
Markov Decision Processes, Value
Itera5on, Policy Itera5on

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon

School of Computer Science

Spring 2021, CMU 10-403

1. Learning from expert demonstra1ons (last lecture)
Instruc5ve feedback: the expert directly suggests correct ac5ons, e.g.,
your advisor directly suggests to you ideas that are worth pursuing

2. Learning from rewards while interac5ng with the environment
Evalua5ve feedback: the environment provides signal whether ac5ons
are good or bad. E.g., your advisor tells you if your research ideas are
worth pursuing (but does not suggest to you other ideas).

Note: Evalua5ve feedback depends on the current policy the agent has: if
you never suggest good ideas, you will never have the chance to know
they are worthwhile. Instruc5ve feedback is independent of the agent’s
policy.

Supervision for learning to act

A Finite Markov Decision Process is a tuple

• is a finite set of states

• is a finite set of ac5ons

• is one step dynamics func5on

• is a reward func5on

• is a discount factor

(𝒮, 𝒜, T, r, γ)

𝒮

𝒜

p

r

γ γ ∈ [0,1]

Finite Markov Decision Process

Agent: an en5ty that is equipped with sensors, in order to sense the
environment, and end-effectors in order to act in the environment, and
goals that he wants to achieve

Policy: a mapping func5on from observa5ons (sensa5ons, inputs of the
sensors) to ac5ons of the end effectors.

Model: the mapping func5on from states/observa5ons and ac5ons to
future states/observa5ons

Planning: unrolling a model forward in 5me and selec5ng the best ac5on
sequence that sa5sfies a specific goal

Plan: a sequence of ac5ons

Defini5ons

• A state captures whatever informa5on is available to the agent at step t
about its environment.

• The state can include immediate “sensa5ons,” highly processed
sensa5ons, and structures built up over 5me from sequences of
sensa5ons, memories etc.

• A state should summarize past sensa5ons so as to retain all “essen5al”
informa5on, i.e., it should have the Markov Property:

•

 for all , and all histories

• We should be able to throw away the history once state is known

ℙ [Rt+1 = r, St+1 = s′ |S0, A0, R1, …, At−1, Rt, St, At] = ℙ [Rt+1 = r, St+1 = s′ |St, At]

s′ ∈ 𝒮, r ∈ R

Markovian States

Defini5on: A policy is a distribu5on over ac5ons given states,

• A policy fully defines the behavior of an agent

• The policy is sta5onary (5me-independent)

• During learning, the agent changes his policy as a result of
experience

Special case: determinis5c policies

π(a |s) = Pr(At = a |St = s), ∀t

π(s) = the ac5on taken with prob = 1 when St = s

The agent learns a Policy

Rewards are scalar values provided by the environment to the agent that
indicate whether goals have been achieved, e.g., 1 if goal is achieved, 0
otherwise, or -1 for over5me step the goal is not achieved

• Goals specify what the agent needs to achieve, not how to achieve it.

• The simplest and cheapest form of supervision, and surprisingly general:
All of what we mean by goals and purposes can be well thought of as
the maximiza5on of the cumula5ve sum of a received scalar signal
(reward):

Goal seeking behaviour, achieving purposes and expecta5ons can be
formulated mathema5cally as maximizing expected cumula5ve sum of
scalar values…

r(s, a) = 𝔼[Rt+1 |St = s, At = a]

Rewards reflect goals

Episode: A sequence of interac5ons based on which the reward will be
judged at the end.

Episodic tasks: interac5on breaks naturally into episodes, e.g., plays of a
game, trips through a maze.

In episodic tasks, we almost always use simple total reward:

where T is a final 5me step at which a terminal state is reached, ending an
episode.

Gt = Rt+1 + Rt+2 + ⋯ + RT

Returns - Episodic tasksGt

Con5nuing tasks: interac5on does not have natural episodes, but just goes
on and on…just like real life

In con5nuing tasks, we o]en use simple total discounted reward:

Why temporal discoun5ng?

Episodes can have finite or infinite length. For infinite length, the
undercounted sum blows up, thus we add discoun5ng to prevent this,
and treat both cases in a similar manner.

Gt = Rt+1 + γRt+2 + … = ∑∞
k=0 γkRt+k+1

Returns - Con5nuing tasksGt

Mountain Car

Get to the top of the hill
as quickly as possible.

reward = −1 for each step where not at top of hill
⇒ return = − number of steps before reaching top of hill

Return is maximized by minimizing
number of steps to reach the top of the hill.

