
Model Based Reinforcement Learning

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon

School of Computer Science

Spring 2021, CMU 10-403

Model-free Reinforcement learning

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

p(τ; θ) = p(s0)
T

∏
t=1

p(st+1 |st, at)

dynamics

⋅ πθ(at |st)

policy

at ∼ πθ(at |st)

p(st+1 |st, at)
p(rt+1 |st, at)

max
θ

. U(θ) = 𝔼τ∼pθ(τ) [∑
t

r(st, at)]

The model: transition+reward function

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

p(τ; θ) = p(s0)
T

∏
t=1

p(st+1 |st, at)

dynamics

⋅ πθ(at |st)

policy

p(st+1 |st, at)

at ∼ πθ(at |st)

max
θ

. U(θ) = 𝔼τ∼pθ(τ) [∑
t

r(st, at)]

p(rt+1 |st, at)

Model

s

a
s0

r

Lecture 8: Integrating Learning and Planning

Introduction

Model-Free RL

state

reward

action

At

Rt

St

Anything the agent can use to predict how the environment will respond
to its actions, concretely, the state transition function and
reward function .

T(s′ |s, a)
R(s, a)

The model: transition+reward function

Model learning

s

a
s0

r

ϕ
gaussian process,

random forest, deep
neural network,
linear function

Model-based reinforcement learning methods learn a model using
supervised learning from experience tuples. Then use the model to
select actions and learn policies.

Model-based Reinforcement learning
• Assume we have a model. How can we use it for action selection and

policy learning?

• Assume we do not have a model. How can we learn it and use it for
action selection and policy learning?

Model unrolling

a1

s1 ̂s2ϕ

r1

Model unrolling

a1

s1 ̂s2 ̂s3ϕ ϕ

r1 r2

Model unrolling

a1

s1 ̂s2 ̂s3ϕ ϕ

r1 r2

̂s4ϕ

r3

Model-based control

max
a1⋯aT

.
T

∑
t=1

rt

s.t. . ∀t, (st+1, rt+1) = f(st, at; ϕ)

̂r1 ̂r2 ̂r3

a1 a2

s1 ̂s2 ̂s3
a3

ϕ ϕ ϕ ̂s4

s0 Given an initial state, estimate a sequence of actions to reach a desired
goal or maximize sum of rewards by unrolling the model forward in time.

min
a1⋯aT

. ∥sT − s*∥

s.t. . ∀t, st+1 = f(st, at; ϕ)

Model-based control

If the dynamics are non-linear and the loss is not a quadratic, this
optimization is difficult. We can use gradient descent optimization,
evolutionary search, MCTS, etc..

̂r1 ̂r2 ̂r3

a1 a2

s1 ̂s2 ̂s3
a3

ϕ ϕ ϕ ̂s4

Given an initial state, estimate a sequence of actions to reach a desired
goal or maximize sum of rewards by unrolling the model forward in time.

max
a1⋯aT

.
T

∑
t=1

rt

s.t. . ∀t, (st+1, rt+1) = f(st, at; ϕ)

min
a1⋯aT

. ∥sT − s*∥

s.t. . ∀t, st+1 = f(st, at; ϕ)

a*2

s2 ̂s3
a*3

ϕ ϕ

̂r2 ̂r3

max .
a2⋯aT

T

∑
t=2

̂rt

Model-predictive control
Execute the first action , observe resulting state , and re-optimize for 2…T.
Repeat.
Re-planning at each tilmestep help fight model error accumulation through
unrolling.

a*1 s2

Benefits of Model-based Reinforcement learning

• Experience is not wasted. In model-free RL experience that does not
yield any reward is not used.

• Models can support learning of multiple different tasks

Model-based RL

Training a model based controller
allows to follow arbitrary trajectories at
test time: the model allows you to
optimize different reward function for
different tasks, without any retraining.

Neural network dynamics for model-based Deep Rl with model-free finetuning, Nagabandi et al.

Benefits of Model-based Reinforcement learning

• Experience is not wasted. In model-free RL experience that does not
yield any reward is not used.

• Models can support learning of multiple different tasks

• The hope is that they can support much much more sample efficient
behavior learning.

When models are learnt

Model-Based Reinforcement Learning

Optimize
Policy

Execute
Policy

Train Dynamics
Model

Alternating between model and policy learning
Initialize policy and .

