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Used Materials

e Disclaimer: Some material and slides for this lecture were borrowed
from Rich Sutton’s lecture on multi-armed bandits.



LL: Reinforcement Learning via Evolution
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Given an initial state distribution p(s,), estimate parameters 6 of a policy 7, so that,

the trajectories 7 sampled from this policy have maximum returns, i.e., sum of
rewards R(7).

max. U(0) = E,.,, |R@) | 75 (o)

T . trajectory, a sequence of state, action, rewards, a game fragment or a full
game:
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R(7) : reward of a trajectory: (discounted) sum of the rewards of the individual
state/actions T

R(z) = Z r,
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LL: Evolutionary methods for policy search

meax. ueo)==Et,., [R(T)‘”ea /40(50)]

General algorithm:
Initialize a population of parameter vectors (genotypes)
1. Make random perturbations (mutations) to each parameter vector
2. Evaluate the perturbed parameter vector (fitness)
3. Keep the perturbed vector if the result improves (selection)
4. GOTO 1

Simple and biologically plausible...



LL: Natural Evolutionary Strategies (NES)

e In CEM and CMA-ES, we have been selecting the best (elite) parameter
offsprings.

e NES considers every offspring.

Algorithm 1: Evolutionary Strategies

1. Input: Learning rate a, noise standard deviation o, initial policy parameters @,
2. fort = 0,1,2,--- do

3. Sampleey, -, ¢, ~ N(0,1))

4. Computereturns I; = F (,ut + 06) fori = 1,2,

5. Setyu, <—,ut+0(—ZF€
=1

6. end for




This lecture - Motivation

Learning to act in a non-sequential (single action) setups:
e Each action results in an immediate reward.

e We want to choose actions that maximize our immediate reward in
expectation.

e Q: Why in expectation?
e A: Because rewards are not deterministic.

* For example, displaying an advertisement can generate
different click rates in different days. Actions: the
advertisements to be displayed, Rewards: the user click rate.
We want to pick the advertisement that maximizes the click
rate on average



Multi-Armed Bandits

One-armed bandit= Slot machine (English slang)
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source: infoslotmachine.com



Multi-Armed Bandits

Multi-Armed bandit = Multiple Slot Machine




Multi-Armed Bandits

action
A

A, R\, At+19 R >, At+2’ At+3’ R, ..

The state does not change! (a.k.a. stateless)



Multi-Armed Bandit Problem

At each timestep ¢ the agent chooses one of the K arms and plays it.

The k th arm produces reward Tt when played at timestep 7.

The rewards r; , are drawn from a probability distribution & with mean 1 .

The agent does not know neither the full arm reward distributions neither their means.

Basehabenib:
Basehabenibe

Hi H2>

source: Pandey et al.’s slide

Agent’s Objective: viaximize cumuiauve rewadrus \Over a Hinite or HimiLe noriZon).

| can maximize cumulative rewards over a finite or infinite horizon if i just play the arm with
the highest mean reward y,each time. (butido not know those..)



Multi-Armed Bandit Problem

At each timestep 7 the agent chooses one of the K arms and plays it.

The k th arm produces reward Tt when played at timestep ¢ .

The rewards r, , are drawn from a probability distribution &, with mean .

The agent does not know neither the full arm reward distributions neither their
means.

Definition: The action-value for action a (here arm k) is its mean reward:

gx(a) = E|Ry|A; = a



The Exploration/Exploitation Dilemma

e Suppose you form estimates

Qt(a) ~ (x (Cl), Va action-value estimates



The Exploration/Exploitation Dilemma

e Suppose you form estimates
Qt(a) ~ (4 (a), Va action-value estimates
e Define the greedy action at time t as

A; = argmax Q;(a)



The Exploration/Exploitation Dilemma

e Suppose you form estimates
Qt(a) ~ (4 (a), Va action-value estimates
e Define the greedy action at time t as

