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Limitations of Learning by Interaction

e The agent should have the chance to try (and fail) MANY times

e This is hard when safety is a concern: we cannot afford to fail

e This is also quite hard in general in real life where each interaction takes time (in
contrast to simulation)

Crusher robot




Imitation Lea rning (a.k.a. Learning from Demonstrations)

visual imitation kinesthetic imitation

The actions of the teacher need to be e The teacher takes over the end-
inferred from visual sensory input and effectors of the agent.
mapped to the action space of the e Demonstrated actions are in the action

agent. space of the imitator and can be

Two challenges: imitated directly)
1) visual understanding

2) action mapping, especially when the
agent and the teacher do not have
the same action space

(later lecture) this lecture
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Imitation learning VS Sequence labelling

Imitation learning

Training data:

1,1 1,1 1 1
01,“1,02,”2,03,“3,--0-

2.2 ,2 2 2 2
07, Ui, 05, Uy, 03, U3, . ...

3 3.3 .,3 3.3
O1,U;,05,,U5,03,Us,....

u, :the action at time t 0, :the observation attime t X, :the state at time t

Sequence labelling
- i Training data:

1,1 1 1 1 1
015Y1205,Y7503, V35 -

2.2 ,2.2 2 .2
01> Y1505, Y5503, Vis - v - -

= BONOOM w "

3,3 .,3,3 ,3.3
01,y1,02,y2,03,y3,....

X1 X2

¥, - which product was purchased at frame t (if any) 0, :the observation at timet X, :the state at time t



Imitation learning VS Sequence labelling

Imitation learning

Training data:

1,1 1,1 1 1
01,”1,02,”2,03,“3,-.0-

2.2 ,2 2 2 2
07, Ui, 05, Uy, 03, U3, . ...

3 3.3 .,3 3.3
O1,U;,05,,U5,03,Us,....

u, :the action at time t 0, :the observation attime t X, :the state at time t

Sequence labelling
Training data:

ADDAPOP OF PROTEINTOYOURMEAL  BEEF  CHICKEN TOFU ADD A POP OF PROTEIN TO YOUR HEAL BEEF  CHICKEN  TOFU
i R s 4 1

1ol 11 1l
;"' @mgggﬁf-%’ ) ":,“““.h!-«-.. A= %;, ‘i =2 01,y1,02,y2,03,y3,....

2.2 ,2.2 2 .2
01> Y1505, Y5503, Vis - v - -

- ’ 3.3 3.3 3.3

¥, - which product was purchased at frame t (if any) 0, :the observation at timet X, :the state at time t




Imitation learning VS Sequence labelling

Imitation learning

e |In RL, our actions will
influence our future state,
and thus our future data.

* |In sequence labelling, our
labels won'’t influence the
future frames.

u, :the action at time t 0, :the observation attime t X, :the stat

Sequence labelling
= i Training data:

T AR OF PROTEN TOYOUR AL BEF CHEKEN TORY T oo o T YR AL BEF CHEKEN TORD
1,10 1 1 1 1
013150557503, V350 -
2.2 52,2 52,2
01,15055Y7,03, Y35« -«

3,3 .,3,3 ,3.3
01,y1,02,y2,03,y3 .....

3 2 )

¥, - which product was purchased at frame t (if any)



Video sequence labelling

Action labelling: a mapping from states/observations to action labels
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e Assume action labels in an annotated video are i.i.d. (independent and identically
distributed).
* Train a classifier to map observations to labels at each time step of the trajectory
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Imitation Learning

Policy: a mapping from observations to actions

e Assume actions in the expert trajectories are i.i.d. (independent and identically
distributed)

e Train a function to map observations/states to actions at each time step of the
trajectory

training supervised

| : We(ut\ot)
et earning




Imitation learning - Challenges

e Compounding errors
Fix: data augmentation

e Non-Markovian observations
Fix: observation concatenation or recurrent models

o Lack of generalization
Fix: Self-supervised visual feature learning

training superv.lsed
data learning

7T(9(ut|0t>
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Imitation learning - Challenges

« Compounding errors
Fix: data augmentation

training supervised

| . W@(ut\Ot)
data earning



Independent in time errors

This means that at each time step t, the agent wakes up on a state drawn from the state
distribution of the expert trajectories, and executes an action.

error at time t with probabillity €

E[Total errors] = €T, T the length of the trajectory



Compounding Errors

This means that at each time step t, the agent wakes up on a state drawn from the state
distribution resulting from executing the action the learned policy suggested in the
previous time step.

error at time t with probabillity €

E[Total errors] = (T + (T-1) + (T-2) + ...+ 1) X £T2

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011



Distribution mismatch (distribution shift)
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Distribution mismatch (distribution shift)

supervised learning +
control (NAIVE)

supervised learning

Supervised learning succeeds when training and test data distributions match,
that is a fundamental assumption.



Solution: data augmentations

Change P_.(0,) by augmenting the expert demonstration trajectories.

This means: add examples in expert demonstration trajectories to cover the
states/observations points where the agent will land when trying out its own
policy. How?