• Defini1on: The state-value func5on of an MDP is the expected
return star5ng from state s, and then following policy :

•

• The ac5on-value func5on is the expected return star5ng from
state s, taking ac5on a, and then following policy:

•

• Q: What are the expecta5ons over (what is stochas5c)?

vπ(s)
π

vπ(s) = 𝔼[Gt |St = s]

qπ(s, a)

qπ(s, a) = 𝔼[Gt |St = s, At = a]

Value Func5ons are Expected Returns

• Defini1on: The op#mal state-value func#on is the maximum value
func5on over all policies:

• The op#mal ac#on-value func#on is the maximum ac5on-value
func5on over all policies:

v*(s)

v*(s) = maxπ vπ(s)

q*(s, a)

q*(s, a) = maxπ qπ(s, a)

Op5mal Value Func5ons are Best Achievable Expected
Returns

• Predic5on: Given an MDP and a policy

find the state and ac5on value func5ons.

• Op5mal control: given an MDP , find the op5mal policy
(aka the planning problem). Compare with the learning problem with
missing informa5on about rewards/dynamics.

(𝒮, 𝒜, T, r, γ)

π(a |s) = ℙ [At = a |St = s]

(𝒮, 𝒜, T, r, γ)

Solving MDPs

• Value func5ons measure the goodness of a par5cular state or state/
ac5on pair: how good is for the agent to be in a par5cular state or
execute a par5cular ac5on at a par5cular state, for a given policy.

• Op5mal value func5ons measure the best possible goodness of states or
state/ac5on pairs under all possible policies.

 Value Func5ons

state
values

action
values

prediction

control q⇤v⇤

v⇡ q⇡v⇡

v⇤

Value func5ons capture the knowledge of the agent regarding how good is
each state for the goal he is trying to achieve.

Why Value Func5ons are useful

Horde: A Scalable Real-time Architecture for Learning Knowledge from Unsupervised Sensorimotor Interaction, Sutton et al.

“…knowledge is represented as a large number of
approximate value func#ons learned in parallel…”

Why Value Func5ons are useful
An op5mal policy can be found by maximizing over :

An op5mal policy can be found from the model dynamics using one step look
ahead:

• If we know , we immediately have the op5mal policy, we do not need
the dynamics!

• If we know , we need the dynamics to do one step lookahead, to choose
the op5cal ac5on.

q*(s, a)

π*(a |s) = {1, if a = argmaxa∈𝒜 q*(s, a)
0, otherwise.

π*(a |s) = 1, if a = argmaxa∈𝒜 (∑s′ ,r p (s′ , r |s, a) (r + γv* (s′)))
0, otherwise

q * (s, a)

v * (s)

q_*(s,a) = \max_\pi q_\pi(s,a)

The value of a state, given a policy:

The value of a state-ac5on pair, given a policy:

The op5mal value of a state:

The op5mal value of a state-ac5on pair:

Op5mal policy: is an op5mal policy if and only if

in other words, is op5mal iff it is greedy w.r.t. .

vπ(s) = 𝔼 {Gt |St = s, At:∞ ∼ π} vπ : 𝒮 → ℜ

qπ(s, a) = 𝔼 {Gt |St = s, At = a, At+1:∞ ∼ π} qπ : 𝒮 × 𝒜 → ℜ

v*(s) = max
π

vπ(s) v* : 𝒮 → ℜ

q*(s, a) = max
π

qπ(s, a) q* : 𝒮 × 𝒜 → ℜ

π*
π*(a |s) > 0 only where q*(s, a) = max

b
q*(s, b) ∀s ∈ 𝒮

π* q*

Value Func5ons are Expected Returns

• Compu5ng state and state-ac5on value func5ons by solving linear systems
of equa5ons.

• We will then realize matrix inversion is too costly-> itera5ve es5ma5on->
Bellman backup opera5on.

• We will then realize we cannot possibly visit every state (too many states)
-> selec5ve backups on state-ac5ons that the agent visits as opposed to all.

• We will give up on our assump5on of knowing dynamics (monte carlo
learning, td learning).

• We will eventually give up on tabular representa5ons and use func5ons to
represent state value func5ons as opposed to exhaus5ve
enumera5on of .

V(s, θ), q(s, a, ϕ)
v(s), q(s, a)

Roadmap

• Compu5ng state and state-ac5on value func5ons by solving linear systems
of equa5ons.

• We will then realise matrix inversion is too costly-> itera5ve es5ma5on->
Bellman backup opera5on.

