
Learning from demonstrations and task
rewards, Off policy RL, Adversarial

Imitation learning

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon

School of Computer Science

Spring 2021, CMU 10-403

Pros

• Can much accelerate trial-and-error learning by suggesting good actions
to try

• Can help us train initial safe policies, to deploy in the real world

Cons

• Time consuming

• May include suboptimal, noise and diverse ways to perform the task

• When you imitate, you cannot surpass the “expert”.

Learning from demonstrations

Pros

• Cheap supervision

• Optimizes the right end task, as encoded in the task rewards

Cons

• Super sample inefficient - impossible to have in the real world right now

• Initial policy is random thus unsafe to deploy in the real world

Learning from task rewards

Goals

• More sample efficient that RL alone

• Good/safe initial performance

• Outperform the human expert

Challenges for kinesthetic demonstrations

• Handling expert sub optimality

Additional challenges for learning from video demonstrations

• requires visual perception

• requires handling mismatch between imitator and demonstrator action spaces

Learning from demonstrations and task rewards

Goals

• More sample efficient that RL

• Good/safe initial performance

• Outperform the human expert

Challenges for kinesthetic demonstrations

• Handling expert sub optimality

Additional challenges for learning from video demonstrations

• requires visual perception

• requires handling mismatch between imitator and demonstrator action spaces

Learning from demonstrations and task rewards

• Initialize the replay buffer with demos (which will be later either
removed, or kept forever) and start your model-free RL method

• Pre-train the model-free RL method (a policy and a consistent with it
value function) with a demonstration only buffer, then fine-tune it.

• Combine imitation and task rewards

• Exploit the temporal structure, and step progressively earlier and
earlier in time along a trajectory, to solve progressively longer horizon
tasks, as opposed to solving them at once.

Learning from demonstrations and task rewards

• Initialize the replay buffer with demos (which will be later either
removed, or kept forever) and start your model-free RL method

• Pre-train the model-free RL method (a policy and a consistent with it
value function) with a demonstration only buffer, then fine-tune it.

• Combine imitation and task rewards

• Exploit the temporal structure, and step progressively earlier and
earlier in time along a trajectory, to solve progressively longer horizon
tasks, as opposed to solving them at once.

Learning from demonstrations and task rewards

• RL on policy: methods that improve a policy that is used to collect the
data used for such improvement

• RL off policy: methods that improve a policy that is not the same with
the policy that collected the data used for such improvement. E.g., that
data can come from demonstrations!

On policy versus off policy training

• Off-policy RL learns from data collected under a behavioral policy
different than the current policy.

• In what we have seen thus far, “off-policy” transitions are generated
from earlier versions of the current policy.

• They are thus heavily correlated to the current policy.

• Not that much off-policy after all.

Off-policy RL seen so far

• Batch RL learns from a fixed experience buffer that does not grow with
data collected from a near on policy exploratory policy.

• This is truly off-policy RL.

• Q:Who could have provided such an experience buffer?

• A: A set of expert demonstrations.

Batch RL

• DDPG (behavioral): (what we have seen in the course) a DDPG policy based on which
actions are selected (with small exploration noise) and the experience buffer is populated.

• (Truly) Off-policy DDPG: a DDPG policy that uses experience tuples from the buffer, it
does not influence in any way the data collected in the buffer

• Final buffer: We train a DDPG agent for 1 million time
steps, adding N (0, 0.5) Gaussian noise to actions for high
exploration, and store all experienced transitions. This
collection procedure creates a dataset with a diverse set of
states and actions, with the aim of sufficient coverage.

• Concurrent: We concurrently train the off-policy and
behavioral DDPG agents, for 1 million time steps. To ensure
sufficient exploration, a standard N (0, 0.1) Gaussian noise is
added to actions taken by the behavioral policy. Each
transition experienced by the behavioral policy is stored in a
buffer replay, which both agents learn from. As a result,
both agents are trained with the identical dataset.

• Imitation: A trained DDPG agent acts as an expert, and is
used to collect a dataset of 1 million transitions, and
populates a buffer, from which the off policy agent learns.

Off-Policy Deep Reinforcement Learning without Exploration

• Final buffer: We train a DDPG agent for 1 million time
steps, adding N (0, 0.5) Gaussian noise to actions for high
exploration, and store all experienced transitions. This
collection procedure creates a dataset with a diverse set of
states and actions, with the aim of sufficient coverage.

• Concurrent: We concurrently train the off-policy and
behavioral DDPG agents, for 1 million time steps. To ensure
sufficient exploration, a standard N (0, 0.1) Gaussian noise is
added to actions taken by the behavioral policy. Each
transition experienced by the behavioral policy is stored in a
buffer replay, which both agents learn from. As a result,
both agents are trained with the identical dataset.

• Imitation: A trained DDPG agent acts as an expert, and is
used to collect a dataset of 1 million transitions, and
populates a buffer, from which the off policy agent learns.

