And therefore the backup must converge to a unique solution.

V
|𝒮 |

v(s)

Value Function Space

s1

s2

s3

• We will measure distances between state-value functions and by
the -norm, i.e., the largest difference between state values,

u v
∞

∥u − v∥∞ = max
s∈𝒮

|u(s) − v(s) |

∥u∥∞ = max
s∈𝒮

|u(s) |

-norm∞

• Define the Bellman expectation backup operator

• This operator is a -contraction, i.e. it makes value functions closer by at
least ,

Fπ(v) = rπ + γTπv

γ
γ

Bellman Expectation Backup is a Contraction

∥Fπ(u) − Fπ(v)∥∞ = ∥(rπ + γTπu) − (rπ + γTπv)∥∞

= ∥γTπ(u − v)∥∞

≤ ∥γTπ(1∥(u − v)∥∞)∥∞

= ∥γ(Tπ1)∥u − v∥∞∥∞

= ∥γ1∥u − v∥∞∥∞

= γ∥u − v∥∞

Finding Optimal Policies

• Suppose we have computed for a deterministic policy .

• For a given state , would it be better to do an action ?

• It is better to switch to action for state if and only if .

• And we can compute from by:

vπ π

s a ≠ π(s)

a s qπ(s, a) > vπ(s)

qπ(s, a) vπ

qπ(s, a) = r(s, a) + γ ∑
s′￼∈𝒮

p(s′￼|s, a)vπ(s′￼)

Policy Improvement

vπ(s) = ∑
a

π(a |s) r(s, a) + γ∑
r,s′￼

p(s′￼|s, a)vπ(s′￼)

v⇡(s) =
X

a2A
⇡(a|s)q⇡(s, a)

v⇡(s)

1.0 0.0

• Suppose we have computed for a deterministic policy .

• For a given state , would it be better to do an action ?

• It is better to switch to action for state if and only if .

• And we can compute from :

• Do this for all states to get a new policy that is greedy with respect to :

• After policy update it holds that:

vπ π

s a ≠ π(s)

a s qπ(s, a) > vπ(s)

qπ(s, a) vπ qπ(s, a) = r(s, a) + γ ∑
s′￼∈𝒮

p(s′￼|s, a)vπ(s′￼)

π′￼ qπ(s, a)
π′￼(s) = argmax

a
qπ(s, a)

vπ(s) ≤ qπ(s, π′￼(s)) ∀s

Policy Improvement (greedification)

vπ(s) = ∑
a

π(a |s) r(s, a) + γ∑
r,s′￼

p(s′￼|s, a)vπ(s′￼)

v⇡(s) =
X

a2A
⇡(a|s)q⇡(s, a)

v⇡(s)

1.0 0.0

• Trivial proof:

Policy Improvement Cont.

qπ(s, π′￼(s)) = qπ(s, argmax
a

qπ(s, a))

= max
a

qπ(s, a)

≥ qπ(s, π(s))
≥ vπ(s)

• Trivial proof:

• We have indeed improved the policy (or ended up on an equally good
policy):

Policy Improvement Cont.
qπ(s, π′￼(s)) = qπ(s, argmax

a
qπ(s, a))

= max
a

qπ(s, a)

≥ qπ(s, π(s))
≥ vπ(s)

• If policy is unchanged after the greedification step, this means that:

• What does this mean?

• This is the Bellman optimality equation. So is
optimal.

vπ(s) = max
a

qπ(s, a) ∀s

vπ(s) = v*(s) and π

Policy Improvement Cont.

Define a partial ordering over policies: .

Theorem: For any Markov Decision Process

• There exists an optimal policy that is better than or equal to all
other policies, .

• All optimal policies achieve the optimal value function,

• All optimal policies achieve the optimal action-value function,
.

π ≥ π′￼, if vπ(s) ≥ vπ′￼(s)∀s

π*
π* ≥ π, ∀π

vπ*(s) = v*(s)∀s .

qπ*(s, a) = q*(s, a)

Optimal Policy

\text{v}_{\pi_*}(s) = \text{v}_*(s)

Policy Iteration

 policy evaluation policy improvement

“greedification”

⇡0
E�! v⇡0

I�! ⇡1
E�! v⇡1

I�! ⇡2
E�! ...

I�! ⇡⇤
E�! v⇤

Policy Iteration

92 CHAPTER 4. DYNAMIC PROGRAMMING

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Repeat

� 0
For each s 2 S:

v V (s)
V (s)

P
s0,r p(s0

, r|s, ⇡(s))
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)

3. Policy Improvement
policy-stable true

For each s 2 S:
a ⇡(s)
⇡(s) arg maxa

P
s0,r p(s0

, r|s, a)
⇥
r + �V (s0)

⇤

If a 6= ⇡(s), then policy-stable false

If policy-stable, then stop and return V and ⇡; else go to 2

Figure 4.3: Policy iteration (using iterative policy evaluation) for v⇤. This
algorithm has a subtle bug, in that it may never terminate if the policy con-
tinually switches between two or more policies that are equally good. The bug
can be fixed by adding additional flags, but it makes the pseudocode so ugly
that it is not worth it. :-)

argmax r(s, a) + �⌃s02ST (s
0|s, a)v⇡(s0)

⌃a2A⇡(a|s) (r(s, a) + �⌃s02ST (s
0|s, a)V (s0))

v

v
p(s′￼|s, a)

p(s′￼|s, a)

(Till convergence)

• Does policy evaluation need to converge to ?

• Or should we introduce a stopping condition, e.g. -convergence of
value function?

