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Learning behaviours  from rewards while interac6ng with the environment

Reinforcement Learning
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Agent and environment interact at discrete time steps:  t = 0,1, 2,K
     Agent observes state at step t:    St ∈
     produces action at step t :   At ∈ (St )
     gets resulting reward:    Rt+1 ∈

     and resulting next state:  St+1 ∈

At
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SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)
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R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
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Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.
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• A state captures whatever informa6on is available to the agent at step t 
about its environment.  

• The state can include immediate “sensa6ons,” highly processed 
sensa6ons, and structures built up over 6me from sequences of 
sensa6ons, memories etc. 

• A state should summarize past sensa6ons so as to retain all “essen6al” 
informa6on, i.e., it should have the Markov Property: 

 

    for all  , and all histories 

• We should be able to throw away the history once state is known

P [Rt+1 = r, St+1 = s′ �|S0, A0, R1, …, St−1, At−1, Rt, St, At] = P [Rt+1 = r, St+1 = s′�|St, At]

s′ � ∈ S, r ∈ R

Markovian States



Rewards reflect goals
Rewards are scalar values provided by the environment to the agent that 
indicate whether goals have been achieved, e.g., 1 if goal is achieved, 0 
otherwise, or -1 for over6me step the goal is not achieved

r(s, a) = 𝔼[Rt+1 |St = s, At = a]

Goal seeking behaviour, achieving purposes and expecta6ons can be 
formulated mathema6cally as maximizing expected cumula6ve sum of 
scalar values…

• Goals specify what the agent needs to achieve, not how to achieve it. 

• The simplest and cheapest form of supervision, and surprisingly general: 
All of what we mean by goals and purposes can be well thought of as the 
maximiza6on of the cumula6ve sum of a received scalar signal (reward):



Definition: A policy is a distribution over actions given states, 
 
                                

• A policy fully defines the behavior of an agent
• The policy is stationary (time-independent)
• During learning, the agent changes his policy as a result of experience

Special case: deterministic policies

π(a |s) = Pr(At = a |St = s), ∀t

π(s) = the action taken with prob = 1 when St = s

The agent learns a Policy



= high,low{ }
(high) = search, wait{ }
(low) = search, wait,recharge{ }

rsearch =  expected no. of cans while searching
rwait =  expected no. of cans while waiting
                     rsearch > rwait
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3.6. MARKOV DECISION PROCESSES 59

s s0 a p(s0|s, a) r(s, a, s0)
high high search ↵ rsearch
high low search 1� ↵ rsearch
low high search 1� � �3
low low search � rsearch
high high wait 1 rwait
high low wait 0 rwait
low high wait 0 rwait
low low wait 1 rwait
low high recharge 1 0
low low recharge 0 0.

Table 3.1: Transition probabilities and expected rewards for the finite MDP
of the recycling robot example. There is a row for each possible combination
of current state, s, next state, s0, and action possible in the current state,
a 2 A(s).

is S = {high, low}. Let us call the possible decisions—the agent’s actions—
wait, search, and recharge. When the energy level is high, recharging would
always be foolish, so we do not include it in the action set for this state. The
agent’s action sets are

A(high) = {search, wait}
A(low) = {search, wait, recharge}.

If the energy level is high, then a period of active search can always be
completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability
↵ and reduces it to low with probability 1�↵. On the other hand, a period of
searching undertaken when the energy level is low leaves it low with probability
� and depletes the battery with probability 1��. In the latter case, the robot
must be rescued, and the battery is then recharged back to high. Each can
collected by the robot counts as a unit reward, whereas a reward of �3 results
whenever the robot has to be rescued. Let rsearch and rwait, with rsearch > rwait,
respectively denote the expected number of cans the robot will collect (and
hence the expected reward) while searching and while waiting. Finally, to keep
things simple, suppose that no cans can be collected during a run home for
recharging, and that no cans can be collected on a step in which the battery
is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite
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Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)
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w>x inner product of vectors, w>x =
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Q: what the robot will do depends on the number of cans he has 
collected thus far?

Example with few states: The recycling robot



• At each step, robot has to decide whether it should (1) ac6vely search 
for a can, (2) wait for someone to bring it a can, or (3) go to home base 
and recharge.  

• Searching is beUer but runs down the baUery; if runs out of power while 
searching, has to be rescued (which is bad). 

• Decisions made on basis of current energy level: high, low. 

• Reward = number of cans collected

Example with few states: The recycling robot



Learning behaviours  from rewards while interac6ng with the virtual 
environment

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Agent and environment interact at discrete time steps:  t = 0,1, 2,K
     Agent observes state at step t:    St ∈
     produces action at step t :   At ∈ (St )
     gets resulting reward:    Rt+1 ∈

     and resulting next state:  St+1 ∈

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3. . . . . .
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R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt
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44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent
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action
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reward
Rt

state
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Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.
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Example with many states: Tetris



Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

• states: the board configura6on and the falling piece (lots of states ~ 2^200) 
• ac/ons: transla6ons and rota6ons of the piece 
• rewards: scores we collect by cancelling rows, big nega6ve reward when we loose.  