• DDPG (behavioral): (what we have seen in the course) a DDPG policy based on which
actions are selected (with small exploration noise) and the experience buffer is populated.

• (Truly) Off-policy DDPG: a DDPG policy that uses experience tuples from the buffer, it
does not influence in any way the data collected in the buffer

Off-Policy Deep Reinforcement Learning without Exploration

Off-Policy Deep Reinforcement Learning without Exploration

Surprise!

Agenƚ orange and agenƚ blƵe are ƚrained ǁiƚh͙

1. The same off-policy algorithm (DDPG).

2. The same dataset.

Off-Policy Deep Reinforcement Learning without Exploration

The Difference?

1. Agent orange: Interacted with the environment.
• Standard RL loop.
• Collect data, store data in buffer, train, repeat.

2. Agent blue: Never interacted with the environment.
• Trained with data collected by agent orange concurrently.

Off-Policy Deep Reinforcement Learning without Exploration

1. Trained with the same off-policy algorithm.
2. Trained with the same dataset.
3. One interacts with the enǀironmenƚ͘ One doeƐn͛ƚ.

Off-Policy Deep Reinforcement Learning without Exploration

Off-policy deep RL fails when truly off-policy.

why?

Off-Policy Deep Reinforcement Learning without Exploration

• Final buffer: We train a DDPG agent for 1 million time
steps, adding N (0, 0.5) Gaussian noise to actions for high
exploration, and store all experienced transitions. This
collection procedure creates a dataset with a diverse set of
states and actions, with the aim of sufficient coverage.

• Concurrent: We concurrently train the off-policy and
behavioral DDPG agents, for 1 million time steps. To ensure
sufficient exploration, a standard N (0, 0.1) Gaussian noise is
added to actions taken by the behavioral policy. Each
transition experienced by the behavioral policy is stored in a
buffer replay, which both agents learn from. As a result,
both agents are trained with the identical dataset.

• Imitation: A trained DDPG agent acts as an expert, and is
used to collect a dataset of 1 million transitions, and
populates a buffer, from which the off policy agent learns.

• DDPG (behavioral): (what we have seen in the course) a DDPG policy based on which
actions are selected (with small exploration noise) and the experience buffer is populated.

• (Truly) Off-policy DDPG: a DDPG policy that uses experience tuples from the buffer, it
does not influence in any way the data collected in the buffer

Off-Policy Deep Reinforcement Learning without Exploration

The Q value estimates are higher than their GT values

• DDPG (behavioral): (what we have seen in the course) a DDPG policy based on which
actions are selected (with small exploration noise) and the experience buffer is populated.

• (Truly) Off-policy DDPG: a DDPG policy that uses experience tuples from the buffer, it
does not influence in any way the data collected in the buffer

• Final buffer: We train a DDPG agent for 1 million time
steps, adding N (0, 0.5) Gaussian noise to actions for high
exploration, and store all experienced transitions. This
collection procedure creates a dataset with a diverse set of
states and actions, with the aim of sufficient coverage.

• Concurrent: We concurrently train the off-policy and
behavioral DDPG agents, for 1 million time steps. To ensure
sufficient exploration, a standard N (0, 0.1) Gaussian noise is
added to actions taken by the behavioral policy. Each
transition experienced by the behavioral policy is stored in a
buffer replay, which both agents learn from. As a result,
both agents are trained with the identical dataset.

• Imitation: A trained DDPG agent acts as an expert, and is
used to collect a dataset of 1 million transitions, and
populates a buffer, from which the off policy agent learns.

Off-Policy Deep Reinforcement Learning without Exploration

Extrapolation error:

The Q-function trained from a fixed experience buffer has no way of
knowing whether the actions not contained in the buffer are better or
worse.

Why model-free RL does not work with fixed experience
buffers?

Off-Policy Deep Reinforcement Learning without Exploration

Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 ൅ 𝛾𝑄 𝑠′, 𝑎′

Why model-free RL does not work with fixed experience
buffers?

Off-Policy Deep Reinforcement Learning without Exploration

Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 ൅ 𝛾𝑄 𝑠′, 𝑎′

GIVEN GENERATED

Off-Policy Deep Reinforcement Learning without Exploration

Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 ൅ 𝛾𝑄 𝑠′, 𝑎′
1. 𝑠, 𝑎, 𝑟, 𝑠ᇱ ~𝐷𝑎𝑡𝑎𝑠𝑒𝑡
2. 𝑎ᇱ~𝜋ሺ𝑠ᇱሻ

a′￼ = π(s′￼) = argmaxaQθ(s′￼, a)

Q learning

Off-Policy Deep Reinforcement Learning without Exploration

Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 ൅ 𝛾𝑄 𝑠′, 𝑎′
𝑠ᇱ, 𝑎ᇱ ∉ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 → 𝑄 𝑠ᇱ, 𝑎ᇱ ൌ 𝐛𝐚𝐝