A; = argmax Q;(a)

o If A, = A, * then you are exploiting
If A, # A,* then you are exploring



The Exploration/Exploitation Dilemma

e Suppose you form estimates
Qt(a) N (« (a), Va action-value estimates
e Define the greedy action at time t as
Aj = argmax Qy(a)

o If A, = A,* then you are exploiting
If A, # A,* then you are exploring

e You can’t do both, but you need to do both



The Exploration/Exploitation Dilemma

e Suppose you form estimates
Qt(a) ~ (4 (a), Va action-value estimates
e Define the greedy action at time t as
[ = arg max Qi (a)

o If A, = A,* then you are exploiting
If A, # A,* then you are exploring

e You can’t do both, but you need to do both

e You can never stop exploring, but maybe you should explore less with
time.



Exploration vs Exploitation Dilemma

e Online decision-making involves a fundamental choice:
e Exploitation: Make the best decision given current information
e Exploration: Gather more information

e The best long-term strategy may involve short-term sacrifices

e Gather enough information to make the best overall decisions



Exploration vs Exploitation Dilemma

e Online decision-making involves a fundamental choice:
e Exploitation: Make the best decision given current information

e Exploration: Gather more information

e The best long-term strategy may involve short-term sacrifices

e Gather enough information to make the best overall decisions

e The exploration/exploitation dilemma is not a problem encountered in
computational RL or deep RL: It is a fundamental problem in decision
making of any intelligent agent.



Exploration vs. Exploitation Dilemma

e Restaurant Selection
e Exploitation: Go to your favorite restaurant

e Exploration: Try a new restaurant

e Oil Drilling

e Exploitation: Drill at the best known location

e Exploration: Drill at a new location

e Game Playing

e Exploitation: Play the move you believe is best

e Exploration: Play an experimental move



Example: Bernoulli Bandits

Recall: The Bernoulli distribution is the discrete probability distribution of a random variable which takes the
value 1 with probability p and the value O with probability gq=1-p, that is, the probability distribution of any

single experiment that asks a yes-no question.

e Each action (arm when played) results in success or failure, rewards are binary.
e Mean reward for each arm represents the probability of success.

e Action (arm) k € {1...K} produces a success with probability 8, € [0,1].

Jackpot!!!

Jackpot!!!
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of time

of time of time



Real world motivation: content presentation

We have two variations of content of a webpage, A and B, and we want to
decide which one to display to engage more users.

e Two arm bandits: each arm corresponds to a content variation shown to users
not necessarily the same user).

e Reward: 1 if the user clicks, O otherwise.

e Mean reward (success probability) for each invitation: the click-through-rate,
the percentage of users that would click on it

OBAMA ® BIDEN OBAMA @ BIDEN

DINNER += BARACK DINNER == BARACK

Your chance to meet the President Your chance to meet the President

w: )

s e

DINNER == BARACK
( E )

You’re invited.

YOU’RE INVITED.

We'll cover your airfare.
WE'LL COVER YOUR AIRFAI

No purchase, payment, or contribution necessary to enter or win. Contributing will notimprove chances No purchase, payment, or contribution necessary to enter or win. Contributing will not improve chances of
winning. Void where prohibited. Entries must be received by September 20, 2012. You may enter by

winning. Void where prohibited. Entries must be received by September 20, 2012. You may enter by

to enter without contributing. Three winners will contributing to Obama Victory Fund 2012 here or click here to enter without contributing. Three winners will
each receive the following prize package: round-trip tickets for winner from within the fifty U.S. States, DC.

each receive the following prize package: round-trip tickets for winner from within the fifty U.S. States, DC.
or Puerto Rico to a destination to be determined by the Sponsor; hotel accommodations; and dinner with or Puerto Rico to a destination to be determined by the Sponsor; hotel accommodations; and dinner with

contributing to Obama Victory Fund 2012 h

e or click

President Obama on a date to be determined by the Sponsor (approximate retail value of all prizes