Our goal is to learn a policy that maximizes the  score of the game in expecta*on. 
• Q: what does ``in expecta6on” mean? 
• A: both the agent’s policy and the environment can be stochas6c. We thus need 

to consider our average performance across environments and ac6ons 
selected.

Policy search for Playing Tetris



Go right

Turn clockwise

Do nothing

Policy search for Playing Tetris

Policy: a mapping from states to ac6ons



Go right

Turn clockwise

Do nothing

Policy search for Playing Tetris: tabular policy

Policy: a tabular mapping from states to ac6ons

If the number of state space was small, we could have an exhaus6ve 
enumera6on of states paired with the op6mal ac6on(s) to take provided 
by a Master player.  



Q1: During the training period, could the agent see all states in Ter6s, to 
figure out what is the corresponding best ac6on and create the table?

Policy search for Playing Tetris

A1: No, there will always be states at test 6me that we have not visited at 
training 6me, i.e., and we will not know what to do.

Q2: any solu6ons?

Imagine we simply ask an expert (Master) player what to do at each state 
we encounter, and learn using supervised learning. We collect data for 
one full month of him playing 24/7.



π(a |s, θ)

Policy: a func6onal mapping from states to ac6ons, parametrized by 
parameters θ .

Policy search for Playing Tetris: func6on approxima6on

In principal, we can represent ac6ons to take for all states. 

• Q1: Who is larger: the number of parameters or the number of states? 

• Q2: Do we know how to act now on states that we didn’t see during 
training? 

• Q3: For states-ac6on pairs that we have seen during training, will we get 
them right? 

• Q4: What are the proper6es that our func6on should have to generalize 
well from seen to unseen states? 



π(a |s, θ)

• Our func6on should learn features that make two dis6nct states (in pixel 
space) to be close in feature space when they share the same op6mal 
ac6on. E.g., in our case, the color of the blocks is irrelevant, as well as 
whether a configura6on takes place to the right or to the leg of the 
screen.

• Policy: a func6onal mapping from states to ac6ons, parametrized by 
parameters θ .

Policy search for Playing Tetris: func6on approxima6on



Who will provide the features?

Two choices: 
1.The engineer will manually define a set of features to capture the 

state (board configura6on). Then the model will learn to map those 
hand-designed features to a distribu6on over ac6ons, e.g., using a 
linear model or shallow network as its func6onal form, and 
imita6on or reinforcement learning as its learning objec6ve. 

π(a |s, θ)Human engineered features



Who will provide the features?

Two choices: 
2. The model will learn the features to capture the state (board 
configura6on) as the weight kernels of the different layers of the 
deep neural network by mapping feature ac6va6ons to a 
distribu6on over ac6ons and op6mizing imita6on or reinforcement 
learning objec6ves. Feature discovery and classifier learning are not 
separated. 

π(a |s, θ)



Reinforcement Learning

max
θ

. U(θ) = 𝔼τ∼πθ [R(τ) |πθ, μ0(s0)]

Given an initial state distribution , estimate parameters  of a policy  so that, 
the trajectories  sampled from this policy have maximum returns, i.e., sum of 
rewards .

μ0(s0) θ πθ
τ

R(τ)

π(a |s, θ)

τ : s0, a0, r0, s1, a1, r1, s2, a2, r2, . . . sT, aT, rT

 trajectory, a sequence of state, action, rewards, a game fragment or a full 
game:
τ :

R(τ) =
T

∑
t=1

rt

 reward of a trajectory: (discounted) sum of the rewards of the individual 
state/actions 
R(τ) :



Ini6alize the policy parameters  randomly. 

1.Perturb policy parameters,  

2.Run the resul6ng policy, collect trajectories and 
evaluate their returns. 

3.Promote the policy parameters that resulted in 
trajectories that gave the largest return improvement.  

4.GOTO 1.

θ

Value function based algorithms

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policyImprove the 
policy

run the policy and 
collect trajectories

Estimate the 
returns of those 

trajectories

• No gradient informa6on, no informa6on regarding the structure of the 
reward, that it is addi6ve over states, that states are interconnected in a 
par6cular way, and so on.