→ 𝑄 𝑠, 𝑎 ൌ 𝐛𝐚𝐝

Off-Policy Deep Reinforcement Learning without Exploration

Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 ൅ 𝛾𝑄 𝑠′, 𝑎′
𝑠ᇱ, 𝑎ᇱ ∉ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 → 𝑄 𝑠ᇱ, 𝑎ᇱ ൌ 𝐛𝐚𝐝

→ 𝑄 𝑠, 𝑎 ൌ 𝐛𝐚𝐝

Off-Policy Deep Reinforcement Learning without Exploration

Extrapolation Error

𝑄 𝑠, 𝑎 ← 𝑟 ൅ 𝛾𝑄 𝑠′, 𝑎′
𝑠ᇱ, 𝑎ᇱ ∉ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 → 𝑄 𝑠ᇱ, 𝑎ᇱ ൌ 𝐛𝐚𝐝

→ 𝑄 𝑠, 𝑎 ൌ 𝐛𝐚𝐝

Off-Policy Deep Reinforcement Learning without Exploration

Extrapolation Error

Attempting to evaluate 𝜋 without (sufficient)
access to the ሺ𝑠, 𝑎ሻ pairs 𝜋 visits.

Off-Policy Deep Reinforcement Learning without Exploration

A policy which only traverses transitions contained in the batch can be
evaluated without error.

BCQ learns a policy with a similar state-action visitation to the data in the batch

Solution: Batch constrained RL

BCQ learns a policy with a similar state-action visitation to the data in the
batch.

Train a generative model to provide action samples that match the action
samples in the batch:

Solution: Batch constrained RL

A state conditioned generative model that predicts actions
given a state that are contained in the batch B

Learning stochastic generative models

Tutotial on variational Autoencoders, Doersch

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′￼; ϕ)∥

T(E(s; ϕ); θ)

z ∼ 𝒩(0, I) [s z] a

• As we vary the input noisy samples z, we land in a different plausible action
a.

Conditional VAE

Tutotial on variational Autoencoders, Doersch

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′￼; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′￼; ϕ)∥

min
ϕ

. DKL(Q(z |X, Y) | |P(z |𝒟) = min
ϕ

. DKL(Q(z |X, Y) |P(z)) − 𝔼Q log P(𝒟 |z)

X : st Y : at

Conditioning

∎BCQ ∎DDPG

∎BCQ ∎DDPG

• Initialize the replay buffer with demos (which will be later either
removed, or kept forever) and start your model-free RL method

• Pre-train the model-free RL method (a policy and a consistent with it
value function) with a demonstration only buffer, then fine-tune it.

• Combine imitation and task rewards

• Exploit the temporal structure, and step progressively earlier and
earlier in time along a trajectory, to solve progressively longer horizon
tasks, as opposed to solving them at once.

Learning from demonstrations and task rewards

• The trained policy should match the actions of the expert on the
demonstration states

• The trained policy should visit the same state distribution as the
demonstration trajectories.

What should be our imitation reward?

• The trained policy should match the actions of the expert on the
demonstration states

• The trained policy should visit the same state distribution as the
demonstration trajectories.

What should be our imitation reward?

We will use generative adversarial network for state distribution matching!

State-action distribution matching objective

• The state-action distribution from the expert
trajectories and the state-action distribution
that the agent visits by deploying the policy
in the environment need to match.

• New solution to the compounding error problem of BC!

• Let’s see how we can optimize this distribution matching objective!

θ * = arg max
θ

𝔼x∼pdata
log πθ(at |st)

extra conditioning information

BC Maximizes Conditional Likelihood

explicit density
(Goodfellow 2016)

Maximum Likelihood

BRIEF ARTICLE

THE AUTHOR

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

1

ℒBC(θ, 𝒯) = 𝔼(s j
t ,aj

t)∼𝒯 [∥aj
t − πθ(sj

t)∥
2
2]

BC Maximizes Conditional Likelihood

• Makes the expert actions most likely in the states of the expert trajectories.

• But what about the states not on the expert trajectories? There the actions

are unconstrained!

ℒBC(θ, 𝒯) = 𝔼(s j
t ,aj

t)∼𝒯 [∥aj
t − πθ(sj

t)∥
2
2]

4 CHAPTER 1. INTRODUCTION

Expert trajectory
Learned Policy

No data on
how to recover

Figure 1.1: Mismatch between the distribution of training and test inputs in a driving
scenario.

many state-of-the-art software system that we use everyday. Systems based on super-

vised learning already translate our documents, recommend what we should read (Yue

and Guestrin, 2011), watch (Toscher et al., 2009) or buy, read our handwriting (Daumé

III et al., 2009) and filter spam from our emails (Weinberger et al., 2009), just to name a

few. Many subfields of artificial intelligence, such as natural language processing (the un-

derstanding of natural language by computers) and computer vision (the understanding

of visual input by computers), now deeply integrate machine learning.