President Obama on a date to be determined by the Sponsor (approximate retail value of all prizes
$4,800). Odds of winning depend on number of entries received. Promotion open only to U.S. cit

ns, or
lawful permanent U S. residents who are legal residents of 50 United States, District of Columbia and
Puerto Rico and 18 or older (or age of majority under applicable law). Promotion subject to Official Rules
Official rules and additional restrictions on eligibilty. Sponsor: Obama for America, 130 E. Randolph St
Chicago, IL 60601

$4,800). Odds of winning depend on number of entries received. Promotion open only to U.S. citizens, or
lawful permanent U.S. residents who are legal residents of 50 United States, District of Columbia and
Puerto Rico and 18 or older (or age of majority under applicable law). Promotion subjectto Official Rules
Official rules and additional restrictions on eligibility. Sponsor: Obama for America, 130 E. Randolph St
Chicago, IL 60601

OBAMA © BIDEN OBAMA © BIDEN

Privacy Policy  Terms of Service Privacy Policy  Terms of Senvice
Contributions o gifts to Obama Victory Fund 2012 are nottax deductible.
PAID FOR BY OBAMAVICTORY FUND 2012, AJOINT FUNDRAISING COMMITTEE AUTHORIZED BY OBAMAFOR AMERICA, THE DEHO!

JOCRATIC NATIONAL COMMITTEE,
AND THE STATE DEMOCRATIC PARTIES IN THE FOLLOWING STATES: CO, FL, I3, NV, NH, NC, OH, PA, VA, AND W

Contributions or gifts to Obama Victory Fund 2012 are not tax deductible

FOR BY OBAMAVICTORY FUND 2012, AJOINT FUNDRAISING COMMITTEE AUTHORIZED BY OBAMAFOR AMERICA, THE DEMOC!
AND THE STATE DEMOCRATIC PARTIES IN THE FOLLO!

RATIC NATIONAL COMMITTEE.
NG STATES: CO, FL, I, NV, NH, NC, OH, PA, VA, AND W1

©2011- b: America. Al
©2011-2012 Obama for America. All Rights Reserved ©2011-2012 Obama for America. All Rights Reserved.




Real world motivation: NETFLIX artwork

For a particular movie, we want to decide what image to show (to all the
NEFLIX users)

e Actions: uploading one of the K images to a user’s home screen
e Reward: 1 if the user clicks and watches, 0 otherwise.

e Mean reward (success probability) for each image: the percentage of users
that clicked and watched (quality engagement, not clickbait)

THINGS

™

Netflix Artwork


https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76

Example: Gaussian Bandits

e Each action (arm when played) results in a real number.

e Action (arm) kK € {1...K} produces on average reward equal to the mean of its Gaussian distribution.

Reward 0
distribution

7 8 9 10

Action



Regret

e The action-value is the mean reward for action a,

Q*<a) = E[Rt’At — CL] ? Va € {17 s 7k}
e The optimal value is

v« = q(a*) = max g«(a)
aced

e The regret is the opportunity loss for one step. For an algorithm that
selects action a, at timestep t it reads:

It = E[vs — Q*(at)] reward = — regret

e The total regret is the total opportunity loss

T

LT = [ Z Vy — Q*(Clt)

| =1

e Maximize cumulative expected reward = minimize total regret



Regret

e The count N,(a): the number of times that action a has been selected
prior to time ¢

e The gap Aa is the difference in value between action a and optimal
action a.: A, = vi — g«(a)

e Regret is a function of gaps and the counts
T

LT = [k Z Vi — Q*(Clt)

| =1

- 2 E[N(a)](vs — g«(a))

aced

= ) E[N()]A,

acedf



Forming Action-Value Estimates

e To simplify notation, let us focus on one action

e \We consider only its rewards, and its estimate after n+1 rewards:
0, = Ri+Ro+---+ R,_1
o =

n—1
e How can we do this incrementally (without storing all the rewards)?

e Could store a running sum and count (and divide), or equivalently:

Quir = Qu+ —[Ru— Q.

e This is a standard form for learning/update rules:

NewEstimate < OldEstimate + StepSize [Target — OldEstimate}



Forming Action-Value Estimates

e To simplify notation, let us focus on one action

e \We consider only its rewards, and its estimate after n+1 rewards:
0, = Ri+Ro+---+ R,_1
o =

n—1
e How can we do this incrementally (without storing all the rewards)?

e Could store a running sum and count (and divide), or equivalently:

1
Qn—l—l — Qn + 5 [Rn — Qn]
e This is a standard form for learning/update rules: error

NewEstimate < OldEstimate + StepSize {Target — O]dEstimate}



Derivation of incremental update

n

Qn—|—1

Ry +Ry+-+ Ry

n—1
1 n
n 2Tt
1 n—1
g <Rn+;Ri>

<Rn—|—(nl)ni1nz:Ri)

1=1

(Rn +(n— 1)Qn)

(Rn +nQ, — Qn)

ot [Ra—Qu),

S|I—3I= 3|

QO




Non-stationary bandits

e Suppose the true action values change slowly over time
 then we say that the problem is nonstationary

e In this case, sample averages are not a good idea

e Why?



Non-stationary bandits

e Suppose the true action values change slowly over time
 then we say that the problem is nonstationary
e In this case, sample averages are not a good idea

e Better is an “exponential, recency-weighted average”:

Qn—l—l = Qn + [Rn _ Qn}
=(1—a)"Q1 + Za(l —a)" 'R,

1=1

where a € (0,1] and constant

The smaller the i, the smaller (1 — a)*~'-> forgetting earlier rewards



Action selection in multi-armed bandits



Fixed exploration period + Greedy

1. Allocate a fixed time period to exploration when you try bandits
uniformly at random

—1

2. Estimate mean rewards for all actions: Q,(a) = N @ Z r;1(A; = a)
A

3. Select the action that is optimal for the estimated mean rewards,

breaking ties at random: a, = argmax Q,(a)
acsd

4. GOTO 2



Fixed exploration period + Greedy

e After the fixed exploration period we have formed the following reward
estimates

Q1: Will the greedy method always pick the second action?
Q2: Can greedy lock onto a suboptimal action forever?
= Greedy has linear total regret



e-Greedy Action Selection

e In greedy action selection, you always exploit

e In e-greedy, you are usually greedy, but with probability € you instead
pick an action at random (possibly the greedy action again)

e This is perhaps the simplest way to balance exploration and exploitation



e-Greedy Action Selection

A simple bandit algorithm

Initialize, for a = 1 to k:

Q(a) < 0
N(a) < 0

Repeat forever:
yon { arg max, Q(a) with probability 1 —e  (breaking ties randomly)
a random action with probability e
R < bandit(A)
N(A)+ N(A)+1
Q(A) — Q(A) + i [R - Q(A)]




e-Greedy Algorithm

e The e-greedy algorithm continues to explore forever
e With probability 1 - € select ¢, = argmax,c,0/(a)

e With probability € select a random action (independent of its Q
estimate)

e Constant € ensures minimum regret
€
I, > — E A,
Al

e = ¢-greedy has linear total regret



Counting Regret

greedy
e-greedy

Total regret |
decaying e-greedy

T R R N T N A N R A A
Time-steps

e If an algorithm forever explores it will have linear total regret

e If an algorithm never explores it will have linear total regret



Average reward for three algorithms

We sample 10 arm bandits ? »
. . . ] ax(5)
Instantiations: foward » i ]
distributon  ° "W 77(; B B B TG e .(10)
- @ ¥ | B W B
q« (CL) ~ N(O, 1) » "

Ry ~ N(Q* (a’)v 1)

IIIIIIIII
11111111111



Average reward for three algorithms

We sample 10 arm bandits

instantiations: T » 0
distributi ‘1’ n *:(2; o N 2 ) o P
q*(a)r\»?ﬁ(o,l) ; o®
R; ~ N(g«(a),1) .