• We will then realise we cannot possibly visit every state (too many states)
-> selec5ve backups on state-ac5ons that the agent visits as opposed to all.

• We will give up on our assump5on of knowing dynamics (monte carlo
learning, td learing).

• We will eventually give up on tabular representa5ons and use func5ons to
represent state value func5ons as opposed to exhaus5ve
enumera5on of .

V(s, θ), q(s, a, ϕ)
v(s), q(s, a)

Roadmap

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 +
= Rt+1 + γ (Rt+2 + γRt+3 + γ2Rt+4 +)
= Rt+1 + γGt+1

Recursive rela5onships for returns

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 +
= Rt+1 + γ (Rt+2 + γRt+3 + γ2Rt+4 +)
= Rt+1 + γGt+1

Recursive rela5onships for returns

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 +
= Rt+1 + γ (Rt+2 + γRt+3 + γ2Rt+4 +)
= Rt+1 + γGt+1

Recursive rela5onships for returns

By condi5oning on a state and taking expecta5ons:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 +
= Rt+1 + γ (Rt+2 + γRt+3 + γ2Rt+4 +)
= Rt+1 + γGt+1

𝔼[Gt |St = s] = 𝔼[Rt+1 + γGt+1 |St = s]

vπ(s) = 𝔼[Rt+1 + γvπ(St+1)]

vπ(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r + γvπ(s′)]

Recursive rela5onships for returns

By condi5oning on a state and ac5on and taking expecta5ons:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 +
= Rt+1 + γ (Rt+2 + γRt+3 + γ2Rt+4 +)
= Rt+1 + γGt+1

𝔼[Gt |St = s, At = a] = 𝔼[Rt+1 + γGt+1 |St = s, At = a]

qπ(s, a) = 𝔼[Rt+1 + γqπ(St+1, At+1) |St = s, At = a]

qπ(s, a) = ∑
s′ ,r

p(s′ , r |s, a)[r + γ∑
a′

π(a′ |s)qπ(s′ , a′)]

Recursive rela5onships for returns

vπ(s) = 𝔼 [Rt+1 + γvπ (St+1)]
vπ(s) = ∑

a

π(a |s)∑
s′ ,r

p (s′ , r |s, a) [r + γvπ (s′)]

Bellman Expecta5on Equa5ons

qπ(s, a) = ∑
r,s′

p(r, s′ |s, a)(r + γ∑
a′

π(a′ |s′)qπ(s′ , a′))

vπ(s) = 𝔼 [Rt+1 + γvπ (St+1)]
vπ(s) = ∑

a

π(a |s)∑
s′ ,r

p (s′ , r |s, a) [r + γvπ (s′)]

Bellman Expecta5on Equa5ons

qπ(s, a) = ∑
r,s′

p(r, s′ |s, a)(r + γ∑
a′

π(a′ |s′)qπ(s′ , a′))

Q: how do we compute the state values?

This is a set of linear equa5ons, one for each state.
The state value func5on for is its unique solu5on.π

qπ(s, a) = 𝔼 [Rt+1 + γqπ (St+1, At+1) |St = s, At = a]

qπ(s, a) = ∑
s′ ,r

p (s′ , r |s, a) [r + γ∑
a′

π(a′ |s)qπ (s′ , a′)]

Bellman Expecta5on Equa5ons

qπ(s, a) = ∑
r,s′

p(r, s′ |s, a)(r + γ∑
a′

π(a′ |s′)qπ(s′ , a′))

This is a set of linear equa5ons, one for each state and ac5on.
The state-ac5on value func5on for is its unique solu5on.π

Back-up diagram for value func5ons

r

v⇡(s)

v⇡(s
0)

The probabili5es of landing on each of the leaves sum to 1

All actions listed with their probabilities

0.3 0.7

0.5 0.5

All possible next states
listed with their probabilities

0.90.1

vπ(s) = ∑
a

π(a |s)∑
s′ ,r

p (s′ , r |s, a) [r + γvπ (s′)]

Back-up diagram for value func5ons

r

v⇡(s)

v⇡(s
0)

The probabili5es of landing on each of the leaves sum to 1

qπ(s, a) = ∑
r,s′

p(s′ , r |s, a)(r + γ∑
a′

π(a′ |s′)qπ(s′ , a′))

All actions listed with their probabilities

0.3 0.7

0.90.1 0.5 0.5

All possible next states
listed with their probabilities

All possible next states
listed with their probabilities

0.5 0.5

All actions listed with their
probabilities

0.3 0.7

vπ(s) = ∑
a

π(a |s)∑
s′ ,r

p (s′ , r |s, a) [r + γvπ (s′)]

Rela5ng state and state/ac5on value func5ons

v⇡(s) All actions listed with their probabilities

0.3 0.7

vπ(s) = ∑
a∈𝒜

π(a |s)qπ(s, a)

Bellman Op5mality Equa5ons for

r

v⇤(s)

v⇤(s
0)

For the Bellman
expecta5on
equa5ons we
sum over all the
leaves, here we
choose only the
best ac5on
branch!