Despite this widespread proliferation and success of machine learning in various fields

and applications, machine learning has had a much more limited success when applied

in control applications, e.g. learning to drive from demonstrations by human drivers.

One of the main reason behind this limited success is that control problems exhibit

fundamentally di↵erent issues that are not typically addressed by standard supervised

learning techniques.

In particular, much of the theory and algorithms for supervised learning are based on

the fundamental assumption that inputs/observations perceived by the predictor to make

its predictions are independent and always coming from the same underlying distribution

during both training and testing (Hastie et al., 2001). This ensures that after seeing

enough training examples, we will be able to predict well on new examples (at least

in expectation). However, this assumption is clearly violated in control tasks as these

are inherently dynamic and sequential : one must perform a sequence of actions over

time that have consequences on future inputs or observations of the system, to achieve a

goal or successfully perform the task. As predicting actions to execute influence future

inputs, this can lead to a large mismatch between the inputs observed under training

demonstrations, and those observed during test executions of the learned behavior. This

is illustrated schematically in Figure 1.1.

This problem has been observed in previous work. Pomerleau (1989), who trained a

Distribution mismatch (distribution shift)

4 CHAPTER 1. INTRODUCTION

Expert trajectory
Learned Policy

No data on
how to recover

Figure 1.1: Mismatch between the distribution of training and test inputs in a driving
scenario.

many state-of-the-art software system that we use everyday. Systems based on super-

vised learning already translate our documents, recommend what we should read (Yue

and Guestrin, 2011), watch (Toscher et al., 2009) or buy, read our handwriting (Daumé

III et al., 2009) and filter spam from our emails (Weinberger et al., 2009), just to name a

few. Many subfields of artificial intelligence, such as natural language processing (the un-

derstanding of natural language by computers) and computer vision (the understanding

of visual input by computers), now deeply integrate machine learning.

Despite this widespread proliferation and success of machine learning in various fields

and applications, machine learning has had a much more limited success when applied

in control applications, e.g. learning to drive from demonstrations by human drivers.

One of the main reason behind this limited success is that control problems exhibit

fundamentally di↵erent issues that are not typically addressed by standard supervised

learning techniques.

In particular, much of the theory and algorithms for supervised learning are based on

the fundamental assumption that inputs/observations perceived by the predictor to make

its predictions are independent and always coming from the same underlying distribution

during both training and testing (Hastie et al., 2001). This ensures that after seeing

enough training examples, we will be able to predict well on new examples (at least

in expectation). However, this assumption is clearly violated in control tasks as these

are inherently dynamic and sequential : one must perform a sequence of actions over

time that have consequences on future inputs or observations of the system, to achieve a

goal or successfully perform the task. As predicting actions to execute influence future

inputs, this can lead to a large mismatch between the inputs observed under training

demonstrations, and those observed during test executions of the learned behavior. This

is illustrated schematically in Figure 1.1.

This problem has been observed in previous work. Pomerleau (1989), who trained a

Pπ*(ot) ≠ Pπθ
(ot)

Title Text

(Goodfellow 2016)

Adversarial Nets Framework

x sampled from
data

Differentiable
function D

D(x) tries to be
near 1

Input noise z

Differentiable
function G

x sampled from
model

D

D tries to make
D(G(z)) near 0,
G tries to make
D(G(z)) near 1

(Goodfellow 2016)

Adversarial Nets Framework

x sampled from
data

Differentiable
function D

D(x) tries to be
near 1

Input noise z

Differentiable
function G

x sampled from
model

D

D tries to make
D(G(z)) near 0,
G tries to make
D(G(z)) near 1

Generator G

Discriminator D

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

(Goodfellow 2016)

DCGAN Architecture

(Radford et al 2015)

Most “deconvs” are batch normalized

A Generator network (DCGAN)

(Goodfellow 2016)

Training Procedure
• Use SGD-like algorithm of choice (Adam) on two

minibatches simultaneously:

• A minibatch of training examples

• A minibatch of generated samples

• Optional: run k steps of one player for every step of
the other player.

(Goodfellow 2016)

Adversarial Nets Framework

x sampled from
data

Differentiable
function D

D(x) tries to be
near 1

Input noise z

Differentiable
function G

x sampled from
model

D

D tries to make
D(G(z)) near 0,
G tries to make
D(G(z)) near 1

Questions:

What if the generator maps all noise vectors to a single super
photorealistic image?

What if we train the discriminator till convergence (it is just a supervised
classifier…) and becomes perfect in distinguishing real from generated
images?

