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• The agent should have the chance to try (and fail) MANY times

• This is hard when safety is a concern: we cannot afford to fail

• This is also quite hard in general in real life where each interaction takes time (in 

contrast to simulation)

Limitations of Learning by Interaction

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010 

Crusher robot



Imitation Learning (a.k.a. Learning from Demonstrations)

kinesthetic imitation

•The teacher takes over the end-
effectors of the agent.


•Demonstrated actions are in the action 
space of the imitator and can be 
imitated directly)


The actions of the teacher need to be 
inferred from visual sensory input and 
mapped to the action space of the 
agent. 

Two challenges:

1) visual understanding

2) action mapping, especially when the 

agent and the teacher do not have 
the same action space

visual imitation

(later lecture) this lecture
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Imitation learning VS Sequence labelling
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• In RL, our actions will 
influence our future state, 
and thus our future data. 


• In sequence labelling, our 
labels won’t influence the 
future frames.




• Assume action labels in an annotated  video are i.i.d. (independent and identically 
distributed).


• Train a classifier to map observations to labels at each time step of the trajectory

Video sequence labelling

ot

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learningyt

fθ(yt |ot)

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data
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learning

“picking up chicken A”

Action labelling: a mapping from states/observations to action labels

fθ(yt |ot)



Policy: a mapping from observations to actions
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• Assume actions in the expert trajectories are i.i.d. (independent and identically 
distributed)


• Train a function to map observations/states to actions at each time step of the 
trajectory



Imitation learning - Challenges

• Compounding errors

Fix: data augmentation


• Non-Markovian observations

Fix: observation concatenation or recurrent models


• Lack of generalization 

Fix: Self-supervised visual feature learning 

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA
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• Compounding errors

Fix: data augmentation

Imitation learning - Challenges



Independent in time errors

error at time t with probability ε

E[Total errors] ≲ εT, T the length of the trajectory  

This means that at each time step t, the agent wakes up on a state drawn from the state 
distribution of the expert trajectories, and executes an action. 



Compounding Errors

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011 

error at time t with probability ε


E[Total errors] ≲ ε(T + (T-1) + (T-2) + …+ 1) ∝ εT2 

This means that at each time step t, the agent wakes up on a state drawn from the state 
distribution resulting from executing the action the learned policy suggested in the 
previous time step. 



Distribution mismatch (distribution shift)

4 CHAPTER 1. INTRODUCTION

Expert trajectory
Learned Policy

No data on 
how to recover

Figure 1.1: Mismatch between the distribution of training and test inputs in a driving
scenario.

many state-of-the-art software system that we use everyday. Systems based on super-

vised learning already translate our documents, recommend what we should read (Yue

and Guestrin, 2011), watch (Toscher et al., 2009) or buy, read our handwriting (Daumé

III et al., 2009) and filter spam from our emails (Weinberger et al., 2009), just to name a

few. Many subfields of artificial intelligence, such as natural language processing (the un-

derstanding of natural language by computers) and computer vision (the understanding

of visual input by computers), now deeply integrate machine learning.

Despite this widespread proliferation and success of machine learning in various fields

and applications, machine learning has had a much more limited success when applied

in control applications, e.g. learning to drive from demonstrations by human drivers.

One of the main reason behind this limited success is that control problems exhibit

fundamentally di↵erent issues that are not typically addressed by standard supervised

learning techniques.

In particular, much of the theory and algorithms for supervised learning are based on

the fundamental assumption that inputs/observations perceived by the predictor to make

its predictions are independent and always coming from the same underlying distribution

during both training and testing (Hastie et al., 2001). This ensures that after seeing

enough training examples, we will be able to predict well on new examples (at least

in expectation). However, this assumption is clearly violated in control tasks as these

are inherently dynamic and sequential : one must perform a sequence of actions over

time that have consequences on future inputs or observations of the system, to achieve a

goal or successfully perform the task. As predicting actions to execute influence future

inputs, this can lead to a large mismatch between the inputs observed under training

demonstrations, and those observed during test executions of the learned behavior. This

is illustrated schematically in Figure 1.1.

This problem has been observed in previous work. Pomerleau (1989), who trained a

Pπ*(ot) ≠ Pπθ
(ot)



supervised learning supervised learning + 
control (NAIVE)

train (x,y) ~ D

test (x,y) ~ D

Supervised learning succeeds when training and test data distributions match, 
that is a fundamental assumption.