The value of a state under an op5mal policy must equal the expected
return for the best ac5on from that state

max

v*

v*(s) = max
a∈𝒜 ∑

s′ ,r

p(s′ , r |s, a)(r + γv*(s′))

v* is the unique solu5on of this system of nonlinear equa5ons

Bellman Op5mality Equa5ons for q*

q*(s, a) = 𝔼[Rt+1 + γ max
a′ ∈𝒜

q*(St+1, a′) |St = s, At = a]

= ∑
s′ ,r

p(s′ , r |s, a)[r + γ max
a′

q*(s′ , a′)]

max max

q* is the unique solution of this system of nonlinear equations

Rela5ng Op5mal State and Ac5on Value Func5ons

v⇤(s)

max

v* (s′) = max
a

q*(s, a)

Rela5ng Op5mal State and Ac5on Value Func5ons

v⇤(s
0)

q*(s, a) = ∑
s′ ,r

p(s′ , r |s, a)(r + γv*(s′))

• Ac5ons: north, south, east, west; determinis5c.

• If would take agent off the grid: no move but reward = –1

• Other ac5ons produce reward = 0, except ac5ons that move agent out
of special states A and B as shown.

Gridworld-value func5on

State-value func5on
for equiprobable
random policy;
γ = 0.9

8.83 = 10 + 0.9 * (−1.3)

• Ac5ons: north, south, east, west; determinis5c.

• If would take agent off the grid: no move but reward = –1

• Other ac5ons produce reward = 0, except ac5ons that move agent out
of special states A and B as shown.

Gridworld-value func5on

State-value func5on
for equiprobable
random policy;
γ = 0.9

4.43 = 0.25 * (0+0.9 * 5.3+
0+0.9 * 2.3+
0+0.9 * 8.8+

−1+0.9 * 4.4)

Any policy that is greedy with respect to is an optimal policy.v*

Therefore, given , one-step-ahead search produces the
long-term optimal actions.

v*

Gridworld - op5mal value func5on

a) gridworld b) V* c) !*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A'

B'+10

+5

v* π*

24.4 = 10 + 0.9 * (16.0)

Gridworld - op5mal value func5on

a) gridworld b) V* c) !*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A'

B'+10

+5

v* π*

22.0 = max(0+0.9 * 19.4,
0+0.9 * 19.8,
0+0.9 * 24.4,

−1+0.9 * 22.0)

Any policy that is greedy with respect to is an optimal policy.v*

Therefore, given , one-step-ahead search produces the
long-term optimal actions.

v*

Solving the Bellman Equa5ons

MDPs to MRPs

Expected reward at state s:

State transi#on dynamics:

MDP under a fixed policy becomes Markov Reward Process (MRP):

vπ(s) = ∑
a

π(a |s)∑
s′ ,r

p (s′ , r |s, a) [r + γvπ (s′)]

vπ(s) = ∑
a∈𝒜

π(a |s)(r(s, a) + γ ∑
s′ ∈𝒮

T (s′ |s, a) vπ (s′))
= ∑

a∈𝒜

π(a |s)r(s, a) + γ ∑
a∈𝒜

π(a |s) ∑
s′ ∈𝒮

T (s′ |s, a) vπ (s′)

= rπ
s + γ ∑

s′ ∈𝒮

Tπ
s′ svπ (s′)

rπ
s = ∑

a∈𝒜

π(a |s)r(s, a)

Tπ
s′ s = ∑

a∈𝒜

π(a |s)T (s′ |s, a)

The Bellman expectation equation can be written concisely as a system
of linear equations

with direct solution

of complexity

vπ = rπ + γTπvπ

vπ = (I − γTπ)−1 rπ

𝒪(|S |3)

Matrix Form

• Compu5ng state and state-ac5on value func5ons by solving linear systems
of equa5ons.

• We will then realist matrix inversion is too costly-> itera5ve es5ma5on->
Bellman backup opera5on.

• We will then realise we cannot possibly visit every state (too many states)
-> selec5ve backups on state-ac5ons that the agent visits as opposed to all.