A minimax game

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

V(D, G) = ∫x
pdata(x)log D(x)dx + ∫z

pz(z)log(1−D(G(z)))dz

∫x
pdata(x)log D(x)dx + ∫x

pG(x)log(1−D(x))dx

∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx

Optimal discriminator strategy

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

V(D, G) = ∫x
pdata(x)log D(x)dx + ∫z

pz(z)log(1−D(G(z)))dz

∫x
pdata(x)log D(x)dx + ∫x

pG(x)log(1−D(x))dx

∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx

Optimal discriminator strategy

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

V(D, G) = ∫x
pdata(x)log D(x)dx + ∫z

pz(z)log(1−D(G(z)))dz

∫x
pdata(x)log D(x)dx + ∫x

pG(x)log(1−D(x))dx

∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx

Optimal discriminator strategy

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

V(D, G) = ∫x
pdata(x)log D(x)dx + ∫z

pz(z)log(1−D(G(z)))dz

= ∫x
pdata(x)log D(x)dx + ∫x

pG(x)log(1−D(x))dx

= ∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx

Optimal discriminator strategy

d
dD(x) (pdata(x)log D(x)+pG(x)log(1 − D(x)) = 0

pdata(x)
1

D(x)
−pG(x)

1
1 − D(x)

= 0

pdata(x)
1

D(x)
= pG(x)

1
1 − D(x)

pdata(x)(1 − D(x)) = pG(x)D(x)

D*(x) =
pdata(x)

pdata(x) + pG(x)

V(D, G) = ∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx

The discriminator assigns values D(x) to each image x. Let’s take the
derivative to see where the optimum is attained.

Optimal discriminator strategy

V(D, G) = ∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx

d
dD(x) (pdata(x)log D(x)+pG(x)log(1 − D(x)) = 0

⇔ pdata(x)
1

D(x)
−pG(x)

1
1 − D(x)

= 0

⇔ pdata(x)
1

D(x)
= pG(x)

1
1 − D(x)

⇔ pdata(x)(1 − D(x)) = pG(x)D(x)

⇔ D*(x) =
pdata(x)

pdata(x) + pG(x)

Optimal discriminator strategy

V(D, G) = ∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx

d
dD(x) (pdata(x)log D(x)+pG(x)log(1 − D(x)) = 0

⇔ pdata(x)
1

D(x)
−pG(x)

1
1 − D(x)

= 0

⇔ pdata(x)
1

D(x)
= pG(x)

1
1 − D(x)

⇔ pdata(x)(1 − D(x)) = pG(x)D(x)

⇔ D*(x) =
pdata(x)

pdata(x) + pG(x)

Optimal discriminator strategy

d
dD(x) (pdata(x)log D(x)+pG(x)log(1 − D(x)) = 0

⇔ pdata(x)
1

D(x)
−pG(x)

1
1 − D(x)

= 0

⇔ pdata(x)
1

D(x)
= pG(x)

1
1 − D(x)

pdata(x)(1 − D(x)) = pG(x)D(x)

⇔ D*(x) =
pdata(x)

pdata(x) + pG(x)

V(D, G) = ∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx

Optimal discriminator strategy

d
dD(x) (pdata(x)log D(x)+pG(x)log(1 − D(x)) = 0

⇔ pdata(x)
1

D(x)
−pG(x)

1
1 − D(x)

= 0

⇔ pdata(x)
1

D(x)
= pG(x)

1
1 − D(x)

⇔ pdata(x)(1 − D(x)) = pG(x)D(x)

⇔ D*(x) =
pdata(x)

pdata(x) + pG(x)

V(D, G) = ∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx

Optimal discriminator strategy

d
dD(x) (pdata(x)log D(x)+pG(x)log(1 − D(x)) = 0

⇔ pdata(x)
1

D(x)
−pG(x)

1
1 − D(x)

= 0

⇔ pdata(x)
1

D(x)
= pG(x)

1
1 − D(x)

⇔ pdata(x)(1 − D(x)) = pG(x)D(x)

⇔ D*(x) =
pdata(x)

pdata(x) + pG(x)

V(D, G) = ∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx

C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼z∼pz(z)[log(1 − D*G(G(z))]
= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼x∼pG(x)[log(1 − D*G(x)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(1 −

pdata(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)] − log 4 + log 4

= 𝔼x∼pdata(x)[log
2pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

2pG(x)
pdata(x) + pG(x)

)] − log 4

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
2

] + 𝔼x∼pG(x)[log
pG(x)

pdata(x) + pG(x)
2

] − log 4

= DKL (pdata(x) | |
pdata(x) + pG(x)

2) + DKL (pG(x)∥
pdata(x) + pG(x)

2) − log 4

= 2DJSD (pdata(x) | |pG(x)) − log 4

Optimal generator strategy

C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼z∼pz(z)[log(1 − D*G(G(z))]
= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼x∼pG(x)[log(1 − D*G(x)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(1 −

pdata(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)] − log 4 + log 4

= 𝔼x∼pdata(x)[log
2pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

2pG(x)
pdata(x) + pG(x)