• Or simply stop after k iterations of iterative policy evaluation?

vπ

ϵ

Generalized Policy Iteration

Generalized Policy Iteration

A geometric metaphor for

convergence of GPI:

evaluation

improvement

⇡ greedy(V)

V⇡

V v⇡

v⇤⇡⇤

v⇤,⇡⇤

V0,⇡0

V = v⇡

⇡ = greed
y(V)

v⇡

v⇡

v⇤

v⇤

• All RL methods are a form of GPI

• GPI converges. Why?

• When it converges it converges to optimum?

Generalized Policy Iteration (GPI): any interleaving of policy evaluation
and policy improvement, independent of their granularity.

• Does policy evaluation need to converge to ?

• Or should we introduce a stopping condition, e.g. -convergence of
value function?

• Or simply stop after k iterations of iterative policy evaluation?

• Why not update the policy after every iteration, i.e. stop after k = 1

• This is equivalent to value iteration.

vπ

ϵ

Generalized Policy Iteration

• Problem: find optimal policy

• Solution: iterative application of Bellman optimality backup

•

• Using synchronous backups

• At each iteration k + 1

• For all states

• Update from

π

v1 → v2 → … → v*

s ∈ 𝒮

vk+1(s) vk(s′￼)

Value Iteration

Value Iteration (2)

Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs

Value Iteration (2)

vk+1(s) � s

vk(s0) � s0

r

a

vk+1(s) = max
a2A

Ra

s + �
X

s02S
Pa
ss0vk(s

0)

!

vk+1 = max
a2A

RaRaRa + �PaPaPavk

r

vk+1(s) = max
a2A

r(s, a) + �

X

s02S
T (s0|s, a)vk(s0)

!

vk+1(s) s

vk(s
0) s0

p(s′￼|s, a)v[k+1](s) = max
a∈𝒜 (r(s, a) + γ ∑

s′￼∈𝒮

p(s′￼|s, a)v[k](s′￼)), ∀s

vk+1 = max
a∈𝒜

r(a) + γp(a)vk

• Define the Bellman optimality backup operator ,

• This operator is a -contraction, i.e. it makes value functions closer by at
least (similar to previous proof)

F *

F*(v) = max
a∈𝒜

r(a) + γp(a)v

γ
γ

F*(u) − F*(v)
∞

≤ γ∥u − v∥∞

Bellman Optimality Backup is a Contraction

• The Bellman optimality operator has a unique fixed point

• is a fixed point of (by Bellman optimality equation)

• By contraction mapping theorem

• Value iteration converges on

F *

v* F *

v*

Convergence of Value Iteration

• Algorithms are based on state-value function or

• Complexity per iteration, for actions and states

• Could also apply to action-value function or

• Complexity per iteration

vπ(s) v*(s)

O (mn2) m n

qπ(s, a) q*(s, a)

O (m2n)

Synchronous Dynamic Programming Algorithms

Problem Bellman Equation Algorithm

Prediction Bellman Expectation Equation Iterative Policy
Evaluation

Control Bellman Expectation Equation +
Greedy Policy Improvement

Policy Iteration

Control Bellman Optimality Equation Value Iteration

• To find an optimal policy is polynomial in the number of states…

• BUT, the number of states is often astronomical, e.g., often growing
exponentially with the number of state variables (what Bellman called
“the curse of dimensionality”).

• In practice, classical DP can be applied to problems with a few millions
of states.

Efficiency of DP

• Computing state and state-action value functions by solving linear systems
of equations.

• We will then realise matrix inversion is too costly-> iterative estimation->
Bellman backup operation.

• We will then realise we cannot possibly visit every state (too many states)
-> selective backups on state-actions that the agent visits as opposed to all.

• We will give up on our assumption of knowing dynamics (monte carlo
learning, td learing).

• We will eventually give up on tabular representations and use functions to
represent state value functions as opposed to exhaustive
enumeration of .

V(s, θ), q(s, a, ϕ)
v(s), q(s, a)

Roadmap

• All the DP methods described so far require exhaustive sweeps of the
entire state set.

• Asynchronous DP does not use sweeps. Instead it works like this:

• Repeat until convergence criterion is met:

• Sample a state at random and apply the appropriate backup

• Still need lots of computation, but does not get locked into hopelessly
long sweeps

• Guaranteed to converge if all states continue to be selected

Asynchronous DP

• Three simple ideas for asynchronous dynamic programming:

• In-place dynamic programming

• Prioritized sweeping

• Real-time dynamic programming

Asynchronous Dynamic Programming

• Synchronous value iteration stores two copies of value function

• for all in

• In-place value iteration only stores one copy of value function

• for all in

s 𝒮

vnew(s) ← max
a∈𝒜 (r(s, a) + γ ∑

s′￼∈𝒟

p (s′￼|s, a) vold (s′￼))
vold ← vnew

s 𝒮

In-Place Dynamic Programming

v(s) ← max
a∈𝒜 (r(s, a) + γ ∑

s′￼∈𝒮

T (s′￼|s, a) v (s′￼))

• Use magnitude of Bellman error to guide state selection, e.g.

• Backup the state with the largest remaining Bellman error

• Update Bellman poor of affected states after each backup

• Requires knowledge of reverse dynamics (predecessor states)

• Can be implemented efficiently by maintaining a priority queue

max
a∈𝒜 (r(s, a) + γ ∑

s′￼∈𝒮

p (s′￼|s, a) v (s′￼)) − v(s)

Prioritized Sweeping

• Idea: focus on states that are relevant to agent (we need an agent to
interact with the world, to guide the priority over back-up updates)

• Use agent’s experience to guide the selection of states

• After each time-step

• Backup the state

𝒮t, 𝒜t, rt+1

𝒮

v (𝒮t) ← max
a∈𝒜 (r (𝒮t, a) + γ ∑

s′￼∈𝒮

p (s′￼|𝒮t, a) v (s′￼))

Real-time Dynamic Programming