• We will give up on our assump5on of knowing dynamics (monte carlo
learning, td learing).

• We will eventually give up on tabular representa5ons and use func5ons to
represent state value func5ons as opposed to exhaus5ve
enumera5on of .

V(s, θ), q(s, a, ϕ)
v(s), q(s, a)

Roadmap

 vπ(s) = ∑
a

π(a |s)∑
r,s′

p(s′ , r |s, a)(r + γvπ(s′))

vπ(s) = ∑
a

π(a |s) r(s, a) + γ∑
r,s′

p(s′ |s, a)vπ(s′)

Itera5ve Methods: Recall the Bellman Equa5on

Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Iterative Policy Evaluation

Iterative Policy Evaluation (2)

a

r

vk+1(s) � s

vk(s0) � s0

vk+1(s) =
X

a2A
⇡(a|s)

Ra

s + �
X

s02S
Pa
ss0vk(s

0)

!

vk+1 = R⇡R⇡R⇡ + �P⇡P⇡P⇡vk

v⇡(s) s

v⇡(s0) s0
r

Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Iterative Policy Evaluation

Iterative Policy Evaluation (2)

a

r

vk+1(s) � s

vk(s0) � s0

vk+1(s) =
X

a2A
⇡(a|s)

Ra

s + �
X

s02S
Pa
ss0vk(s

0)

!

vk+1 = R⇡R⇡R⇡ + �P⇡P⇡P⇡vk

r

Given an expected value func5on at itera5on k, we back up the expected
value func5on at itera5on k+1:

Itera5ve Methods: Backup Opera5on

v[k+1] sv[k+1](s) s

v[k](s
0) s0

v[k+1](s) = ∑
a

π(a |s) r(s, a) + γ∑
r,s′

p(s′ |s, a)v[k](s′)

A sweep consists of applying the backup operation for all the
states in

Applying the back up operator iteratively

A full policy evaluation backup:

v → v′

𝒮

v[0] → v[1] → v[2] → …vπ

Itera5ve Methods: Sweep

v[k+1](s) = ∑
a

π(a |s) r(s, a) + γ∑
r,s′

p(s′ |s, a)v[k](s′) , ∀s

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Ac5ons that would take the agent off the grid leave the state unchanged

• Reward is -1 un5l the terminal state is reached

A Small-Grid World

R

γ = 1

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Ac5ons that would take the agent off the grid leave the state
unchanged

• Reward is -1 un5l the terminal state is reached

Policy , an equiprobable random ac5onπ

Itera5ve Policy Evalua5on for the
random policy
v[k]

1

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Ac5ons that would take the agent off the grid leave the state
unchanged

• Reward is -1 un5l the terminal state is reached

Itera5ve Policy Evalua5on for the
random policy
v[k]

1

Policy , an equiprobable random ac5onπ

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Ac5ons that would take the agent off the grid leave the state
unchanged

• Reward is -1 un5l the terminal state is reached

Itera5ve Policy Evalua5on for the
random policy
v[k]

1

Policy , an equiprobable random ac5onπ

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Ac5ons that would take the agent off the grid leave the state
unchanged

• Reward is -1 un5l the terminal state is reached

Itera5ve Policy Evalua5on for the
random policy
v[k]

1

Policy , an equiprobable random ac5onπ

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Ac5ons that would take the agent off the grid leave the state
unchanged

• Reward is -1 un5l the terminal state is reached

Itera5ve Policy Evalua5on for the
random policy
v[k]

1

Policy , an equiprobable random ac5onπ

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Ac5ons that would take the agent off the grid leave the state
unchanged

• Reward is -1 un5l the terminal state is reached

Itera5ve Policy Evalua5on for the
random policy
v[k]

1

Policy , an equiprobable random ac5onπ

Itera5ve Policy Evalua5on
86 CHAPTER 4. DYNAMIC PROGRAMMING

Input ⇡, the policy to be evaluated
Initialize an array V (s) = 0, for all s 2 S+

Repeat
� 0
For each s 2 S:

v V (s)
V (s)

P
a
⇡(a|s)

P
s0,r p(s0

, r|s, a)
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)
Output V ⇡ v⇡

Figure 4.1: Iterative policy evaluation.

Another implementation point concerns the termination of the algorithm.
Formally, iterative policy evaluation converges only in the limit, but in practice
it must be halted short of this. A typical stopping condition for iterative policy
evaluation is to test the quantity maxs2S |vk+1(s)�vk(s)| after each sweep and
stop when it is su�ciently small. Figure 4.1 gives a complete algorithm for
iterative policy evaluation with this stopping criterion.