)] − log 4

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
2

] + 𝔼x∼pG(x)[log
pG(x)

pdata(x) + pG(x)
2

] − log 4

= DKL (pdata(x) | |
pdata(x) + pG(x)

2) + DKL (pG(x)∥
pdata(x) + pG(x)

2) − log 4

= 2DJSD (pdata(x) | |pG(x)) − log 4

Optimal generator strategy

C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼z∼pz(z)[log(1 − D*G(G(z))]
= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼x∼pG(x)[log(1 − D*G(x)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(1 −

pdata(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)] − log 4 + log 4

= 𝔼x∼pdata(x)[log
2pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

2pG(x)
pdata(x) + pG(x)

)] − log 4

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
2

] + 𝔼x∼pG(x)[log
pG(x)

pdata(x) + pG(x)
2

] − log 4

= DKL (pdata(x) | |
pdata(x) + pG(x)

2) + DKL (pG(x)∥
pdata(x) + pG(x)

2) − log 4

= 2DJSD (pdata(x) | |pG(x)) − log 4

Optimal generator strategy

C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼z∼pz(z)[log(1 − D*G(G(z))]
= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼x∼pG(x)[log(1 − D*G(x)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(1 −

pdata(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)] − log 4 + log 4

= 𝔼x∼pdata(x)[log
2pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

2pG(x)
pdata(x) + pG(x)

)] − log 4

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
2

] + 𝔼x∼pG(x)[log
pG(x)

pdata(x) + pG(x)
2

] − log 4

= DKL (pdata(x) | |
pdata(x) + pG(x)

2) + DKL (pG(x)∥
pdata(x) + pG(x)

2) − log 4

= 2DJSD (pdata(x) | |pG(x)) − log 4

Optimal generator strategy

C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼z∼pz(z)[log(1 − D*G(G(z))]
= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼x∼pG(x)[log(1 − D*G(x)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(1 −

pdata(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)] − log 4 + log 4

= 𝔼x∼pdata(x)[log
2pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

2pG(x)
pdata(x) + pG(x)

)] − log 4

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
2

] + 𝔼x∼pG(x)[log
pG(x)

pdata(x) + pG(x)
2

] − log 4

= DKL (pdata(x) | |
pdata(x) + pG(x)

2) + DKL (pG(x)∥
pdata(x) + pG(x)

2) − log 4

= 2DJSD (pdata(x) | |pG(x)) − log 4

Optimal generator strategy

C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼z∼pz(z)[log(1 − D*G(G(z))]
= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼x∼pG(x)[log(1 − D*G(x)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(1 −

pdata(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)] − log 4 + log 4

= 𝔼x∼pdata(x)[log
2pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

2pG(x)
pdata(x) + pG(x)

)] − log 4

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
2

] + 𝔼x∼pG(x)[log
pG(x)

pdata(x) + pG(x)
2

] − log 4

= DKL (pdata(x) | |
pdata(x) + pG(x)

2) + DKL (pG(x)∥
pdata(x) + pG(x)

2) − log 4

= 2DJSD (pdata(x) | |pG(x)) − log 4

Optimal generator strategy

C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼z∼pz(z)[log(1 − D*G(G(z))]
= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼x∼pG(x)[log(1 − D*G(x)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(1 −

pdata(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)] − log 4 + log 4

= 𝔼x∼pdata(x)[log
2pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

2pG(x)
pdata(x) + pG(x)

)] − log 4

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
2

] + 𝔼x∼pG(x)[log
pG(x)

pdata(x) + pG(x)
2

] − log 4

= DKL (pdata(x) | |
pdata(x) + pG(x)

2) + DKL (pG(x)∥
pdata(x) + pG(x)

2) − log 4

= 2DJSD (pdata(x) | |pG(x)) − log 4

Optimal generator strategy

C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼z∼pz(z)[log(1 − D*G(G(z))]
= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼x∼pG(x)[log(1 − D*G(x)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(1 −

pdata(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)] − log 4 + log 4

= 𝔼x∼pdata(x)[log
2pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

2pG(x)
pdata(x) + pG(x)

)] − log 4

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
2

] + 𝔼x∼pG(x)[log
pG(x)

pdata(x) + pG(x)
2

] − log 4

= DKL (pdata(x) | |
pdata(x) + pG(x)

2) + DKL (pG(x)∥
pdata(x) + pG(x)

2) − log 4

= 2DJSD (pdata(x) | |pG(x)) − log 4

Optimal generator strategy

C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼z∼pz(z)[log(1 − D*G(G(z))]
= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼x∼pG(x)[log(1 − D*G(x)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(1 −

pdata(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)] − log 4 + log 4

= 𝔼x∼pdata(x)[log
2pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

2pG(x)
pdata(x) + pG(x)