Black-box policy op6miza6on



Evolu6onary methods for policy search

max
θ

. U(θ) = 𝔼τ∼πθ [R(τ) |πθ, μ0(s0)]

General algorithm: 
Initialize a population of parameter vectors (genotypes)  
1. Make random perturbations (mutations) to each parameter vector 
2. Evaluate the perturbed parameter vector (fitness) 
3. Keep the perturbed vector if the result improves (selection) 
4. GOTO 1

Simple and biologically plausible…



Gaussian Density

N
⇣
y|µ, �2

⌘
=

1p
2⇡�2

exp
 
�(y � µ)2

2�2

!

�2 is the variance of the density and µ is
the mean.

Gaussian Density

Perhaps the most common probability density



Mul6variate Gaussian Density

𝒩(y |μ, Σ) =
1

(2π)k |Σ |
exp (−

1
2

(y − μ)⊤Σ−1(y − μ))

Perhaps the most common probability density



•Policy parameters are sampled from a mul6variate Gaussian distribu6on with a 
diagonal covariance matrix.  

•We will update the mean and variances of the parameter elements towards 
samples that have highest fitness scores.

Cross-entropy method (CEM)

Works embarrassingly well in low-dimensions, e.g., to search for a 
linear policy over  the 22 Bertsekas features for Tetris.



Covariance Matrix Adapta6on (CMA-ES)

•Policy parameters are sampled from a mul6variate Gaussian distribu6on 
with a full covariance matrix.  

•We will update the mean and variances of the parameter elements 
towards samples that have highest fitness scores.



• Body Level One               

• Body Level Two               

• Body Level Three               

• Body Level Four               

Body Level Five

Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

𝑚𝑖, 𝐶𝑖 

Covariance Matrix Adapta6on 

μi, Ci
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Body Level One               

Body Level Two               

Body Level Three               

Body Level Four               

Body Level Five

Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

Covariance Matrix Adapta6on 

μt+1 = μt + α
nelit

∑
i=1

wi(θelit,t
i − μt)

μt+1 =
nelit

∑
i=1

wiθelit,t
i



Body Level One               

Body Level Two               

Body Level Three               

Body Level Four               

Body Level Five

Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

Covariance Matrix Adapta6on 

Σt+1 = Cov(θelit,t
1 , θelit,t

2 , . . . ) + ϵI



Body Level One               

Body Level Two               

Body Level Three               

Body Level Four               

Body Level Five

Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

𝑚𝑖+1, 𝐶𝑖+1 

Covariance Matrix Adapta6on 

μi+1, Ci+1



• In CEM and CMA-ES, we have been selec6ng the best (elite) parameter 
offsprings to update the parameter distribu6on. 

• NES considers every offspring.

∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

Natural Evolu6onary Strategies (NES)



Natural Evolu6onary Strategies
• Consider the parameters of our policy  follow a  Gaussian distribu6on 

with mean  and diaginal and fixed covariance matrix  : . 

• Goal: , where fitness score . 
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∑
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F(θi)] θi ∼ Pμ(θ)

• Consider the parameters of our policy  follow a  Gaussian distribu6on 
with mean  and diagonal and fixed covariance matrix  : . 

• Goal: , where fitness score . 

θ ∈ ℝd

μ ∈ ℝd σ2Id θ ∼ Pμ(θ)

max .
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We want to generate samples  where P is the Gaussian distribu6on 
with mean  and diagonal and fixed covariance matrix . 

Imagine we have access to random vectors   

The  samples have the desired mean and variance

θi ∼ Pμ(θ)
μ ∈ ℝd σ2Id

ϵi ∈ ℝd, ϵi ∼ 𝒩(0,Id)

Reminder: Sampling from a mul6variate Gaussian

θ1 = μ + σϵ1

θ2 = μ + σϵ2



• Suppose  is a Gaussian distribu6on with mean , and 
covariance matrix .

θ ∼ Pμ(θ) μ
σ2Id

A concrete example

log Pμ(θ) = −
∥θ − μ∥2

2σ2
+ const

∇μlog Pμ(θ) =
θ − μ

σ2



• We draw two parameter samples . For each sampled parameter 
vector, we run the policy and obtain a set of trajectories, or a single 
trajectory. Then:

θ1, θ2

A concrete example

log Pμ(θ) = −
∥θ − μ∥2

2σ2
+ const

∇μlog Pμ(θ) =
θ − μ

σ2
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covariance matrix .

θ ∼ Pμ(θ) μ
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1
N

N

∑
i=1

[∇μlog Pμ(θ) |θ=θi
F(θi)]



• We draw two parameter samples . For each sampled parameter vector, 
we run the policy and obtain a set of trajectories, or a single trajectory. Then:
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A concrete example
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2σ2
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1
2 [F(θ1)

θ1 − μ
σ2

+ F(θ2)
θ2 − μ

σ2 ],  where F(θ1) = R(τ1), F(θ2) = R(τ2)

≈
1
N

N

∑
i=1

[∇μlog Pμ(θ) |θ=θi
F(θi)]

• Suppose  is a Gaussian distribu6on with mean , and 
covariance matrix .