IIIIIIIII
11111111111

1.5 _
e=0.
A A A
=001
. i1, MR
e = 0 (greedy)
Average
reward

0.5 =

0 | | | |

1 250 500 750 1000

Steps
Q: In the limit (after infinite number of steps), which method will result in the largest
average reward?



Optimal action for three algorithms

We sample 10 arm bandits g ) |
. . . 1 ax(5)
Instantiations: . » » 0
distribution ° W 77(; e N 7¢ -l (10)
(8)
g.(a) ~ N(0,1) .

Rt ~ N(Q* (a)v 1)

IIIIIIIII
11111111111

100% _
80% _
% 60% _

Optimal
action 40% _

€ =0 (greedy)

20% -

0%

—

| | | |
1 250 500 750 1000

Steps

Q: Which method will find the optimal action in the limit?



Optimal action for three algorithms

We sample 10 arm bandits .
instantiations: 1 » 0

Reward o BB ¥V W ¥W__ 1 B N B
distribution .(7)
q+(10)

(2
@ @(®)

g«(a) ~ N(0,1) )
Ry ~ N(g«(a),1) ®

IIIII
11111111111

100% _
80% _|
0/o 60% _
Optimal
action 40% _
€ = (0 (greedy)
20%
O% 1 | | | |
1 250 500 750 1000

Steps

Q: Does the performance of those methods depend on the initialization of the action
value estimates?



Optimistic Initialization
e Simple and practical ideas: initialise O(a) to a high value

e Update action value by incremental Monte-Carlo evaluation

e Starting with N(a) > 0,

0,(6) = 0ri(a) + Ea» (= s a))

just an incremental
estimate of sample mean,
including one 'hallucinated’

e Encourages systematic exploration early on initial optimistic value

e But optimistic greedy can still lock onto a suboptimal action if rewards
are stochastic.



Optimistic Initial Values

We initialize with the following reward estimates for Bernoulli bandits

Q: When it is possible that greedy action selection will not try out all the
actions?



Optimistic Initial Values

e Suppose we initialize the action values optimistically (Q(a) = 3), e.g.,

on the 10-armed testbed

%
Optimal
action

|||||||||
11111111111

100%
optimistic, greedy
80% — Q,=5,€=0
60% realistic, e-greedy
0,=0,€=0.1
40% —
20% —
0% | | | | |
200 400 600 800 1000

Steps



Achieving sub-linear total regret

We need to reason about uncertainty of our action value
estimates



1000 pulls, 1000 pulls, 10 pulls,
600 wins 400 wins 4 wins
Q t(a 1)=0.6 Q t(a 2)=0.4 Q t(a 1)=0.4

Repeat forever:
Ao ] argmaxg Q(a) with probability 1 —e  (breaking ties randomly)
a random action with probability e

Epsilon-greedy R  tandit(A)
N(A) «~ N(A)+1
Q(4) + Q(A) + xx [R - Q(4)]

The problem with using mean estimates is that we do not reason about
uncertainty of those estimates.

30

3 3 3
w N =
N

25+

20

probability density
=
w




Uncertainty guides Exploration

p(Q) |

e The more uncertain we are about an action-value
e The more important it is to explore that action

e |t could turn out to be the best action



Uncertainty guides Exploration

p(Q) |

e \We are then less uncertain about the value
e And more likely to pick another action

e Until we converge to the best action



Upper Confidence Bounds

e Estimate an upper confidence U.(a) for each action value

e Such that with high probability
g-(a) < Qfa) + Ufa)

Estimated Upper
Confidence

Estimated mean

e This upper confidence depends on the number of times action a has
been selected

e Small Ny(a) = large U.(a) (estimated value is uncertain)
e Large N(a) = small Uy(a) (estimated value is accurate)
e Select action maximizing Upper Confidence Bound (UCB)

a, = argmax . ,0/(a) + U/la)



Hoeffding's Inequality

Let X, ... X, be independent random variables in the range [0,1] with
E(X) = u. Then foru > 0,

