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Learning from demonstrations

Pros

e Can much accelerate trial-and-error learning by suggesting good actions
to try

e Can help us train initial safe policies, to deploy in the real world
Cons

e Time consuming

e May include suboptimal, noise and diverse ways to perform the task

e When you imitate, you cannot surpass the “expert”.



Learning from task rewards

Pros
e Cheap supervision
e Optimizes the right end task, as encoded in the task rewards
Cons
e Super sample inefficient - impossible to have in the real world right now

e Initial policy is random thus unsafe to deploy in the real world



Learning from demonstrations and task rewards

Goals
e More sample efficient that RL alone
e Good/safe initial performance
e Outperform the human expert
Challenges for kinesthetic demonstrations
e Handling expert sub optimality
Additional challenges for learning from video demonstrations
e requires visual perception

e requires handling mismatch between imitator and demonstrator action spaces



Learning from demonstrations and task rewards

Goals
e More sample efficient that RL
e Good/safe initial performance
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Learning from demonstrations and task rewards

e |nitialize the replay buffer with demos (which will be later either
removed, or kept forever) and start your model-free RL method

e Pre-train the model-free RL method (a policy and a consistent with it
value function) with a demonstration only buffer, then fine-tune it.

e Combine imitation and task rewards

e Exploit the temporal structure, and step progressively earlier and
earlier in time along a trajectory, to solve progressively longer horizon
tasks, as opposed to solving them at once.
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On policy versus off policy training

 RL on policy: methods that improve a policy that is used to collect the
data used for such improvement

* RL off policy: methods that improve a policy that is not the same with
the policy that collected the data used for such improvement. E.g., that
data can come from demonstrations!



Off-policy RL seen so far

e Off-policy RL learns from data collected under a behavioral policy
different than the current policy.

e |In what we have seen thus far, “off-policy” transitions are generated
from earlier versions of the current policy.

e They are thus heavily correlated to the current policy.

e Not that much off-policy after all.



Batch RL

e Batch RL learns from a fixed experience buffer that does not grow with
data collected from a near on policy exploratory policy.

e This is truly off-policy RL.
e Q:Who could have provided such an experience buffer?

e A: A set of expert demonstrations.



e DDPG (behavioral): (what we have seen in the course) a DDPG policy based on which
actions are selected (with small exploration noise) and the experience buffer is populated.

e (Truly) Off-policy DDPG: a DDPG policy that uses experience tuples from the buffer, it
does not influence in any way the data collected in the buffer
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e |Imitation: A trained DDPG agent acts as an expert, and is
used to collect a dataset of 1 million transitions, and
populates a buffer, from which the off policy agent learns.
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Agent orange and agent blue are trained with...

1. The same off-policy algorithm (DDPG).

2. The same dataset.

Off-Policy Deep Reinforcement Learning without Exploration



The Difference?

1. Agent orange: Interacted with the environment.

* Standard RL loop.
* Collect data, store data in buffer, train, repeat.

2. Agent blue: Never interacted with the environment.
* Trained with data collected by agent orange concurrently.

Off-Policy Deep Reinforcement Learning without Exploration



1. Trained with the same off-policy algorithm.
2. Trained with the same dataset.
3. One interacts with the environment. One doesn’t.

Off-Policy Deep Reinforcement Learning without Exploration



Off-policy deep RL fails when truly off-policy.

why?

Off-Policy Deep Reinforcement Learning without Exploration



e DDPG (behavioral): (what we have seen in the course) a DDPG policy based on which
actions are selected (with small exploration noise) and the experience buffer is populated.

e (Truly) Off-policy DDPG: a DDPG policy that uses experience tuples from the buffer, it
does not influence in any way the data collected in the buffer
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The Q value estimates are higher than their GT values
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Why model-free RL does not work with fixed experience
buffers?

Extrapolation error:

The Q-function trained from a fixed experience buffer has no way of
knowing whether the actions not contained in the buffer are better or

WOTrSe.
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Why model-free RL does not work with fixed experience
buffers?

Extrapolation Error

Q(s,a) «r+yQ(s,a’)
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Extrapolation Error

Q(s,a) « r+yQ(s,a’)
Rt

GIVEN GENERATED



Q learning

Extrapolation Error

Q(s,a) «r+yQ(s,a)

1. (s,a,r,s')~Dataset
2. a~m(s’)

a’ = n(s’) = argmax Qy(s’, a)
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Extrapolation Error

Q(s,a) «r+yQ(s,a)

(s’,a’) € Dataset —» Q(s',a’) = bad
- Q(s,a) = bad
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Extrapolation Error

Q(s,a) «r+vyQ(s,a’)

(s’,a’) &€ Dataset - Q(s’,a’) = bad
— Q(s,a) = bad
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Extrapolation Error

Attempting to evaluate m without (sufficient)
access to the (s, a) pairs m visits.