1. Run the policy and update experience tuples dataset .
2. Train a dynamic model using :
3. Update the policy by

1. a model-free RL method on simulated experience sampled
from the model.

2. Imitating a model-based controller (planner)
4. GOTO 1.

π(s; θ) Denv = {}
Denv

Denv (s′ , r′) = f(s, a; ϕ)

Dmodel

Why alternate?

Our model dynamics are only accurate close to the data
collected by the policy. If we plan through the model or if
we sample from it, we may land far from the data
distribution of the policy. Deploying the suggested
actions in the environment tries to bring the policy and
the policy found by planning or sampling our model close
to one another.

πθ

Model-Based Reinforcement Learning

Optimize
Policy

Execute
Policy

Train Dynamics
Model

Alternating between model and policy learning
Initialize policy and .

1. Run the policy and update experience tuples dataset .
2. Train a dynamic model using :
3. Update the policy by

1. a model-free RL method on simulated experience sampled
from the model.

2. Imitating a model-based controller (planner)
4. GOTO 1.

π(s; θ) Denv = {}
Denv

Denv (s′ , r′) = f(s, a; ϕ)

Dmodel

Our model dynamics are only accurate close to the data
collected by the policy. If we plan through the model or if
we sample from it, we may land far from the data
distribution of the policy. Deploying the suggested
actions in the environment tries to bring the policy and
the policy found by planning or sampling our model close
to one another.

πθ

Why alternate?

• Under-modelling: If the model class is restricted (e.g., linear function or
gaussian process) we have under-modeling: we cannot represent
complex dynamics, e.g., contact dynamics that are not smooth. As a
result, though we learn faster than model free in the beginning, MBRL
ends up having worse asymptotic performance than model-free
methods, that do not suffer from model bias.

• Over-fitting: If the model class is very expressive (e.g., neural
networks) the model will overfit, especially in the beginning of training,
where we have very few samples. Action selection on top of model
unrolling will surely exploit mistakes of the model.

• Errors compound through unrolling

• Need to capture different futures (stochasticity of the environment).

Challenges in model learning

Model Learning
Where a low dimensional state is observed and given:

a

s s′

state can be 3D locations and 3D
velocities of agent joints, actions

can be torques

ϕ

Model Learning
Where a low dimensional state is observed and given:

Where we only have access to (high dim) sensory input, e.g., images:

a

s s′

state can be 3D locations and 3D
velocities of agent joints, actions

can be torques

ϕ

e.g., Atari game playing

a
h′

o h ϕ

a
o′

o ϕ

Model Learning
Where a low dimensional state is observed and given:

Where we only have access to (high dim) sensory input, e.g., image or touch:

a

s
s′

state can be 3D locations and 3D
velocities of agent joints, actions

can be torques

ϕ

e.g., Atari game playing

a
h′

o h ϕ

a
o′

o ϕ

Model-based RL in a low-dim state space

Comparative Performance
on HalfCheetah

slide from Sergey Levine

Comparative Performance
on HalfCheetah

slide from Sergey Levine

Why model-based RL (even in a low-dim state space) is
not easy

Neural network dynamics for model-based Deep Rl with model-free finetuning, Nagabandi et al.

Model-based RL

Neural network dynamics for model-based Deep Rl with model-free finetuning, Nagabandi et al.

π(s; θ)

Initialize by acting randomly in the environment.
1. Train a dynamic model f using :
2. Use model predictive control over f to estimate optimal actions from .
3. Deploy the optimal actions in the environment and update .
4. GOTO 1.

Denv
Denv (s′ , r′) = f(s, a; ϕ)

s0
Denv

Note: we usually train transition dynamics to predict the state change:
s′ = s + f(s, a; ϕ)

• Initialize a policy by imitating the MPC planner using DAGGER
• Finetune the policy using any model-free method, e.g., TRPO.

How can I surpass the upper bound imposed by the accuracy of my model?

Can we skip the model-free finetuning step and
still outperform model-free methods?

How can models help us learn to act?
• Sample experience from the learnt model. Then use a model-free method to learn policies at training time. At test

time use only the learnt policy. (MBPO[1], Model-ensemble TRPO[2], Model-based RL for Atari[10]).
• Sample experience from the known model. Then use a model-free method to learn policies at training time. At test

time use only the learnt policy. (All model-free RL).