1 —2u2n
—Z Zﬂ+u <

n =

1
I’l

Hoeffding's inequality provides an upper bound on the probability that the
sum of bounded independent random variables deviates from its expected
value by more than a certain amount.

sample mean

S e—2u2n

I} M
I/\


https://en.wikipedia.org/wiki/Upper_bound
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Independent_random_variables
https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Upper_bound
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Independent_random_variables
https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Expected_value

Hoeffding's Inequality

Let X, ... X, beindependent random variables in the range [0,1] with
E(X;) = u. Then foru > 0,

p( iX > u+u | <e2n
n = HTHp=e | made the margin to depend on

i=1 . .
the amount of interactions t

e We will apply Hoeffding's Inequality to the rgwards obtained from each
action (bandit) a:

P (Qt(d) > g(a) + Ut(a)> < ¢~ 2UlayNya)

e t: how many times | have played any action,

e N (a): how many times | have played action a in t interactions



Calculating Upper Confidence Bounds

e Pick a probability p that the value estimate deviates from its mean

e Now solve for U(a)

e—2Ut(a)2Nt(a) =p

U a) = \/ —logp
2N(a)

e Reduce pasweplaymore,eg.p=1t°c=4

e Ensures we select optimal actionast = «




Upper Confidence Bound (UCB)

e A clever way of reducing exploration over time
e Estimate an upper bound on the true action values

e Select the action with the largest (estimated) upper bound

a N¢(a)

) —
Ay = argmax | Q¢(a) + c\/ 08

e cis a hyper-parameter that trades-off explore/exploit

e the confidence bound grows with the total number of actions we have
taken t but shrinks with the number of times we have tried this particular

action N(a). This ensures each action is tried infinitely often but still
balances exploration and exploitation.

UCB1: Auer, Cesa-bianchi, and Fischer, Finite-time analysis of the multiarmed bandit problem, 2002



Upper Confidence Bound (UCB)

e A clever way of reducing exploration over time
e Estimate an upper bound on the true action values

e Select the action with the largest (estimated) upper bound

' logt
Ay = argmax [Q(a) + ¢
“ Ni(a)
15} UCB c=2 et ks
, NW:WJ}M\,WJMWMPW#NWWN’ﬁnﬁfrmwﬂw.h W et
rMW £-greedy € =0.1
Average «,f
reward

05}

L 1 : ;
250 500 750 1000

Steps

UCB1: Auer, Cesa-bianchi, and Fischer, Finite-time analysis of the multiarmed bandit problem, 2002



UCB1 Algorithm

» This leads to the UCB1 algorithm

2logt
ar = argmax Q(a) +
¢ = argmax Q(a) \/ N:(2)

The UCB algorithm achieves logarithmic asymptotic total regret

im L <8logt » A,

—o0
a|A;>0

UCB1: Auer, Cesa-bianchi, and Fischer, Finite-time analysis of the multiarmed bandit problem, 2002



Bayesian Bandits

e So far we have made no assumptions about the reward distributions.

e |n UCB we just considered some bounds on rewards

e Bayesian bandits exploit prior knowledge of rewards, p [R]

e They compute posterior distribution of rewards P [R ‘ ht]
ht — d1, N, ..., det—1, re—1

e Use posterior to guide exploration: we simply sample from the
posterior!



Bayesian learning for model parameters

Step 1: Givenndata, D = x; , = {Xx{, X5, ..., x, } write down the
expression for likelihood:

p(D|0)
Step 2: Specify a prior: p(60)

Step 3: Compute the posterior:

p(D|0)p(0)

0| D) =
p@|D) D)




Thompson Sampling

Represent a distribution for the mean reward of each bandit as opposed to
the mean reward estimate alone. At each timestep:

1. Sample from the mean reward distributions:

Hl ~ ﬁ(el)a éz ~ ﬁ(62)9 *t ek ~ ﬁ(ek)

2. Choose action a = arg max £yl r(a)]
a

3. Observe the reward.

4. Update the mean reward posterior distributions: p(6,), p(6,)---p(6,)

Q: why we use argmax in step 2 and we do not add any noise?



