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Reinforcement Learning

Learning behaviours from rewards while interacting with the environment

agent

action
A¢

environment
Agent and environment interact at discrete time steps: t=0,1,2,3,...

Agent observes state at step7: S, €8
produces action at step t: A, € A(S,)
gets resulting reward: R, € R C R

and resulting next state: S,,, € §*
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Markovian States

e A state captures whatever information is available to the agent at step t
about its environment.

e The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations, memories etc.

e A state should summarize past sensations so as to retain all “essential”
information, i.e., it should have the Markov Property:
P [Rt+l =7,841 = 5|80 Aps Ry -5 8115 A5 Ry, St’At] =P [ 1 =104 =S |St’A]

forall s" € S, r € R, and all histories

e \We should be able to throw away the history once state is known



Rewards reflect goals

Rewards are scalar values provided by the environment to the agent that
indicate whether goals have been achieved, e.g., 1 if goal is achieved, O
otherwise, or -1 for overtime step the goal is not achieved

e Goals specify what the agent needs to achieve, not how to achieve it.

e The simplest and cheapest form of supervision, and surprisingly general:
All of what we mean by goals and purposes can be well thought of as the
maximization of the cumulative sum of a received scalar signal (reward):

r(s,a) = E[R,,|S,=s,A, = da]
Goal seeking behaviour, achieving purposes and expectations can be

formulated mathematically as maximizing expected cumulative sum of
scalar values...



The agent learns a Policy

Definition: A policy is a distribution over actions given states,
n(als) =Pr(A, =alS,=ys),Vt
* A policy fully defines the behavior of an agent
* The policy is stationary (time-independent)
* During learning, the agent changes his policy as a result of experience

Special case: deterministic policies

7(s) = the action taken with prob = 1 when S, = s



Example with few states: The recycling robot

= {high,low} r

search

(high) = {search, wa it} r._.. = expected no. of cans while waiting

= expected no. of cans while searching
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Q: what the robot will do depends on the number of cans he has
collected thus far?



Example with few states: The recycling robot

e At each step, robot has to decide whether it should (1) actively search

for a can, (2) wait for someone to bring it a can, or (3) go to home base
and recharge.

e Searching is better but runs down the battery; if runs out of power while
searching, has to be rescued (which is bad).

e Decisions made on basis of current energy level: high, low.

e Reward = number of cans collected



Example with many states: Tetris

Learning behaviours from rewards while interacting with the virtual
environment agent

reward

action
A

environment
Agent and environment interact at discrete time steps: t=0,1,2,3,...

Agent observes state at step7: S, €8
produces action at step t: A, € A(S,)
gets resulting reward: R, E R C R

t+1
and resulting next state: §_, € §T

t+1
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Policy search for Playing Tetris

e states: the board configuration and the falling piece (lots of states ~ 2*200)
e actions: translations and rotations of the piece
e rewards: scores we collect by cancelling rows, big negative reward when we loose.

action
Ag

IETEED'
1o |=imgnle] by ] i
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Our goal is to learn a policy that maximizes the score of the game in expectation.
e Q:what does ""in expectation” mean?

e A:both the agent’s policy and the environment can be stochastic. We thus need
to consider our average performance across environments and actions
selected.



Policy search for Playing Tetris

Policy: a mapping from states to actions

» Go right

Turn clockwise

Do nothing




Policy search for Playing Tetris: tabular policy

Policy: a tabular mapping from states to actions

N

» Go right

-
| I

Turn clockwise

Do nothing

/

If the number of state space was small, we could have an exhaustive
enumeration of states paired with the optimal action(s) to take provided
by a Master player.




Policy search for Playing Tetris

Imagine we simply ask an expert (Master) player what to do at each state
we encounter, and learn using supervised learning. We collect data for
one full month of him playing 24/7.

Q1: During the training period, could the agent see all states in Tertis, to
figure out what is the corresponding best action and create the table?

Al: No, there will always be states at test time that we have not visited at
training time, i.e., and we will not know what to do.

Q2: any solutions?



Policy search for Playing Tetris: function approximation

Policy: a functional mapping from states to actions, parametrized by
parameters &.