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r = !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

R

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions pos-
sible in each state, A = {up, down, right, left}, which deterministically
cause the corresponding state transitions, except that actions that would take
the agent o↵ the grid in fact leave the state unchanged. Thus, for instance,
p(6|5, right) = 1, p(10|5, right) = 0, and p(7|7, right) = 1. This is an undis-
counted, episodic task. The reward is �1 on all transitions until the terminal
state is reached. The terminal state is shaded in the figure (although it is
shown in two places, it is formally one state). The expected reward function is
thus r(s, a, s

0) = �1 for all states s, s
0 and actions a. Suppose the agent follows

the equiprobable random policy (all actions equally likely). The left side of
Figure 4.2 shows the sequence of value functions {vk} computed by iterative
policy evaluation. The final estimate is in fact v⇡, which in this case gives for
each state the negation of the expected number of steps from that state until

An operator on a normed vector space is a -contrac1on,
for provided for all :

Theorem (Contrac1on mapping)
For a -contrac5on in a complete normed vector space :

• converges to a unique fixed point in ,

• at a linear convergence rate .

F 𝒳 γ
0 < γ < 1 x, y ∈ 𝒳

∥F(x) − F(y)∥ ≤ γ∥x − y∥

γ F 𝒳

F 𝒳

γ

Contrac5on Mapping Theorem

• Consider the vector space over value functions.

• There are dimensions.

• Each point in this space fully specifies a value function .

• Bellman backup brings value functions closer in this space.

• And therefore the backup must converge to a unique solution.

V
|𝒮 |

v(s)

Value Func5on Space

s1

s2

s3

• We will measure distances between state-value func5ons and by
the -norm, i.e., the largest difference between state values,

u v
∞

∥u − v∥∞ = max
s∈𝒮

|u(s) − v(s) |

∥u∥∞ = max
s∈𝒮

|u(s) |

-norm∞

• Define the Bellman expecta5on backup operator

• This operator is a -contrac5on, i.e. it makes value func5ons closer by at
least ,

Fπ(v) = rπ + γTπv

γ
γ

Bellman Expecta5on Backup is a Contrac5on

∥Fπ(u) − Fπ(v)∥∞ = ∥(rπ + γTπu) − (rπ + γTπv)∥∞

= ∥γTπ(u − v)∥∞

≤ ∥γTπ(1∥(u − v)∥∞)∥∞

= ∥γ(Tπ1)∥u − v∥∞∥∞

= ∥γ1∥u − v∥∞∥∞

= γ∥u − v∥∞

Finding Op5mal Policies

• Suppose we have computed for a determinis5c policy .

• For a given state , would it be beper to do an ac5on ?

• It is beper to switch to ac5on for state if and only if .

• And we can compute from by:

vπ π

s a ≠ π(s)

a s qπ(s, a) > vπ(s)

qπ(s, a) vπ

qπ(s, a) = r(s, a) + γ ∑
s′ ∈𝒮

p(s′ |s, a)vπ(s′)

Policy Improvement

vπ(s) = ∑
a

π(a |s) r(s, a) + γ∑
r,s′

p(s′ |s, a)vπ(s′)

v⇡(s) =
X

a2A
⇡(a|s)q⇡(s, a)

v⇡(s)

1.0 0.0

• Suppose we have computed for a determinis5c policy .

• For a given state , would it be beper to do an ac5on ?

• It is beper to switch to ac5on for state if and only if .

• And we can compute from :

• Do this for all states to get a new policy that is greedy with respect to :

• A]er policy update it holds that:

vπ π

s a ≠ π(s)

a s qπ(s, a) > vπ(s)

qπ(s, a) vπ qπ(s, a) = r(s, a) + γ ∑
s′ ∈𝒮

p(s′ |s, a)vπ(s′)

π′ qπ(s, a)
π′ (s) = argmax

a
qπ(s, a)

vπ(s) ≤ qπ(s, π′ (s)) ∀s

Policy Improvement (greedifica5on)

vπ(s) = ∑
a

π(a |s) r(s, a) + γ∑
r,s′

p(s′ |s, a)vπ(s′)

v⇡(s) =
X

a2A
⇡(a|s)q⇡(s, a)

v⇡(s)

1.0 0.0

• Trivial proof:

Policy Improvement Cont.

qπ(s, π′ (s)) = qπ(s, argmax
a

qπ(s, a))

= max
a

qπ(s, a)

≥ qπ(s, π(s))
≥ vπ(s)

• Trivial proof:

• We have indeed improved the policy (or ended up on an equally good
policy):

Policy Improvement Cont.
qπ(s, π′ (s)) = qπ(s, argmax

a
qπ(s, a))

= max
a

qπ(s, a)

≥ qπ(s, π(s))
≥ vπ(s)

• If policy is unchanged a]er the greedifica5on step, this means that:

• What does this mean?