Bernoulli bandits - Prior

Let’s consider a Beta distribution prior over the mean rewards of the

Bernoulli bandits:

~ Dok + Br)

p(Ok)
a

The mean is
a+ f

- T(ax)T(Br)

0

ap—1

k

(1— Ok)ﬁ"_l

I'(n) =(n—1)!

The larger the a + f the more concentrated the distribution

Beta(a, )

PDF

2.5

15 F

0.5

| a=p=05 —
a=5pf=1 —
am1fm3 —
a=2B=2 —
a=2B=5 —

l

0 0.2 0.4 0.6

0.8 1



Bernoulli bandits-Posterior

Let’s consider a Beta distribution prior over the mean rewards of the
Bernoulli bandits:

I'(ar + Br)
I'(ar)T'(Br)

p(6i) = 0 (1 0P D(n) = (n— 1)

The posterior is also a Beta. Because beta is conjugate distribution for the
Bernoulli distribution.

A closed form solution for the bayesian update, possible only for conjugate
distributions.

(Qk, Br) if 2, # k
(akaﬁk)'}'('rt,l—'rt) iffEt — k.

(ak, Br) + {



Greedy VS Thompson for Bernoulli bandits

Algorithm 1 BernGreedy(K, a, () Algorithm 2 BernThompson(K, a, ()
1: fort=1,2,... do 1: fort=1,2,... do
2: #estimate model: 2: #sample model:
3: for k=1,...,K do 3: for k=1,...,K do
4: 0 ar /(o + Br) 4: Sample ) ~ beta(ag, k)
5: end for 5: end for
d. SUCCessS 6 6.
b: failure 7: #select and apply action: 7: #select and apply action:
8: Ty 4— argmax, ék 8: Ty ¢— argmax, ék
9: Apply x; and observe r; 9: Apply x; and observe r;
10: 10:
11: #update distribution: 11: #update distribution:

12: (Ckww Ba:t) A (awtaﬁxt)—i_(rta 1_Tt> 12: (@xta ﬁwt) A (&xtaﬁxt)+(rta l_rt)
13: end for 13: end for

30 . . : ; 30 T
— action 1 — action 1
— action 2 — action 2
— action 3 | — action 3 [

N
w
T
N
w

probability density
[ N
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Using uniform prior in [0,1] for the success probabilities
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Contextual Bandits (a.k.a Associative Search)

e A contextual bandit is a tuple (A, S, R)

e Ais a known set of k actions (or “arms”)
e & = [P[s] is an unknown distribution over states (or “contexts”)
o K{(r) = P[r|s,a]isan unknown probability distribution over rewards
e At each timet
e Environment generates state s, ~ &
e Agent selects action a, € <

e Environment generates reward r;, ~ 9??;

4

. The goal is to maximize cumulative reward Z v

=1



Real world motivation: Personalized NETFLIX artwork
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For a particular title and a particular user, we will use the contextual multi-
armed bandit formulation to decide what image to show per title per user

e Actions: uploading an image (available for this movie title) to a user’s
home screen

e Mean rewards (unknown): the % of NETFLIX users that will click on the
title and watch the movie

e Estimated mean rewards: the average click rate (+quality engagement,
not clickbait)

e Context (s) : user attributes, e.g., language preferences, gender of films
she has watched, time and day of the week, etc.

Netflix Artwork:https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76



https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76

Question: was there a train and test phase on our multi-
armed bandit algorithms?

No, the setup we explored was: given a set of K arms, how do we select
actions to minimize our cumulative regret.

Q: what would be the learning based equivalent of the multi-armed
bandit problem?

A:
e \We have a training set of N multi-armed bandit instantiations.
e Each K-armed bandit is one training example.

e The agent gets n number of interactions, and obtains a final reward (-
regret).

e The agent learns a policy —mapping from its set of actions taken thus
far and their outcomes, to a probability over what actions to try next

We wiill visit this setup in the meta-learning lecture.