* n(als,0)
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In principal, we can represent actions to take for all states.
e Q1: Who is larger: the number of parameters or the number of states?

e Q2: Do we know how to act now on states that we didn’t see during
training?

e Q3: For states-action pairs that we have seen during training, will we get
them right?

e Q4: What are the properties that our function should have to generalize
well from seen to unseen states?



Policy search for Playing Tetris: function approximation

e Policy: a functional mapping from states to actions, parametrized by
parameters &.

n(als,0)
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e Our function should learn features that make two distinct states (in pixel
space) to be close in feature space when they share the same optimal
action. E.g., in our case, the color of the blocks is irrelevant, as well as
whether a configuration takes place to the right or to the left of the

screen.




Who will provide the features?

Human engineered features

Two choices:

1.The to capture the
state (board configuration). Then the model will learn to map those
hand-designed features to a distribution over actions, e.g., using a
linear model or shallow network as its functional form, and
Imitation or reinforcement learning as its learning objective.



Who will provide the features?

rag ' TAANS

Two choices:

2. The model will learn the features to capture the state (board
configuration) as the weight kernels of the different layers of the
deep neural network by mapping feature activations to a
distribution over actions and optimizing imitation or reinforcement
learning objectives. Feature discovery and classifier learning are not
separated.

n(als,0)




Reinforcement Learning

> 0

Given an initial state distribution p(s,), estimate parameters 6 of a policy 7, so that,

‘ n(als,0)
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the trajectories 7 sampled from this policy have maximum returns, i.e., sum of
rewards R(7).

max. U(0) = E,.,, |R@) | 75 (o)

T . trajectory, a sequence of state, action, rewards, a game fragment or a full
game:

T 1 S0, gy 1y S1s A1 T15 S35 Aoy Foy o o o Sy Ay T

R(7) : reward of a trajectory: (discounted) sum of the rewards of the individual
state/actions T

R(z) = Z r,

=1



Black-box policy optimization

Initialize the policy parameters @ randomly. Estimate the
returns of those
1.Perturb policy parameters, trajectories
2.Run the resulting policy, collect trajectories and run the policy and
evaluate their returns. collect trajectories

3.Promote the policy parameters that resulted in
trajectories that gave the largest return improvement. Improve the

policy

4.GOTO 1.

e No gradient information, no information regarding the structure of the
reward, that it is additive over states, that states are interconnected in a

particular way, and so on.



Evolutionary methods for policy search

meax. ueo)==Et,., [R(T)‘”ea /40(50)]

General algorithm:
Initialize a population of parameter vectors (genotypes)
1. Make random perturbations (mutations) to each parameter vector
2. Evaluate the perturbed parameter vector (fitness)
3. Keep the perturbed vector if the result improves (selection)
4. GOTO 1

Simple and biologically plausible...



Gaussian Density

Perhaps the most common probability density

1 )2
N(y‘[vl, O,2) _ \/ exp( (yzgg) )

271102

0” is the variance of the density and y is
the mean.



Multivariate Gaussian Density

Perhaps the most common probability density

1 1
(Y| u, ) T eXP( 2(y U) (y — pn)



Cross-entropy method (CEM)

e Policy parameters are sampled from a multivariate Gaussian distribution with a
diagonal covariance matrix.

¢ \We will update the mean and variances of the parameter elements towards
samples that have highest fitness scores.

Input: parameter space ©, number of parameter vectors n, proportion p < 1, noise n

Initialize: Set the parameter 1« = 0 and o = 1001 ([ is the identity matrix)

fork=1,2,...do
Generate a random sample of n parameter vectors {0;}7 1 ~ N (i, o*1)
For each 6;, play L games and calculate the average number of rows removed (score) by the controller
Select | pn| parameters with the highest score 01, ...,6],,

Update puand o2 u(j) = oy o421 6i(7) and 0®(j) = ooy 2V [0:(5) — n(4)]? +

Works embarrassingly well in low-dimensions, e.g., to search for a
linear policy over the 22 Bertsekas features for Tetris.