[1]When to Trust Your Model-Model-Based Policy Optimization (MBPO)
[2]Model-ensemble trust region policy optimization
[4]Dream-to-control:learning behaviors via latent imagination
[5]Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models (PETS)
[6]Deep Learning for Real-Time Atari Game Play Using Offline MCTS
[7]Mastering the game of Go without human knowledge(AlphaGoZero)
[8]Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model (MuZero)
[9]Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion
[10]Model-baser RL for Atari, Kaiser et al.

• Plan through the model at both train and test time:Unroll the model forward in time and optimize for action
sequences to maximize rewards at training time. Then, learn policies that predict the actions found by model unrolling.
At test time, use both model unrolling and the learnt policy. (AlphaGoZero[7], MuZero[8])

• Plan through the model:Use model rollouts to supply better targets to Q functions (Stochastic Ensemble Value
Expansion[9]). Learn a policy that maximizes the Q function, and use it at test time.

• Plan through the model at train time only: Unroll the model forward in time and optimize for action sequences to
maximize rewards at training time. Then, learn policies that predict the actions found by model unrolling. At test
time use only the learnt policy.

• Differentiable optimization: back propagate the error through the dynamics function over time.(Linear quadratic
regulator(LQR)[3]: linear models, dream-to-control[4]: non-linear models)

• Evolutionary search for actions, e.g., CMA-ES. (PETS[5])
• Monte Carlo tree search: combination of learnt policies and model unrolling. (Playing Atari with offline

MCTS[6])

It’s all about representing model uncertainty. Two types of
uncertainty:
1. Epistemic uncertainty: uncertainty due to lack of data (that would permit to

uniquely determine the underlying system)
2. Aleatoric uncertainty: uncertainty due to inherent stochasticity of the system

Aleatoric uncertainty in model learning

pϕ(s′ |s, a) = f (s, a; ϕ) =
exp (− 1

2 (s′ − μ(s, a; ϕ)⊤(Σ(s, a; ϕ))−1(s′ − μ(s, a; ϕ))
(2π)ddetΣ(s, a; ϕ)

ℒϕ = −
1
N

N

∑
i=1

log p(s′ i |si, ai; ϕ)

= (1
2

(s′ i − μ(si, ai; ϕ))TΣ(si, ai; ϕ)−1(s′ i − μ(si, ai; ϕ))) +
1
2

log(detΣ(si, ai; ϕ)) + const.

D = {(si, ai, s′ i), i = 1⋯N}

The environment can be stochastic

s, a

s′ s′ ′

• This means our state does not capture enough information to help us
delineate the possible future outcomes.

• What is stochastic under one state representation, may not be stochastic
under another. Is this true? Could we ever predict exactly what we will see
in the TV when we switch the channel?

• We will always have part of the information hidden, so stochasticity will
always be there

Aleatoric uncertainty in model learning

Deterministic Neural Nets as Models
pϕ(s′ |s, a) = f (s, a; ϕ) =

exp (− 1
2 (s′ − μ(s, a; ϕ)⊤(Σ(s, a; ϕ))−1(s′ − μ(s, a; ϕ))

(2π)ddetΣ(s, a; ϕ)

ℒϕ =
N

∑
i=1

∥f(si, ai; ϕ) − s′ i∥
ℒϕ = −

1
N

N

∑
i=1

log p(s′ i |si, ai; ϕ)

= (1
2

(s′ i − μ(si, ai; ϕ))TΣ(si, ai; ϕ)−1(s′ i − μ(si, ai; ϕ))) +
1
2

log(detΣ(si, ai; ϕ)) + const.

If the environment is stochastic, regression fails.

s, a

s′ s′ ′
̂s

Failing means: not only we cannot capture the distribution, but we output a
solution that does not agree with any of its modes!

Aleatoric uncertainty in model learning
Probabilistic Neural Nets as Models

pϕ(s′ |s, a) =
exp (− 1

2 (s′ − μ(s, a; ϕ)⊤(Σ(s, a; ϕ))−1(s′ − μ(s, a; ϕ))
(2π)ddetΣ(s, a; ϕ)

ℒϕ = −
1
N

N

∑
i=1

log pϕ(s′ i |si, ai)

=
1
2

(s′ i − μ(si, ai; ϕ))TΣ(si, ai; ϕ)−1(s′ i − μ(si, ai; ϕ)) +
1
2

log(detΣ(si, ai; ϕ)) + const.

D = {(si, ai, s′ i), i = 1⋯N}

• Our model will output a Gaussian distribution over next states given
current state and action.