)] − log 4

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
2

] + 𝔼x∼pG(x)[log
pG(x)

pdata(x) + pG(x)
2

] − log 4

= DKL (pdata(x) | |
pdata(x) + pG(x)

2) + DKL (pG(x)∥
pdata(x) + pG(x)

2) − log 4

= 2DJSD (pdata(x) | |pG(x)) − log 4

Optimal generator strategy

C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼z∼pz(z)[log(1 − D*G(G(z))]
= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼x∼pG(x)[log(1 − D*G(x)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(1 −

pdata(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)] − log 4 + log 4

= 𝔼x∼pdata(x)[log
2pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

2pG(x)
pdata(x) + pG(x)

)] − log 4

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
2

] + 𝔼x∼pG(x)[log
pG(x)

pdata(x) + pG(x)
2

] − log 4

= DKL (pdata(x) | |
pdata(x) + pG(x)

2) + DKL (pG(x)∥
pdata(x) + pG(x)

2) − log 4

= 2DJSD (pdata(x) | |pG(x)) − log 4

Optimal generator strategy

Optimal generator strategy

Since DJSD ≥ 0, C(G) ≥ − log 4

C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 2DJSD (pdata(x) | |pG(x)) − log 4

By setting PG(x) = pdata(x) in the equation above, we get:

C(G) = 𝔼x∼pdata(x) log
1
2

+ 𝔼x∼pG(x) log
1
2

= − log 4

Thus generator achieves the optimum when PG(x) = pdata(x) .

Title Text

(Goodfellow 2016)

Next Video Frame PredictionCHAPTER 15. REPRESENTATION LEARNING

Ground Truth MSE Adversarial

Figure 15.6: Predictive generative networks provide an example of the importance of
learning which features are salient. In this example, the predictive generative network
has been trained to predict the appearance of a 3-D model of a human head at a specific
viewing angle. (Left)Ground truth. This is the correct image, that the network should
emit. (Center)Image produced by a predictive generative network trained with mean
squared error alone. Because the ears do not cause an extreme difference in brightness
compared to the neighboring skin, they were not sufficiently salient for the model to learn
to represent them. (Right)Image produced by a model trained with a combination of
mean squared error and adversarial loss. Using this learned cost function, the ears are
salient because they follow a predictable pattern. Learning which underlying causes are
important and relevant enough to model is an important active area of research. Figures
graciously provided by Lotter et al. (2015).

recognizable shape and consistent position means that a feedforward network
can easily learn to detect them, making them highly salient under the generative
adversarial framework. See figure 15.6 for example images. Generative adversarial
networks are only one step toward determining which factors should be represented.
We expect that future research will discover better ways of determining which
factors to represent, and develop mechanisms for representing different factors
depending on the task.

A benefit of learning the underlying causal factors, as pointed out by Schölkopf
et al. (2012), is that if the true generative process has x as an effect and y as
a cause, then modeling p(x | y) is robust to changes in p(y). If the cause-effect
relationship was reversed, this would not be true, since by Bayes’ rule, p(x | y)
would be sensitive to changes in p(y). Very often, when we consider changes in
distribution due to different domains, temporal non-stationarity, or changes in
the nature of the task, the causal mechanisms remain invariant (the laws of the
universe are constant) while the marginal distribution over the underlying causes
can change. Hence, better generalization and robustness to all kinds of changes can

545

(Lotter et al 2016)

Max. LikelihoodGroundtruth Adversarial

(Goodfellow 2016)

Is the divergence important?

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

x

P
ro

b
ab

il
it
y

D
en

si
ty

q
⇤ = argminqDKL(p�q)

p(x)

q
⇤(x)

x

P
ro

b
ab

il
it
y

D
en

si
ty

q
⇤ = argminqDKL(q�p)

p(x)

q
⇤(x)

Figure 3.6: The KL divergence is asymmetric. Suppose we have a distribution p(x) and
wish to approximate it with another distribution q(x). We have the choice of minimizing
either DKL(pkq) or DKL(qkp). We illustrate the effect of this choice using a mixture of
two Gaussians for p, and a single Gaussian for q. The choice of which direction of the
KL divergence to use is problem-dependent. Some applications require an approximation
that usually places high probability anywhere that the true distribution places high
probability, while other applications require an approximation that rarely places high
probability anywhere that the true distribution places low probability. The choice of the
direction of the KL divergence reflects which of these considerations takes priority for each
application. (Left)The effect of minimizing DKL(pkq). In this case, we select a q that has
high probability where p has high probability. When p has multiple modes, q chooses to
blur the modes together, in order to put high probability mass on all of them. (Right)The
effect of minimizing DKL(qkp). In this case, we select a q that has low probability where
p has low probability. When p has multiple modes that are sufficiently widely separated,
as in this figure, the KL divergence is minimized by choosing a single mode, in order to
avoid putting probability mass in the low-probability areas between modes of p. Here, we
illustrate the outcome when q is chosen to emphasize the left mode. We could also have
achieved an equal value of the KL divergence by choosing the right mode. If the modes
are not separated by a sufficiently strong low probability region, then this direction of the
KL divergence can still choose to blur the modes.