Covariance Matrix Adaptation (CMA-ES)

e Policy parameters are sampled from a multivariate Gaussian distribution
with a full covariance matrix.

e \WWe will update the mean and variances of the parameter elements
towards samples that have highest fitness scores.



Covariance Matrix Adaptation

« Sample

« Select elites

« Update mean

« Update covariance
* Iterate




Covariance Matrix Adaptation

« Sample

« Select elites

« Update mean

« Update covariance
* Iterate




Covariance Matrix Adaptation

« Sample

« Select elites

« Update mean

« Update covariance
* Iterate




Covariance Matrix Adaptation

« Sample

+ Select elites

« Update mean

« Update covariance
* Iterate




Covariance Matrix Adaptation

« Sample

+ Select elites

« Update mean

« Update covariance
* Iterate




Covariance Matrix Adaptation

« Sample

+ Select elites

« Update mean

» Update covariance
* Iterate
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Covariance Matrix Adaptation

« Sample

« Select elites

« Update mean

« Update covariance
* Iterate




Natural Evolutionary Strategies (NES)

e In CEM and CMA-ES, we have been selecting the best (elite) parameter
offsprings to update the parameter distribution.

e NES considers every offspring.



Natural Evolutionary Strategies

e Consider the parameters of our policy 8 € R4 follow a Gaussian distribution
with mean u € R and diaginal and fixed covariance matrix 021d 0 ~ Pﬂ(é’).

o Coal: mz;x. [EeNpﬂ(e)F(H), where fitness score F(0) = E__, ., R(7).



Natural Evolutionary Strategies

e Consider the parameters of our policy 8 € R4 follow a Gaussian distribution
with mean u € R and diaginal and fixed covariance matrix 021d 0 ~ Pﬂ(é’).

o Coal: mz;x. [EQNPﬂ@F(H), where fitness score F(0) =

WR(7).

T 1,850~ Ho(S

V,Eoop 0 [FO)] = V”JPM(Q)F(Q)dH



Natural Evolutionary Strategies

e Consider the parameters of our policy 8 € R4 follow a Gaussian distribution
with mean u € R and diaginal and fixed covariance matrix 021d 0 ~ Pﬂ(é’).
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Natural Evolutionary Strategies

e Consider the parameters of our policy 8 € R4 follow a Gaussian distribution
with mean u € R and diagonal and fixed covariance matrix 021d 0 ~ PM(H).

o Goal: melltx. [EQNPM(Q)F(Q), where fitness score F(0) = [ETNEQ,S()NMO(S)R(T).

V,Eo-p o) [F©O)] = vﬂjpﬂ(e)F(e)de
= pVﬂPﬂ(G)F(G)dé’

~ V,P,©0)
PUO)— o —F(O)d0

U




Natural Evolutionary Strategies

e Consider the parameters of our policy 8 € R4 follow a Gaussian distribution
with mean u € R and diagonal and fixed covariance matrix 021d 0 ~ PM(H).

o Goal: melltx. [EQNPM(Q)F(Q), where fitness score F(0) = [ETNEQ,S()NMO(S)R(T).

V,Eo-p o) [F©O)] = Vﬂ[Pﬂ(Q)F(Q)dQ
= pVﬂPﬂ(G)F(G)dé’
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Natural Evolutionary Strategies

e Consider the parameters of our policy 8 € R4 follow a Gaussian distribution
with mean u € R and diagonal and fixed covariance matrix 021d 0 ~ PM(H).

o Goal: melltx. [EQNPM(Q)F(Q), where fitness score F(0) = [ETNEQ,S()NMO(S)R(T).

V,Eo-p o) [F©O)] = vﬂjpﬂ(e)F(e)de
= pVﬂPﬂ(G)F(G)dé’

 V,P6)
= | PO F(O)0

U

— [Pﬂ(e) v log P,(0)F(0)do
= Epp 0 [Vﬂlog P.(O)F(®)

We approximate expectations by sampling!