• A NN will predicts the mean and the elements of the covariance matrix.
(We have seen this before)

s′

μϕ(st, at; ϕ)
Σ(st, at; ϕ)

Aleatoric uncertainty in model learning

Rectifier(x) = max(0,x)

Softplus(x) = log(1 + ex)

Variance should be always positive, what do we do?
We output log(variance) and we exponentiate.

Deterministic Neural Nets as Models

Epistemic uncertainty in Model Learning

(s, a)

s′

Deterministic Neural Nets as Models

Epistemic uncertainty in Model Learning

Red are observed data points (s,a,s’)

(s, a)

s′

Deterministic Neural Nets as Models

Epistemic uncertainty in Model Learning

(s, a)

s′

Fitting a deterministic neural network

Deterministic Neural Nets as Models

(s, a) s′

Deterministic Neural Nets as Models

Epistemic uncertainty in Model Learning

• There is a unique answer for s’ (no stochasticity) but I do not know it
due to lack of data.

(s, a)

s′

Fitting a deterministic neural network

Deterministic Neural Nets as Models

(s, a) s′

Model errors!

Probabilistic Neural Nets as Models

Epistemic uncertainty in Model Learning

Fitting a neural network that parametrizes a distribution

(s, a)

s′

Model errors!

• There is a unique answer for s’ (no stochasticity) but I do not know it
due to lack of data.

• Predicting a distribution won’t help. The predictions will be inaccurate
due to lack of data.

Probabilistic Neural Nets as Models

Epistemic uncertainty in Model Learning

(s, a)

s′

• There is a unique answer for s’ (no stochasticity) but I do not know it
due to lack of data.

• Predicting a distribution won’t help. The predictions will be inaccurate
due to lack of data.

• How can I represent my uncertainty about my predictions? E.g., having
high entropy when no data and low entropy close to data?

•

Model errors!

Bayesian Inference

Bayes Rule

• Q: What are the hypotheses here?
• A: Hypotheses here are weights for our learning

model, i.e., weights of our neural networks that
learns the transition dynamics

• Q: Is this still useful when our prior over parameters
is uniform?

• A: Yes. The point is to keep all the hypotheses that fit
equally well the training set instead of committing to
one, so that I can represent my uncertainty.

P(hypothesis | data) =
P(hypothesis)P(data | hypothesis)

∑h P(h)P(data |h)

P(w |𝒟)

Committing to a single solution for my neural weights
I cannot quantify my uncertainty away from the training data :-(

regression network
ϕMAP = arg max

ϕ
log P(ϕ |D) = arg max

ϕ
(P(D |ϕ) + log P(ϕ))

• Having a posterior distribution over my neural weights.
• I can quantify my uncertainty by sampling networks and measuring the

entropy of their predictions :-)
• Inference of such posterior is intractable :-(but there are some nice recent

variational approximations

P(w |𝒟)

regression network
ϕMAP = arg max

ϕ
log P(ϕ |D) = arg max

ϕ
(P(D |ϕ) + log P(ϕ))

 Bayesian regression network

P(y |x, D) = ∫ P(y |x, ϕ)P(ϕ |D)dϕ

P(ϕ |D)

Committing to a single solution for my neural weights
I cannot quantify my uncertainty away from the training data :-(

Probabilistic Ensembles as Models

NN Ensembles for representing Epistemic uncertainty

Probabilistic Ensembles as Models

(s, a)

s′

• Neural network Ensembles are a good approximation to Bayesian Nets.
• Instead of having explicit posteriors distributions for each neural net

parameter, you just have a small set of neural nets, each trained on
separate data.
• On the data they have seen, they all agree (low entropy of

predictions)
• On the data they have not seen, each fails in its own way (high

entropy of predictions)

Probabilistic Ensembles as Models

NN Ensembles for representing Epistemic uncertainty

Probabilistic Ensembles as Models

(s, a)

s′

• Neural network Ensembles are a good approximation to Bayesian Nets.
• How do we train such neural network ensembles given a dataset of

interactions?
• The most popular way is to train bunch of network with different

initializations and on different subsets of the data.
• Check also this cool paper: HyperGAN: A Generative Model for