Distribution mismatch (distribution shift)

ot ∼ Pπ*(ot)

ot ∼ Pπθ
(ot)



Change  by augmenting the expert demonstration trajectories.

This means: add examples in expert demonstration trajectories to cover the 
states/observations points where the agent will land when trying out its own 
policy. How?


1. By generating synthetic data in simulation 

2. By collecting additional data via clever hardware

3. By interactively querying the experts in additional datapoints

Pπ*(ot)

Solution: data augmentations
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Demonstration Augmentation: ALVINN 1989



Demonstration Augmentation: ALVINN 1989

“In addition, the network must not solely be shown examples 
of accurate driving, but also how to recover (i.e. return to the 
road center) once a mistake has been made. Partial initial 
training on a variety of simulated road images should help 
eliminate these difficulties and facilitate better performance.”

ALVINN: An autonomous Land vehicle in a neural 
Network”, Pomerleau 1989



Demonstration Augmentation: ALVINN 1989

• Use of image simulator to generate images of how the road looks like 
when the vehicle deviates slightly from its trajectory.


• Simulating the images too longer than training the network



Change  by augmenting the expert demonstration trajectories.

Add examples in expert demonstration trajectories to cover the states/
observations points where the agent will land when trying out its own policy. 
How?


1. By generating synthetic data in simulation 

2. By collecting additional data via clever hardware

3. By interactively querying the experts in additional datapoints

Pπ*(ot)

Solution: data augmentations



Learning to Drive a Car: Supervised Learning 

End to End Learning for Self-Driving Cars, NVIDIA, 2016



Demonstration Augmentation: NVIDIA 2016

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous Land 
Vehicle in a Neural Network (ALVINN) system. Training with data from only the human driver is not 
sufficient. The network must learn how to recover from mistakes. …” 

 
End to End Learning for Self-Driving Cars , Bojarski et al. 2016


Why did that work?

Bojarski et al. ‘16, NVIDIA

Additional, left and right cameras 
with automatic grant-truth labels 
to recover from mistakes



Data Augmentation (2): NVIDIA 2016

add Nvidia video

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous Land Vehicle in a Neural 
Network (ALVINN) system. Training with data from only the human driver is not sufficient. The network must learn how to recover 
from mistakes. …”, End to End Learning for Self-Driving Cars , Bojarski et al. 2016




Data Augmentation (3): Trails 2015

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots. Giusti et al.
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A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots. Giusti et al.
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Learning to Race a Car : Interactive learning-DAGGer
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Learning to Race a Car : Interactive learning-DAGGer

This assumes you can actively access an expert during training!

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning 
Stephane Ross, Geoffrey J. Gordon, J. Andrew Bagnell


https://arxiv.org/find/cs/1/au:+Ross_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Gordon_G/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Bagnell_J/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Ross_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Gordon_G/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Bagnell_J/0/1/0/all/0/1


Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer by 
labelling additional data points resulting from applying the current policy.

DAGGER (in simulation)

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011 

3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 69

Execute current policy and Query Expert 
New Data 

Supervised Learning 

All previous data 
Aggregate 
Dataset 

Steering 
from expert 

New 
Policy 

Figure 3.5: Depiction of the DAGGER procedure for imitation learning in a driving
scenario.

Test 
Execu*on 

Collect 
Data 

No‐Regret 
Online Learner 

Expert 

Learned  
Policy Done? 

yes  no 
iπ̂

Best 
Policy 

iπ̂

e.g. Gradient 
Descent 

Figure 3.6: Diagram of the DAGGER algorithm with a general online learner for imita-
tion learning.

policies, with relatively few data points, may make many more mistakes and visit states

that are irrelevant as the policy improves. We will typically use �1 = 1 so that we do

not have to specify an initial policy ⇡̂1 before getting data from the expert’s behavior.