Natural Evolutionary Strategies

e Consider the parameters of our policy 8 € R4 follow a Gaussian distribution
with mean u € R and diagonal and fixed covariance matrix 021d 0 ~ PM(H).

o Goal: mix' [EQNPM(Q)F(H), where fitness score F(0) = [ETNEQ,S()NMO(S)R(T).

V,Eo-p o) [F©O)] = Vﬂ[Pﬂ(Q)F(Q)dQ
= pVﬂPﬂ(G)F(Q)dé’

 V,P6)
= | PO F(O)0

U

— [Pﬂ(ﬁ) V,log P,(0)F(0)d0
= Epup 0 [Vﬂlog Pﬂ(Q)F(Q)]

1 N
) [Vﬂlog PO sy F(Gi)] 0; ~ P,(6)
i=1



Reminder: Sampling from a multivariate Gaussian

We want to generate samples 0, ~ PM(H) where P is the Gaussian distribution

with mean u € R and diagonal and fixed covariance matrix azld.

Imagine we have access to random vectors €; € R%, ¢; ~ /(0,1 )

0, = u + o¢
0, = u + oe,

The samples have the desired mean and variance



A concrete example

e Suppose 0 ~ PM(H) is a Gaussian distribution with mean u, and

covariance matrix ¢°1 .

logP (0) = — ”92_';4“2 + const
c

0—u
62

Vv, logP (0) =



A concrete example

e Suppose 0 ~ PM(H) is a Gaussian distribution with mean p, and

covariance matrix ¢°1 .

logP (0) = — ||92—,;4||2 + const
c

0—p
52
e We draw two parameter samples &,, 6,. For each sampled parameter

vector, we run the policy and obtain a set of trajectories, or a single
trajectory. Then:

Vv, logP (0) =

1 N
Eoeryoy | V102 POFO)| » 5 X [ Vulog PO, FO)

=1



A concrete example

e Suppose 0 ~ PM(H) is a Gaussian distribution with mean p, and

covariance matrix ¢°1 .

logP (0) = — ||92—,;4||2 + const
c

0—p
52

e We draw two parameter samples 6,, &,. For each sampled parameter vector,
we run the policy and obtain a set of trajectories, or a single trajectory. Then:

Vv, logP (0) =

1 N
Eo-p o) | Vulog Pﬂ(Q)F(Q)] v lvﬂlog PO,y F(@i)]

i=1

1

0, — u 6, — u
zle(Ql)l -

+ F(6,)

] , where F(0,) = R(z,), F(0,) = R(z,)

o2 o2

e Q:Can we simplify this expression more?



A concrete example

e Suppose 0 ~ PM(H) is a Gaussian distribution with mean p, and

covariance matrix ¢°1 .

logP (0) = — ||92—,;4||2 + const
c

0—p
52

e We draw two parameter samples 6,, &,. For each sampled parameter vector,
we run the policy and obtain a set of trajectories, or a single trajectory. Then:

Vv, logP (0) =

| N 0, = u + o¢
[EQNPM(Q) Vﬂlog PIM(Q)F(Q)] ~ N Z [V”I()g P”(Q) |(9=t9iF(9i)]

i=1

6, = u + oe,
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[F(Ql) ] , where F(0,) = R(z,), F(6,) = R(z,)
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A concrete example

e Suppose 0 ~ PM(H) is a Gaussian distribution with mean p, and

covariance matrix ¢°1 .
2
160 — ul

logP (0) = — + con

262
0—p
62

Vv, logP (0) =

St

e We draw two parameter samples 6,, &,. For each sampled parameter vector,
we run the policy and obtain a set of trajectories, or a single trajectory. Then:

1 N
Eo-p o) | Vulog Pﬂ(Q)F(Q)] v lvﬂlog PO,y F(@i)]

i=1

|
2

~ [F(Ql) + F(6,)

o2 o2

1
= [F(é’l)el + F(91)€2]

0 — 0 —

0, = u + o¢,

6, = u + oe,

] , where F(0,) = R(z,), F(0,) = R(z,)



Natural Evolutionary Strategies (NES)

e In CEM and CMA-ES, we have been selecting the best (elite) parameter
offsprings.

e NES considers every offspring.