Off-Policy Deep Reinforcement Learning without Exploration



Solution: Batch constrained RL

A policy which only traverses transitions contained in the batch can be
evaluated without error.

BCQ learns a policy with a similar state-action visitation to the data in the batch

Q(s,a) « (1—a)Q(s,a)+a(r+v max Q(s',a")).

a'st.(s’'.a')EB



Solution: Batch constrained RL

BCQ learns a policy with a similar state-action visitation to the data in the
batch.

Train a generative model to provide action samples that match the action
samples in the batch:

m(s) = argmax Qy(s,a; +&s(s,a;, P)),
a;+€s(s.a;,P)

{a; ~ Gu(8) }i-,-

A state conditioned generative model that predicts actions
given a state that are contained in the batch B



Learning stochastic generative models

e As we vary the input noisy samples z, we land in a different plausible action

a. y
7

s 2] a




Conditional VAE
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Tutotial on variational Autoencoders, Doersch



Algorithm 1 BCQ

Input: Batch B, horizon 7', target network update rate
7, mini-batch size /N, max perturbation ®, number of
sampled actions 7, minimum weighting .
Initialize Q-networks @y, , 0y, , perturbation network &,
and VAE G, = {E.,, D, }, with random parameters 6,
02, ¢, w, and target networks Qg , Qg;, p With ]
91,9{2 — 92, ¢' — ¢
fort =1to7 do
Sample mini-batch of N transitions (s, a, r, s") from B
p,0 = Ey (s,a), a= Dy,(s,z), zNN(/J':O)
w < argmin,, y(a — a)* + DxL(N (1, 0)[|N(0,1))
Sample n actions: {a; ~ G, (s")}i,
Perturb each action: {a; = a; + &5(s", a;, @)}
Set value target y (Eqn. 13)
6 < argming > (y — Qo(s,a))?
¢ argmax E Qo, (3’ a-+ fqﬁ(s’ a, (I)))’ a ~ Gw(s)
Update target networks: 6, < 70 + (1 — 7)8;
o —T1d+(1—71)¢

end for

. ro . . M n.
r+y max )\]ILI{IIZ Qg;_ (syai) + (1 = A) ;r__l?}g Qo (s, ai)
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Learning from demonstrations and task rewards

e |nitialize the replay buffer with demos (which will be later either
removed, or kept forever) and start your model-free RL method

e Pre-train the model-free RL method (a policy and a consistent with it
value function) with a demonstration only buffer, then fine-tune it.

e Combine imitation and task rewards

e Exploit the temporal structure, and step progressively earlier and
earlier in time along a trajectory, to solve progressively longer horizon
tasks, as opposed to solving them at once.



What should be our imitation reward?

e The trained policy should match the actions of the expert on the
demonstration states

e The trained policy should visit the same state distribution as the
demonstration trajectories.



What should be our imitation reward?

e The trained policy should match the actions of the expert on the
demonstration states

e The trained policy should visit the same state distribution as the
demonstration trajectories.

We will use generative adversarial network for state distribution matching!



State-action distribution matching objective

e The state-action distribution from the expert
trajectories and the state-action distribution
that the agent visits by deploying the policy
in the environment need to match.

 New solution to the compounding error problem of BC!
o Let’s see how we can optimize this distribution matching objective!



BC Maximizes Conditional Likelihood

0* = arg m@ax = po, 10 Tp(@, [ S)

explicit density

L350, T) = Eggpgr [lad = msDI3)



BC Maximizes Conditional Likelihood

L5cl0,T) = By [lad = 2 DI3)

Expert trajectory

Learned Policy
—
o ‘-‘--""'.‘-."'~n~
"““ .‘¢’

 Makes the expert actions most likely in the states of the expert trajectories.
 But what about the states not on the expert trajectories? There the actions
are unconstrained!



Distribution mismatch (distribution shift)

sz'*(Ot) # P]z'e(ol‘)

Expert trajectory

Learned Policy
p—
icsciso ...
No data on /
how to recover (":‘I




Adversarial Nets Framework
D tries to make
D(G(z)) near 0,
) tries to be GG tries to make
( near 1 > D(G(z)) near 1
Differentiable
function D
x sampled from x sampled from
data model
leferentlable
function G

Input noise z )

(Goodfellow 2016)



mgn max V(D,G) =E,.,, wllogDW]+E,,log(1-D(G(2)))]

Discriminator D

Generator G

(Goodfellow 2016)
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X

real-world
image

(a)

OR

update the discriminator

weights using backprop
on the classification objective

x = G(z)
{
generator
{
2 code vector

(b)

backprop the derivatives,
but don't modify the
discriminator weights

flip the sign

of the derivatives

update the generator
weights using backprop

Figure 3: (a) Updating the discriminator. (b) Updating the generator.