1. By generating synthetic data in simulation

2. By collecting additional data via clever hardware

3. By interactively querying the experts in additional datapoints



Solution: data augmentations

Change P_.(0,) by augmenting the expert demonstration trajectories.

Add examples in expert demonstration trajectories to cover the states/
observations points where the agent will land when trying out its own policy.
How?

1. By generating synthetic data in simulation



ALVINN 1989

Demonstration Augmentation
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Demonstration Augmentation: ALVINN 1989

“In addition, the network must not solely be shown examples
of accurate driving, but also how to recover (i.e. return to the
road center) once a mistake has been made. Partial initial
training on a variety of simulated road images should help
eliminate these difficulties and facilitate better performance.
ALVINN: An autonomous Land vehicle in a neural
Network” Pomerleau 1989

)



Demonstration Augmentation: ALVINN 1989

Real Road Image Simulated Road Image

e Use of image simulator to generate images of how the road looks like
when the vehicle deviates slightly from its trajectory.
* Simulating the images too longer than training the network



Solution: data augmentations

Change P_.(0,) by augmenting the expert demonstration trajectories.

Add examples in expert demonstration trajectories to cover the states/
observations points where the agent will land when trying out its own policy.
How?

2. By collecting additional data via clever hardware



Learning to Drive a Car: Supervised Learning

[ Left camera ] [Center camera} [Right camera}

Steering wheel angle
(via CAN bus)

External solid-state
drive for data storage

NVIDIA DRIVE™ PX

End to End Learning for Self-Driving Cars, NVIDIA, 2016



Demonstration Augmentation: NVIDIA 2016

Recorded
steering
wheel angle Adjust for shift Desired steering command
> and rotation
~ Network
Left camera computed
- steering
( ) » i command
Center camera ——# zigdg:)gtsigrlft el CNN
o - -.
Right camera f‘
Back propagation | Eror
weight adjustment

Additional, left and right cameras
with automatic grant-truth labels
to recover from mistakes
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Data Augmentation (2): NVIDIA 2016

DAVE 2 Driving a Lincoln

- A convolutional neural network

- Trained by human drivers

- Learns perception, path planning, and control
"pixel in, action out”

- Front-facing camera is the only sensor




Data Augmentation (3): Trails 2015

Deep Network Outputs
Neural
Network

[/
II| % Turn Go Turn

Left Straight Right

trail

Top view

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots. Giusti et al.



Data Augmentation (3): Trails 2015




Solution: data augmentations

Change P_.(0,) by augmenting the expert demonstration trajectories.

Add examples in expert demonstration trajectories to cover the states/
observations points where the agent will land when trying out its own policy.
How?

3. By interactively querying the experts in additional datapoints



Learning to Drive a Car: Supervised Learning

Expert Trajectories



Learning to Drive a Car: Supervised Learning

Expert Trajectories Dataset
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Learning to Drive a Car: Supervised Learning

Expert Trajectories Dataset

Learned - / .
Policy &t .’

Supervised Learning




Learning to Drive a Car: Supervised Learning

Expert Trajectories Dataset

Learned - / .
Policy &t .’

Supervised Learning




Learning to Drive a Car: Supervised Learning

Expert Trajectories Dataset

Learned - / .
Policy &t .’

Supervised Learning




Learning to Drive a Car: Supervised Learning

@(pert Trajectories Dataset

Learned - / .
Policy &t .’

Supervised Learning




Learning to Race a Car : Interactive learning-DAGGer

Execute &, and Query Expert
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Learning to Race a Car : Interactive learning-DAGGer

Execute i, and Query Expert
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Learning to Race a Car : Interactive learning-DAGGer

Execute i, and Query Expert
New Data
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Learning to Race a Car : Interactive learning-DAGGer

Execute _, and Query Expert
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Learning to Race a Car : Interactive learning-DAGGer

This assumes you can actively access an expert during training!

Execute i, and Query Expert
Steering —
from expert e @€ 'e\

oy

Aggregate
Dataset 4 )

All previous data

=
X _ o

- _/

Supervised Learning

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
Stephane Ross, Geoffrey J. Gordon, J. Andrew Bagnell


https://arxiv.org/find/cs/1/au:+Ross_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Gordon_G/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Bagnell_J/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Ross_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Gordon_G/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Bagnell_J/0/1/0/all/0/1

DAGGER (in simulation)

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer by
labelling additional data points resulting from applying the current policy.

Execute current policy and Query Expert

Steer New Data
teering
from expert k‘é '<'- \ @
m— 3
'A I
\
Aggregate
New ‘ Dataset All previous data
ol @ m=o

fzﬁé @

Supervised Learning

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011



DAGGER (in simulation)

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer by (asking
human experts to provide) labelling additional data points resulting from applying the

current policy

1. Train zy(u, | 0,) from human data D _. = {0, uy, . .. oy, Uy}
2.Run my(u,|o,) to get dataset _ = {0y, ...,0y,}

3. Ask human to label & with actions u,

4.Aggregate: D« — D . UD_

5.GOTO step 1.