Algorithm 1: Evolutionary Strategies

1. Input: Learning rate a, noise standard deviation o, initial policy parameters @,
2. fort = 0,1,2,--- do

3. Sampleey, -, ¢, ~ N(0,1))

4. Computereturns I; = F (,ut + 06) fori = 1,2,

5. Setyu, <—,ut+0(—ZF€
=1

6. end for




Compare the two update rules for the mean

n
04 . -
_ _ All offsprings participate
NES Pl = Hy Z F(0)¢;
=1
nelit « Sample
elitt } « Select elites
-ES- p— . L A— L e + Update mean
CMA-ES: //tt+1 T //tt + a Z Wl(gl //tt) . Ugd::z cof/aariance

* iterate
=1




Question: Can evolutionary methods scale?

e Evolutionary methods work well on relatively low-dimensional
problems (small number of parameter dimensions).

e Can they be used to optimize policies represented as neural
networks of thousands parameters?



Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Tim Salimans Jonathan Ho Xi Chen Szymon Sidor Ilya Sutskever
OpenAl

Algorithm 1: Evolutionary Strategies

1. Input: Learning rate a, noise standard deviation o, initial policy parameters 6,
2.fort = 0,1,2,--- do

3. Samplee¢y, - ~ H(0,1,)

4. Compute returns F.=F (,ut + O'€> fori = 1,2,

5. Setpu, <—,ut+a—ZF€

=1
6. end for

Main contribution: Parallelization with a need for tiny only cross-worker
communication




Distributed stochastic gradient descent

Every worker get a set of examples, and computes a gradient vector.

The master averages those gradient vectors.




Distributed stochastic gradient descent

Each worker sends v
orker 2
big gradient vectors
=— O —




Distributed Evolution

What need to be sent??




Distributed Evolution

Algorithm 1: Evolutionary Strategies

1. Input: Learning rate a, noise standard deviation o, initial policy parameters 6,
2.fort = 0,1,2,--- do

3. Samplee¢y, - ~ H(0,1,)

4. Compute returns F.=F (,ut + 06) fori = 1,2,

5. Setpu, <—,ut+a—ZF€
=1

6. end for




Distributed Evolution

MHHH
Worker 6 Worker 3
0 is big!

but 6 = 11+ o€

/'

Same for all workers

Only need seed of random number generator!



Distributed Evolution

Algorithm 2 Parallelized Evolution Strategies

1: Input: Learning rate «, noise standard deviation o,
initial policy parameters 6y

2: Initialize: n workers with known random seeds, and
initial parameters 6
3: fort =0,1,2,... do
4.  for each workeri =1,...,n do
5: Sample ¢; ~ N(0, )
6: Compute returns F; = F( K¢} o¢;)
7:  end for
8:  Send all scalar returns F; from each worker to every
other worker
9. foreach worker: =1,...,ndo
10: Reconstruct all perturbations €; for j = 1,...,n
11: Se@_l s Y Fye;
12:  end for
13: end for

[Salimans, Ho, Chen, Sutskever, 2017]



Distributed Evolution

Each worker
broadcasts W Worker 2
tiny scalars
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Distributed Evolution

Each worker
broadcasts Worker 2
tiny scalars

.......... b <

- 7.
L - /’ N\
Lot N

|
P v l C o
W A.’. / * .‘
/‘ '
’ |
’ |
|
v

/
/




Distributed Evolution

Each worker
broadcasts W Worker 2
tiny scalars
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Distributed Evolution Scales Very Well :-)

«— 18 cores, 657 minutes

Median time to solve (minutes)

102
10! 1440 cores, 10 minutes ———
102 103
Number of CPU cores

Figure 1. Time to reach a score of 6000 on 3D Humanoid with
different number of CPU cores. Experiments are repeated 7 times
and median time is reported.

Salimans, Ho, Chen, Sustskever. 2017



Conclusions

e ES performance much depends on the number of workers for high
dimensional problems.

e Smart trick to avoid a lot of communication between workers by
sending scalar rewards and sharing the random seeds. Easier to scale up.

e We should always make sure our method beats the ES baseline for the
same amount of resources.