• This is the Bellman op5mality equa5on. So is
op5mal.

vπ(s) = max
a

qπ(s, a) ∀s

vπ(s) = v*(s) and π

Policy Improvement Cont.

Define a par5al ordering over policies: .

Theorem: For any Markov Decision Process

• There exists an op5mal policy that is beper than or equal to all
other policies, .

• All op5mal policies achieve the op5mal value func5on,

• All op5mal policies achieve the op5mal ac5on-value func5on,
.

π ≥ π′ , if vπ(s) ≥ vπ′ (s)∀s

π*
π* ≥ π, ∀π

vπ*(s) = v*(s)∀s .

qπ*(s, a) = q*(s, a)

Op5mal Policy

\text{v}_{\pi_*}(s) = \text{v}_*(s)

Policy Itera5on

 policy evalua5on policy improvement
“greedifica5on”

⇡0
E�! v⇡0

I�! ⇡1
E�! v⇡1

I�! ⇡2
E�! ...

I�! ⇡⇤
E�! v⇤

Policy Itera5on

92 CHAPTER 4. DYNAMIC PROGRAMMING

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Repeat

� 0
For each s 2 S:

v V (s)
V (s)

P
s0,r p(s0

, r|s, ⇡(s))
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)

3. Policy Improvement
policy-stable true

For each s 2 S:
a ⇡(s)
⇡(s) arg maxa

P
s0,r p(s0

, r|s, a)
⇥
r + �V (s0)

⇤

If a 6= ⇡(s), then policy-stable false

If policy-stable, then stop and return V and ⇡; else go to 2

Figure 4.3: Policy iteration (using iterative policy evaluation) for v⇤. This
algorithm has a subtle bug, in that it may never terminate if the policy con-
tinually switches between two or more policies that are equally good. The bug
can be fixed by adding additional flags, but it makes the pseudocode so ugly
that it is not worth it. :-)

argmax r(s, a) + �⌃s02ST (s
0|s, a)v⇡(s0)

⌃a2A⇡(a|s) (r(s, a) + �⌃s02ST (s
0|s, a)V (s0))

v

v
p(s′ |s, a)

p(s′ |s, a)

(Till convergence)

• Does policy evalua5on need to converge to ?

• Or should we introduce a stopping condi5on, e.g. -convergence of
value func5on?

• Or simply stop a]er k itera5ons of itera5ve policy evalua5on?

vπ

ϵ

Generalized Policy Itera5on

Generalized Policy Itera5on

A geometric metaphor for
convergence of GPI:

evaluation

improvement

⇡ greedy(V)

V⇡

V v⇡

v⇤⇡⇤

v⇤,⇡⇤

V0,⇡0

V = v⇡

⇡ = greed
y(V)

v⇡

v⇡

v⇤

v⇤

• All RL methods are a form of GPI
• GPI converges. Why?
• When it converges it converges to op5mum?

Generalized Policy Itera5on (GPI): any interleaving of policy evalua5on
and policy improvement, independent of their granularity.

• Does policy evalua5on need to converge to ?

• Or should we introduce a stopping condi5on, e.g. -convergence of
value func5on?

• Or simply stop a]er k itera5ons of itera5ve policy evalua5on?

• Why not update the policy a]er every itera5on, i.e. stop a]er k = 1

• This is equivalent to value itera5on.

vπ

ϵ

Generalized Policy Itera5on

• Problem: find op5mal policy

• Solu5on: itera5ve applica5on of Bellman op5mality backup

•

• Using synchronous backups

• At each itera5on k + 1

• For all states

• Update from

π

v1 → v2 → … → v*

s ∈ 𝒮

vk+1(s) vk(s′)

Value Itera5on

Value Itera5on (2)

Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs

Value Iteration (2)

vk+1(s) � s

vk(s0) � s0

r

a

vk+1(s) = max
a2A

Ra

s + �
X

s02S
Pa
ss0vk(s

0)

!

vk+1 = max
a2A

RaRaRa + �PaPaPavk

r

vk+1(s) = max
a2A

r(s, a) + �

X

s02S
T (s0|s, a)vk(s0)

!