76

(Goodfellow et al 2016)

Maximum likelihood Reverse KL

Maybe an explanation of why GANs work

The policy network will be our generator, that conditions on the state:

Generative Adversarial Imitation learning

πθ(s) → a

Find a policy that makes it impossible for a discriminator network to
distinguish between state-actions from the expert demonstrations and state-
action pairs visited by the agent’s policy :

πθ

πθ

Generative Adversarial Imitation learning

r(s, a) = logDϕ(s, a), (s, a) ∼ πθ

The reward for the policy optimization is how well I matched the demonstrator’s
trajectory distribution, else, how well I confused the discriminator.

min
πθ

𝔼(s,a)∼πθ
[−log(Dϕ(s, a))]

min
Dϕ

𝔼(s,a)∼Demo[log(1−Dϕ(s, a))] + 𝔼(s,a)∼πθ
[log(Dϕ(s, a))]

Input: Expert trajectories , initial policy parameters and initial discriminator
weights .

For i=0,1,2,3… do

1. Sample agent trajectories

2. Update the discriminator parameters with the gradient:

θ0
ϕ0

τi ∼ πθi

𝔼(s,a)∼Demo[∇ϕlog(1−Dϕ(s, a))] + 𝔼(s,a)∈τi
[∇ϕlog(Dϕ(s, a))]

3. Update the policy using a policy gradient computed with the rewards, e.g., the
REINFORCE policy gradient would be:

𝔼(s,a)∈τi
[∇θlog πθ log Dϕi+1

(s, a)]

end for

Generative Adversarial Imitation learning

37

Case Study: Generative Adversarial Imitation Learning

- demonstrations from TRPO-optimized policy
- use TRPO as a policy optimizer
- OpenAI gym tasksGenerative Adversarial Imitation learning

• GAIL: a reinforcement learning method with a reward based on trajectory
distribution matching between the agent and an expert.

• BC: reduces imitation learning to supervised learning for individual actions.

• GAIL performs better than behaviour cloning but it requires MORE

interactions with the environment.

• Q:Can BC or GAIL outperform the expert?

Combining imitation and task rewards

r(s, a) = λrGAIL(s, a) + (1 − λ)rtask(s, a), λ ∈ [0,1] .

Combining imitation and task rewards

r(s, a) = λrGAIL(s, a) + (1 − λ)rtask(s, a), λ ∈ [0,1] .

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

rGAIL(s, a) = − log(1 − D(s, a))

rGAIL(s) = − log(1 − D(s))

• Combine imitation and task rewards.

• Start episodes by setting the world in states of the demonstration trajectories.
This means we can reset the world however we like, and that we have full
state information to be able to set our simulator to it. (Have we done this
earlier?)

• Asymmetric actor-critic: the value network takes as input the low-dim state of
the system and the policy is trained from pixels.

• Only scene state info to the discriminator

• Co-train the policy CNN with auxiliary task

• Sim2REAL via domain randomization.

Start an episod in a state from a demo trajectory

• Input: video demonstrations (without rewards Combine imitation and task rewards.

• Start episods by setting the world in states of the demonstration trajectories. This
means we can reset the world however we like, and that we have full state
information to be able to set our simulator to it. (Have we done this earlier?)

• Asymetric actor-critic: the value network takes as input the low-dim state of the
system (3D object location and velocities and relative distances between objects
and the gripper) and the policy is trained from pixels directly. This means we need
to have access to such state information at training time, but not at test time.

• Only scene state info to the discriminator

• Co-train the policy CNN with auxiliary task

• Sim2REAL via domain randomization.

Start an episod in a state from a demo trajectory

• Combine imitation and task rewards.

• Start episods by setting the world in states of the demonstration trajectories.

• Assymetric actor-critic: the value network takes as input the low-dim state of the
system and the policy is trained from pixels.

• Only scene state info to the discriminator

• Co-train the policy CNN with auxiliary task: map images to object locationswith
regression and minimize L2 loss. Any object detection/semantic labelling task would
work, e.g., learning to detect the robot’s gripper is also a useful auxiliary task for
training the visual features.

• Sim2REAL via domain randomization.

Start an episod in a state from a demo trajectory

• Learning value function from pixels directly is slow

• Not using the GAIL imitation reward but rather using demos just to start episodes in
demo states is slow

• No task reward (just imitation) seems not to work. Why?

• No RNN policy: no problem, RNNs are not great way to integrate info over visual frames.

• No auxiliary task: not big problem.

• Not masking arm info from the discriminator creates problems