Diverse, Performant Neural Networks

https://arxiv.org/abs/1901.11058
https://arxiv.org/abs/1901.11058

Trajectory Sampling for State Propagation

Model Unrolling

Trajectory Sampling for State Propagation

Model Unrolling

Trajectory Sampling for State Propagation

Model Unrolling

Trajectory Sampling for State Propagation

Model Unrolling

Trajectory Sampling for State Propagation

Model Unrolling

Trajectory Sampling for State Propagation

Model Unrolling

Trajectory Sampling for State Propagation

Model Unrolling

Trajectory Sampling for State Propagation

Model Unrolling

Trajectory Sampling for State Propagation

https://www.youtube.com/watch?time_continue=86&v=3d8ixUMSiL8

I compute the reward of an action sequence by averaging across particles

Model Unrolling

https://www.youtube.com/watch?time_continue=86&v=3d8ixUMSiL8

Initialize using experience from random actions.
1. Train probabilistic ensemble dynamics model using .
2. For t=1..TaskHorizon

1. Use Cross-entropy Method (CEM) to select actions by
unrolling the model

2. Execute first action .
3. Update

3. GOTO 2.

Denv
Denv

a*t...T

a*t
Denv ← Denv ∪ {st, a*t , st+1}

Probabilistic Ensembles Trajectory Sampling (PETS)

https://www.youtube.com/watch?time_continue=86&v=3d8ixUMSiL8

Results

https://www.youtube.com/watch?time_continue=86&v=3d8ixUMSiL8

Visiting next
• Sample experience from the learnt model. Then use a model-free method to learn policies at training time. At test

time use only the learnt policy. (MBPO[1], Model-ensemble TRPO[2]).
• Sample experience from the known environment model. Then use a model-free method to learn policies at training

time. At test time use only the learnt policy. (All model-free RL).

[1]When to Trust Your Model-Model-Based Policy Optimization (MBPO)
[2]Model-ensemble trust region policy optimization
[4]Dream-to-control:learning behaviors via latent imagination
[5]Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models (PETS)
[6]Deep Learning for Real-Time Atari Game Play Using Offline MCTS
[7]Mastering the game of Go without human knowledge(AlphaGoZero)
[8]Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model (MuZero)
[9]Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion

• Plan through the model:Unroll the model forward in time and optimize for action sequences to maximize rewards at
training time. Then, learn policies that predict the actions found by model unrolling. At test time, use both model
unrolling and the learnt policy. (AlphaGoZero[7], MuZero[8])

• Plan through the model:Use model rollouts to supply better targets to Q functions (Stochastic Ensemble Value
Expansion[9]). Learn a policy that maximizes the Q function, and use it at test time.

• Plan through the model: Unroll the model forward in time and optimize for action sequences to maximize rewards
at training time. Then, learn policies that predict the actions found by model unrolling. At test time use only the
learnt policy.

• Differentiable optimization: back propagate the error through the dynamics function over time.(Linear quadratic
regulator(LQR)[3]: linear models, dream-to-control[4]: non-linear models)

• Evolutionary search for actions, e.g., CMA-ES. (PETS[5])
• Monte Carlo tree search: combination of learnt policies and model unrolling. (Playing Atari with offline

MCTS[6])

Initialize policy and .
1. Run the policy and update experience tuples dataset .
2. Train probabilistic ensemble dynamics model using

3. Repeat
1. Collect simulated experience by sampling from the model

ensemble using the policy to select actions, starting from .
2. Update the policy using TRPO on .

4. Until performance across all model ensembles stops improving
5. GOTO 1.

π(s; θ) Denv = {}
Denv

Denv
(s′ , r′) = f i(s, a; ϕ), i = 1..N

Dmodel
s0

Dmodel

Model-ensemble trust region policy optimization

I use the models just to obtain simulated experience.
I update the policy so that it does well across all members of the model ensemble: the policy cannot exploit
inaccuracies of any one of them.

0PI�dg]DYIZ�qQjP�Y][O�g]YY]kjh

�[pQg][ZI[j�g]YY]kj

!]GIY�g]YY]kj�¥rÂÁÁÁ¦

ZI<[�dgIGQEjQ][�Û���hjG�GIp

<EEkg<jI��Y]q�p<gQ<[EI ORZ�DFFXUDF\��KLJK�YDULDQFH

Initialize policy and .
1. Run the policy and update experience tuples dataset .
2. Train probabilistic ensemble dynamics model using

3. For M model rollouts
1. Sample and then collect simulated experience by sampling

from the model for k time steps using the policy to select actions.
4. Update the policy using SAC on .
5. GOTO 1.