A Generator network (DCGAN)

Most “deconvs”’ are batch normalized

256
512 | N
, 1 N\,
fzs ' 16 Stride 2 .
- [ \ \, - N
q AN : r\'* |
100 z - :> L —— s g e I
o s
- - \B N = "
Code Project and Stride 2 Stride 2
reshape Deconv 1
Deconv 2 ™\
Deconv 3
Deconv 4

Image

(Radford et al 2015)

(Goodfellow 2016)



Training Procedure

o Use SGD-like algorithm of choice (Adam) on two
minibatches simultaneously:

A minibatch of training examples
e A minibatch of generated samples

e Optional: run £ steps of one player for every step of
the other player.

(Goodfellow 2016)



D tries to make

D(G(z)) near 0,

D(x) tries to be G tries to make
near 1 D(G(z)) near 1
Differentiable D
function D
o x sampled from x sampled from
- data model

T

Differentiable
function G

f

Input noise z

NN N
(N

(Goodfellow 2016)

Questions:

What if the generator maps all noise vectors to a single super
photorealistic image?

What if we train the discriminator till convergence (it is just a supervised
classifier...) and becomes perfect in distinguishing real from generated
Images?



A minimax game

m(]in ml‘glx V(ID,G) =E,., wllogDX)]+E,,llog(l1-D(G(2)))]




Optimal discriminator strategy
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Optimal discriminator strategy
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Optimal discriminator strategy

V(D, G) = J Pdata(X)10g D(x)+p(x)log(1—D(x))dx

X

The discriminator assigns values D(x) to each image x. Let’s take the
derivative to see where the optimum is attained.



Optimal discriminator strategy

V(D,G) = J Pdata(X)10g D(x)+p(x)og(1—D(x))dx

X

dD(x) (pdata(x)log D(X)+pG(x)log(1 — D(X)) — 0



Optimal discriminator strategy
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X
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Optimal discriminator strategy
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Optimal discriminator strategy
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Optimal discriminator strategy
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Optimal generator strategy

C(G) = max V(G, D)
D



Optimal generator strategy
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Optimal generator strategy
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Optimal generator strategy
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Optimal generator strategy
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Optimal generator strategy

C(G) = max V(G, D)
D

= Eropol108 DEDO] + By o llog(l = DE(G(2))]
= Erpra108 DEO] + oy llog(l = DE(x)]

pP data(x ) P data(x)
=E_, . [log 1+ E,., wllog(l - )]
pdata( ) pdata(x) _I_ pG(x) pG( ) pdata(x) + pG(x)
P data(x) P G(x )
=E,_,  llog 1+E,., llog( )]
PdataX) PdataX) + pc(x) Palx) Pdata(X) + pg(x)
pdata(x) pG(x)
=E.. B (ollog 1+ E,.., llog( )] —log4 + log 4
Para(X) pdata(x) + PG(X) PG(x) p data(x) + pG(X)
2 X 2pq(x
= E ollog e oS )~ logd
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_ Pdata(X) Pgx)
= Eepamllog 2] Bepwllog o] — log4
2 2
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Optimal generator strategy

C(G) = max V(G, D)
D

P data(x) pG( X)
Pdata(X) + pG(x)] + [EXNPG(X)[IOg( )]

Pdaa(X) + P6(%)
= 2Djsp (Puara®) | | p6(x)) — log 4

= [Eprdata(x) [log

Since Dygp > 0, C(G) > —log4
By setting Ps(x) = pgqa(X) IN the equation above, we get:

1 1
C(G) = [Eprdata(x) log 5 + [EprG(x) log 5 = —log4

Thus generator achieves the optimum when Ps(x) = pga(X) -



Next Video Frame Prediction

Groundtruth Max. Likelihood Adversarial

(Lotter et al 2016)



Maybe an explanation of why GANs work

q° = argmin, D1 (pl|q) q" = argmin, D1 (q|/p)

Probability Density
Probability Density

Maximum likelihood Reverse KL



Generative Adversarial Imitation learning

The policy network will be our generator, that conditions on the state:

my(s) = a



Generative Adversarial Imitation learning

Find a policy 7, that makes it impossible for a discriminator network to
distinguish between state-actions from the expert demonstrations and state-

action pairs visited by the agent’s policy 7y

min -(S,a)N,ZH[—IOg(qu(S, a))]

Ty

Hll)i(pn |E(s,az)NDemo[log(l_l)qb(s’ CZ))] T [E(S,a)Nﬂe[log(DCb(S’ a) ) ]

The reward for the policy optimization is how well | matched the demonstrator’s
trajectory distribution, else, how well | confused the discriminator.