Execute current policy and Query Expert

Steering
from expert é'é- \
k"

Y/
i{:&}(,g

New Data

~~
Problems: New ‘ et All previous data
o execute an unsafe/partially trained policy oy V « % )
» repeatedly query the expert /;T P =0

Supervised Learning

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011



DAGGER (on a real platform)

Application on drones: given RGB from the drone camera predict steering angles

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013



DAGGER (on a real platform)

Application on drones : given RGB from the drone camera predict steering angle

Caveats:

1. Itis hard for the expert to provide the right magnitude for the turn without
feedback of his own actions! Solution: provide him with visual feedback

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013



DAGGER (on a real platform)

e Experts do not need to be humans.

e Machinery that we develop in this lecture can be used for imitating expert
policies found through (easier) optimization in a constrained smaller part of the
state space.

e Imitation then means distilling knowledge of expert constrained policies into a
general policy that can do well in all scenarios the simpler policies do well.

T AAVFATAAT P AT AATTIATF PAASATFINIA T T7Y Y7 AAATFEAT T ATTTFFA A A A ATFTTEAT AT 7TFA A A A AT



Imitation learning - Challenges

e Non-markovian observations
Fix: observation concatenation or recurrent models

mo(u|oy)
training SUper\{ised o (1] or)
data learning

End to End Learning for Self-Driving Cars, Bojarski et al. 2016



Markov property

A stochastic process has the Markov property if the conditional probability
distribution of future states of the process (conditional on both past and present states)
depends only upon the present state, not on the sequence of events that preceded it

P[Rs11 =7, Si01 = §'|So, Ag, R1yoory St—1, Ar—1, Ry, Sty Ayl = P[Ryy1 =7, Sep1 = 8|Sy, Ay

foralls’ € &, r € & and all histories



Non-markovian observations

W@(ut‘ot)
W@(ut‘ot) 7T9(llt|01,...,0t)
behavior depends only behavior depends on

on current observation all past observations



Fix 1: concatenate observations
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Fix 2: use recurrent networks

\ \
\ N\ R
\ \\ \ \27 \ i \ \\“ \ .
NREEEA )
s|\ . S s 3[ g, | o
212‘\ ] B S 5¢/ ” - 'ﬁ: = 13 3I -~ 13 33qr = b X 3 RN N State
55 \ 384 \ 384 2

\ \\\ 256 3

\ SSSSSS \ ling poa:ling

224 {96 |
A

\ \

\ v\ N

\ N7 \ g \ \ 3
1{[ Y— \ | \ \
NN =t
2 (R TR X A RNN state
\ \ 384 \

\ \\ 256

\ \ ax Max

u\ Stride) 96 ooling pooling
\\ \

\
\ \
\\\\ bl Y \
| v

RNN state

Typically, LSTM cells work better here

Diagram from Sergey Levine



Recurrent Neural Networks (RNNSs)

« RNNs tie the weights at each time step
e Condition the neural network on all previous inputs
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Recurrent Neural Network (single hidden layer)

Given list of vectors:
. . LlyeergLp—1y Lty Ltt1yeees LT
At a single time step:

he = o(WH py 4 W ez,
gt — SOﬂ]maX(W(S) ht)

(in case of discrete labels)

© e
(t-1) 0 »@

g}

* | 0000]
o

3




Recurrent Neural Network (single hidden layer)

Given list of vectors:
. . LlyeergLp—1y Lty Ltt1yeees LT
At a single time step:

he = o(WH py 4 W ez,
gt — SOﬂ]maX(W(S) ht)

(in case of discrete labels)
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Fix 2: use recurrent networks

Videocore

HDMI

: LPCM
. 1080p 24Hz

e Usually much more structure is needed in the latent state than a vanilla LSTM can
provide, e.g., detections and trackless of objects.

e \We will discuss later in the course structured recurrent neural networks for video
perception.



Learning by Cheating

DAGGER: from a privileged teaching agent to an agent that
drives from images.

privileged agent sensorimotor agent
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Privileged Agent cheats: drives with
the internal state of the simulator

o

it predicts future waypoints for the car to follow



Sensorimotor Agent drives from images

it predicts future waypoints for the car to follow



Waypoints are translated to steering
commands with a low-level controller

Figure 4: Lateral PID controller.
Here the agent aims at the pro-
jection of the second waypoint
onto the fitted arc. s* denotes the
angle between the vehicle and
the target point p.



Learning by Cheating

DAGGER: from a privileged teaching agent to an agent that
drives from images.

privileged agent sensorimotor agent

trained with imitation learning  trained with imitation learning
from human experts from the privileged agent



But why learning from simplified input
helps?
It is the same supervised learning problem!



The privileged agent can augment its data!
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(a) Road map (b) Rotation and shift aug.

Figure 3: (a) Map M provided to the privileged agent.
One channel each for road ( ), lane boundaries
( ), vehicles (blue), pedestrians ( ), and traffic
lights (creen, , and red). The agent 1s centered

at the bottom of the map. The agent’s vehicle (dark
red) and predicted waypoints (purple) are shown for
visualization only and are not provided to the network.
(b) The map representation affords simple and effective
data augmentation via rotation and shifting.



Results
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- high level

command
- controller error
- lack of temporal

reasoning