vk+1(s) s

vk(s
0) s0

p(s′ |s, a)v[k+1](s) = max
a∈𝒜 (r(s, a) + γ ∑

s′ ∈𝒮

p(s′ |s, a)v[k](s′)), ∀s

vk+1 = max
a∈𝒜

r(a) + γp(a)vk

• Define the Bellman op5mality backup operator ,

• This operator is a -contrac5on, i.e. it makes value func5ons closer by at
least (similar to previous proof)

F *

F*(v) = max
a∈𝒜

r(a) + γp(a)v

γ
γ

F*(u) − F*(v)
∞

≤ γ∥u − v∥∞

Bellman Op5mality Backup is a Contrac5on

• The Bellman op5mality operator has a unique fixed point

• is a fixed point of (by Bellman op5mality equa5on)

• By contrac5on mapping theorem

• Value itera5on converges on

F *

v* F *

v*

Convergence of Value Itera5on

• Algorithms are based on state-value func5on or

• Complexity per itera5on, for ac5ons and states

• Could also apply to ac5on-value func5on or

• Complexity per itera5on

vπ(s) v*(s)

O (mn2) m n

qπ(s, a) q*(s, a)

O (m2n)

Synchronous Dynamic Programming Algorithms

Problem Bellman Equa5on Algorithm

Predic5on Bellman Expecta5on Equa5on Itera5ve Policy
Evalua5on

Control Bellman Expecta5on Equa5on +
Greedy Policy Improvement

Policy Itera5on

Control Bellman Op5mality Equa5on Value Itera5on

• To find an op5mal policy is polynomial in the number of states…

• BUT, the number of states is o]en astronomical, e.g., o]en growing
exponen5ally with the number of state variables (what Bellman called
“the curse of dimensionality”).

• In prac5ce, classical DP can be applied to problems with a few millions
of states.

Efficiency of DP

• Compu5ng state and state-ac5on value func5ons by solving linear systems
of equa5ons.

• We will then realise matrix inversion is too costly-> itera5ve es5ma5on->
Bellman backup opera5on.

• We will then realise we cannot possibly visit every state (too many states)
-> selec5ve backups on state-ac5ons that the agent visits as opposed to all.

• We will give up on our assump5on of knowing dynamics (monte carlo
learning, td learing).

• We will eventually give up on tabular representa5ons and use func5ons to
represent state value func5ons as opposed to exhaus5ve
enumera5on of .

V(s, θ), q(s, a, ϕ)
v(s), q(s, a)

Roadmap

• All the DP methods described so far require exhaus5ve sweeps of the
en5re state set.

• Asynchronous DP does not use sweeps. Instead it works like this:

• Repeat un5l convergence criterion is met:

• Sample a state at random and apply the appropriate backup

• S5ll need lots of computa5on, but does not get locked into hopelessly
long sweeps

• Guaranteed to converge if all states con5nue to be selected

Asynchronous DP

• Three simple ideas for asynchronous dynamic programming:

• In-place dynamic programming

• Priori5zed sweeping

• Real-5me dynamic programming

Asynchronous Dynamic Programming

• Synchronous value itera5on stores two copies of value func5on

• for all in

• In-place value itera5on only stores one copy of value func5on

• for all in

s 𝒮

vnew(s) ← max
a∈𝒜 (r(s, a) + γ ∑

s′ ∈𝒟

p (s′ |s, a) vold (s′))
vold ← vnew

s 𝒮

In-Place Dynamic Programming

v(s) ← max
a∈𝒜 (r(s, a) + γ ∑

s′ ∈𝒮

T (s′ |s, a) v (s′))

• Use magnitude of Bellman error to guide state selec5on, e.g.

• Backup the state with the largest remaining Bellman error

• Update Bellman poor of affected states a]er each backup

• Requires knowledge of reverse dynamics (predecessor states)

• Can be implemented efficiently by maintaining a priority queue

max
a∈𝒜 (r(s, a) + γ ∑

s′ ∈𝒮

p (s′ |s, a) v (s′)) − v(s)

Priori5zed Sweeping

• Idea: focus on states that are relevant to agent (we need an agent to
interact with the world, to guide the priority over back-up updates)

• Use agent’s experience to guide the selec5on of states

• A]er each 5me-step

• Backup the state

𝒮t, 𝒜t, rt+1

𝒮

v (𝒮t) ← max
a∈𝒜 (r (𝒮t, a) + γ ∑

s′ ∈𝒮

p (s′ |𝒮t, a) v (s′))

Real-5me Dynamic Programming