r(s,a) = logD¢(S, a), (s,a) ~ my



Generative Adversarial Imitation learning

Input: Expert trajectories , initial policy parameters 6, and initial discriminator
weights ¢,

For i=0,1,2,3... do

1. Sample agent trajectories 7; ~ 7

2. Update the discriminator parameters with the gradient:

E(s.0)~Demol V p108(1=D (s, a))] + E s pye. L V plog(D (s, a))]

3. Update the policy using a policy gradient computed with the rewards, e.g., the
REINFORCE policy gradient would be:

[E(S,a)efi[ V,log mylog Dq/),-H(S’ a)]

end for



Generative Adversarial Imitation learning
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Hohavioral cloning

e GAIL: a reinforcement learning method with a reward based on trajectory
distribution matching between the agent and an expert.

e BC: reduces imitation learning to supervised learning for individual actions.

e GAIL performs better than behaviour cloning but it requires MORE
interactions with the environment.

e Q:Can BC or GAIL outperform the expert?



Combining imitation and task rewards

r(s,a) = Arga(s,a) + (1 = Dr, 4 (s,a), 1 €[0,1].



Combining imitation and task rewards

mén max V(D,G) =E,., llogDX)]+E,.,[log(1-D(G(2)))]

r(s,a) = Arga(s,a) + (1 = Dr, 4 (s,a), 1 €[0,1].

roan(s,a) = —log(l — D(s, a))



Reinforcement and Imitation Learning
for Diverse Visuomotor Skills

Yuke Zhu' Ziyu Wang? Josh Merel? Andrei Rusu? Tom Erez? Serkan Cabi?
Saran Tunyasuvunakool* Janos Kramar? Raia Hadsell* Nando de Freitas? Nicolas Heess?
TComputer Science Department, Stanford University, USA

tDeepMind, London, UK

e Combine imitation and task rewards.

e Start episodes by setting t
This means we can reset t
state information to be ab
earlier?)

ne world in states of the demonstration trajectories.
ne world however we like, and that we have full
e to set our simulator to it. (Have we done this

e Asymmetric actor-critic: the value network takes as input the low-dim state of

the system and the policy

Is trained from pixels.

e Only scene state info to the discriminator

e Co-train the policy CNN with auxiliary task

e SIM2REAL via domain randomization.



Reinforcement and Imitation Learning
for Diverse Visuomotor Skills

Yuke Zhu' Ziyu Wang? Josh Merel* Andrei Rusu? Tom Erez? Serkan Cabi?
Saran Tunyasuvunakool* Janos Kramar? Raia Hadsell? Nando de Freitas? Nicolas Heess?

TComputer Science Department, Stanford University, USA
tDeepMind, London, UK

e Input: video demonstrations (without rewards Combine imitation and task rewards.

e Start episods by setting the world in states of the demonstration trajectories. This
means we can reset the world however we like, and that we have full state
information to be able to set our simulator to it. (Have we done this earlier?)

e Asymetric actor-critic: the value network takes as input the low-dim state of the
system (3D object location and velocities and relative distances between objects
and the gripper) and the policy is trained from pixels directly. This means we need
to have access to such state information at training time, but not at test time.

e Only scene state info to the discriminator
e Co-train the policy CNN with auxiliary task

e SIM2REAL via domain randomization.



Reinforcement and Imitation Learning
for Diverse Visuomotor Skills

Yuke Zhu' Ziyu Wang? Josh Merel* Andrei Rusu? Tom Erez? Serkan Cabi?
Saran Tunyasuvunakool* Janos Kramar? Raia Hadsell? Nando de Freitas? Nicolas Heess?

TComputer Science Department, Stanford University, USA
tDeepMind, London, UK

e Combine imitation and task rewards.
e Start episods by setting the world in states of the demonstration trajectories.

e Assymetric actor-critic: the value network takes as input the low-dim state of the
system and the policy is trained from pixels.

e Only scene state info to the discriminator

e Co-train the policy CNN with auxiliary task: map images to object locationswith
regression and minimize L2 loss. Any object detection/semantic labelling task would
work, e.g., learning to detect the robot’s gripper is also a useful auxiliary task for
training the visual features.

e SIm2REAL via domain randomization.



deep visuomotor policy
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average episode return
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(a) Ablation study of model components
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Learning value function from pixels directly is slow

Not using the GAIL imitation reward but rather using demos just to start episodes in

demo states is slow

0.5 1.0
iteration (in millions)

(b) Model sensitivity to A values

No task reward (just imitation) seems not to work. Why?

No RNN policy: no problem, RNNs are not great way to integrate info over visual frames.

No auxiliary task: not big problem.

Not masking arm info from the discriminator creates problems
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