π(s; θ) Denv = {}
Denv

Denv
(s′ , r′) = f i(s, a; ϕ), i = 1..N

st Dmodel
πθ

Dmodel

When to Trust Your Model: Model-Based Policy Optimization

• The model rollout can be shorter than the task horizon.
• a combination of model ensembles with short model rollouts is sufficient

to prevent model exploitation
• different transitions along a single model rollout to be sampled from

different dynamics models

Learning models from videos as opposed to low-dim states

Model learning from sensory inputs is
currently a central research problem.
1.How can we learn models that are accurate
and generalize across environments?

2.What are the right state representations?
3.How can we handle multimodality/
uncertainty?

• Train a neural network that given an image (sequence) and an action,
predict the pixels of the next frame

• Unroll it forward in time to predict multiple future frames

s

a
rCNN

o o′

Unroll the model by
feeding the prediction
back as input!

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

Minimizing error accumulation during unrolling

Solution: Progressively increase the unrolling horizon k at training time so that the model learns to
handle its mistakes:

Q: Can I train my model using tuples and at test time unroll it over time?
A: No, we will have distribution shift, same as in imitation learning: tiny mistakes will soon cause the
model to drift

(o, a, o′)

a1

o1 ̂o2ϕ

ℒ(ϕ) =
1
N

N

∑
i=1

∥f (ai
1, oi

1; ϕ) − oi
2∥

Minimizing error accumulation during unrolling

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

How to train our model so that unrolling works

a1

o1 ̂o2ϕ ̂o3

ℒ(ϕ) =
1
N

N

∑
i=1

∥f (ai
2, f (ai

1, oi
1; ϕ); ϕ) − oi

3∥ + ∥f (ai
1, oi

1; ϕ) − oi
2∥

a2

Solution: Progressively increase the unrolling horizon k at training time so that the model learns to
handle its mistakes:

Q: Can I train my model using tuples and at test time unroll it over time?
A: No, we will have distribution shift, same as in imitation learning: tiny mistakes will soon cause the
model to drift

(o, a, o′)

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

How to train our model so that unrolling works

a1

o1 ̂o2ϕ a3a2

̂o3

ℒ(ϕ) =
1
N

N

∑
i=1

∥f (ai
3, f (ai

2, f (ai
1, oi

1; ϕ); ϕ); ϕ) − oi
4∥ + ∥f (ai

2, f (ai
1, oi

1; ϕ); ϕ) − oi
3∥ + ∥f (ai

1, oi
1; ϕ) − oi

2∥

̂o4

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

Solution: Progressively increase the unrolling horizon k at training time so that the model learns to
handle its mistakes:

Q: Can I train my model using tuples and at test time unroll it over time?
A: No, we will have distribution shift, same as in imitation learning: tiny mistakes will soon cause the
model to drift

(o, a, o′)

Small objects are missed, e.g., the bullets.
Q: Why?
A:They induce a tiny mean pixel prediction loss (despite the fact they
may be very task-relevant!)

How can we get the model error to predict accurately the part of the
observation relevant for the task and neglect irrelevant details?

Similar architecture as before but..we also predict rewards!

Initialize policy and .
1. Run the policy and update experience tuples dataset .
2. Train the dynamics model using
3. Sample from the experience buffer and then collect simulated

experience by unrolling the model for 50 time steps using the policy
 to select actions.

4. Update the policy using PPO on trajectories in .
5. GOTO 1.

π(s; θ) Denv = {}
Denv

Denv (ot+1, rt+1) = f(ot−4..t, at, z; ϕ)
ot−4 . . . ot

Dmodel
πθ

Dmodel + Denv

• The model is stochastic with discrete latent variables: DISCRETE
AUTOENCODERS FOR SEQUENCE MODELS

•
• Note the short rollouts from sampled states from the experience buffer just

like in MBPO

Dmodel > > Denv

Model-baser RL in Atari

Reward-aware model learning loss

results

• We train the dynamics model to generate a future sequence so that the rewards
obtained from the simulated sequence agree with the rewards obtained in the ``real”
(videogame) world. I put L2 loss on the rewards as opposed to just on pixels. This
encourages to focus on objects that are too small and incur a tiny L2 pixel loss, but
may be important for the game.

• (Nonetheless, they made the ball larger :-()

https://sites.google.com/view/modelbasedrlatari/home

Results

results

• Number of frames required to reach human performance

https://sites.google.com/view/modelbasedrlatari/home