Then we could choose �i = pi�1 to have a probability of using the expert that decays

exponentially as in SMILE and SEARN. The only requirement is that {�i} be a sequence

such that �N = 1
N

P
N

i=1 �i ! 0 as N ! 1. The simple, parameter-free version of the



Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer by (asking 
human experts to provide) labelling additional data points resulting from applying the 
current policy

1. Train  from human data 

2. Run   to get dataset 

3. Ask human to label  with actions  

4. Aggregate: 

5. GOTO step 1.

πθ(ut |ot) 𝒟π* = {o1, u1, . . . oN, uN}
πθ(ut |ot) 𝒟π = {o1, . . . , oM}

𝒟π ut
𝒟π* ← 𝒟π* ∪ 𝒟π

DAGGER (in simulation)

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011 

Problems:

• execute an unsafe/partially trained policy
• repeatedly query the expert
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Application on drones: given RGB from the drone camera predict steering angles

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013 

DAGGER (on a real platform)



Application on drones : given RGB from the drone camera predict steering angle

Caveats:

1. It is hard for the expert to provide the right magnitude for the turn without 

feedback of his own actions! Solution: provide him with visual feedback


Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013 

DAGGER (on a real platform)



Caveats:

1. Is hard for the expert to provide the right magnitude for the turn without feedback of his own 
actions! Solution: provide him with his visual feedback


2. The expert’s reaction time to the drone’s behavior is large, this causes imperfect actions to be 
commanded. Solution: play-back in slow motion offline and record their actions.


3. Executing an imperfect policy causes accidents, crashes into obstacles. Solution: safety measures 
which make again the data distribution matching imperfect between train and test, but good 
enough..


DAGGER (on a real platform)

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013 

•Experts do not need to be humans. 

•Machinery that we develop in this lecture can be used for imitati

titi



•Imitatiti
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End to End Learning for Self-Driving Cars, Bojarski et al. 2016

• Non-markovian observations

Fix: observation concatenation or recurrent models

Imitation learning - Challenges



A stochastic process has the Markov property if the conditional probability 
distribution of future states of the process (conditional on both past and present states) 
depends only upon the present state, not on the sequence of events that preceded it

Markov property

P[Rt+1 = r, St+1 = s0|S0, A0, R1, ..., St�1, At�1, Rt, St, At] = P[Rt+1 = r, St+1 = s0|St, At]

   for all  and all histories
s′￼∈ 𝒮, r ∈ ℛ



Why might we fail to fit the expert?

1. Non-Markovian behavior
2. Multimodal behavior

behavior depends only 
on current observation

If we see the same thing 
twice, we do the same thing 
twice, regardless of what 
happened before

Often very unnatural for 
human demonstrators

behavior depends on 
all past observations

Non-markovian observationsImitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

utut



How can we use the whole history?

variable number of frames, 
too many weights

Fix 1: concatenate observations



How can we use the whole history?

RNN state

RNN state

RNN state

shared weights

Typically, LSTM cells work better here

Fix 2: use recurrent networks

Diagram from Sergey Levine



• RNNs tie the weights at each time step

• Condition the neural network on all previous inputs

Recurrent Neural Networks (RNNs)
Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

Diagram from Richard Socher



Given list of vectors:

At a single time step:

Recurrent Neural Network (single hidden layer)Recurrent	Neural	Network	language	model

4/21/16Richard	Socher10

Given	list	of	word	vectors:

At	a	single	time	step:

xt ht

ßà

x1, ..., xt�1, xt, xt+1, ..., xT

ht = �
�
W (hh)ht�1 +W (hx)x[t]

�

ŷt = softmax
�
W (S)ht

�

(in case of discrete labels)

Diagram from Richard Socher
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ŷt = softmax
�
W (S)ht

�

(in case of discrete labels)

Diagram from Richard Socher



• Usually much more structure is needed in the latent state than a vanilla LSTM can 
provide, e.g., detections and trackless of objects.


• We will discuss later in the course structured recurrent neural networks for video 
perception.  

Fix 2: use recurrent networks



Learning by Cheating

DAGGER: from a privileged teaching agent to an agent that 
drives from images.

privileged agent sensorimotor agent



Privileged Agent cheats: drives with 
the internal state of the simulator

it predicts future waypoints for the car to follow



Sensorimotor Agent drives from images

it predicts future waypoints for the car to follow



Waypoints are translated to steering 
commands with a low-level controller



Learning by Cheating

DAGGER: from a privileged teaching agent to an agent that 
drives from images.

trained with imitation learning 
from human experts  

trained with imitation learning 
from the privileged agent  

privileged agent sensorimotor agent



But why learning from simplified input 
helps?

It is the same supervised learning problem!



The privileged agent can augment its data!



Results

- high level 
command
- controller error
- lack of temporal 
reasoning