θ ∼ Pμ(θ) μ
σ2Id

• Q:Can we simplify this expression more?
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[∇μlog Pμ(θ) |θ=θi
F(θi)]

• Suppose  is a Gaussian distribu6on with mean , and 
covariance matrix .

θ ∼ Pμ(θ) μ
σ2Id

θ1 = μ + σϵ1

θ2 = μ + σϵ2

=
1
2σ [F(θ1)ϵ1 + F(θ1)ϵ2]



• In CEM and CMA-ES, we have been selec6ng the best (elite) parameter 
offsprings. 

• NES considers every offspring.

∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

Natural Evolu6onary Strategies (NES)

Algorithm 1: Evolutionary Strategies 
1. Input: Learning rate , noise standard deviation , initial policy parameters  
2. for  do 
3.     Sample  
4.     Compute returns  for  

5.     Set  

6. end for

α σ θ0
t = 0,1,2,⋯

ϵ1, ⋯, ϵn ∼ 𝒩(0,Id)
Fi = F (μt + σϵi) i = 1,2,⋯, n

μt+1 ← μt + α
1

nσ

n

∑
i=1

Fiϵi



Compare the two update rules  for the mean

μt+1 = μt +
α
nσ

n

∑
i=1

F(θi)ϵi

μt+1 = μt + α
nelit

∑
i=1

wi(θelit,t
i − μt)

Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

All offsprings participate NES:

CMA-ES:



• Evolu6onary methods work well on rela6vely low-dimensional 
problems (small number of parameter dimensions). 

• Can they be used to op6mize policies represented as neural 
networks of thousands parameters?

Ques6on: Can evolu6onary methods scale?



Main contribution: Parallelization with a need for tiny only cross-worker 
communication 

μt
μtμt+1

Algorithm 1: Evolutionary Strategies 
1. Input: Learning rate , noise standard deviation , initial policy parameters  
2. for  do 
3.     Sample  
4.     Compute returns  for  

5.     Set  

6. end for

α σ θ0
t = 0,1,2,⋯

ϵ1, ⋯, ϵn ∼ 𝒩(0,Id)
Fi = F (μt + σϵi) i = 1,2,⋯, n

μt+1 ← μt + α
1

nσ

n

∑
i=1

Fiϵi



Distributed	Deep	Learning

Worker 6

Worker 1 Worker 2

Worker 3

Worker 5 Worker 4

Distributed stochas6c gradient descent
Every worker get a set of examples, and computes a gradient vector. 
The master averages those gradient vectors.



Distributed	Deep	Learning

Worker 6

Worker 1 Worker 2

Worker 3

Worker 5 Worker 4

Worker 6

Worker 1 Worker 2

Worker 3

Worker 5 Worker 4

ALL
REDUCE

Each	worker	sends	
big	gradient	vectors

Distributed stochas6c gradient descent



Distributed	Evolution

Worker 6

Worker 1 Worker 2

Worker 3

Worker 5 Worker 4

What	need	to	be	sent??

Distributed Evolu6on
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6. end for
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Fi = F (μt + σϵi) i = 1,2,⋯, n

μt+1 ← μt + α
1

nσ

n

∑
i=1

Fiϵi



Distributed	Evolution

Worker 6

Worker 1 Worker 2

Worker 3
θ and R(τ)?

θ is big!

✓ = µ+ �✏but

Same for all workers

Only need seed of random number generator!

Distributed Evolu6on



[Salimans,	Ho,	Chen,	Sutskever,	2017]

Scalability
Distributed Evolu6on

μtμt+1

μt



Distributed	Evolution

Worker 6

Worker 1 Worker 2

Worker 3

Worker 5 Worker 4

Each	worker	
broadcasts		
tiny	scalars

Distributed Evolu6on



Distributed	Evolution

Worker 6

Worker 1 Worker 2

Worker 3

Worker 5 Worker 4

Each	worker	
broadcasts		
tiny	scalars

Distributed Evolu6on



Distributed	Evolution

Worker 6

Worker 1 Worker 2

Worker 3

Worker 5 Worker 4

Each	worker	
broadcasts		
tiny	scalars

Distributed Evolu6on



[Salimans,	Ho,	Chen,	Sutskever,	2017]

Pro:	Scalability
Distributed Evolu6on Scales Very Well :-)

Salimans, Ho, Chen, Sustskever. 2017 



• ES performance much depends on the number of workers for high 
dimensional problems. 

• Smart trick to avoid a lot of communica6on between workers by 
sending scalar rewards and sharing the random seeds. Easier to scale up. 

• We should always make sure our method beats the ES baseline for the 
same amount of resources.

Conclusions


