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Advantage Actor-CriticActor-critic algorithms (with discount)
    
0. Initialize policy parameters θ and critic parameters ϕ .
1. Sample trajectories {τi = {si

t , ai
t}T

i=0} by deploying the current policy πθ(at |st) .
2. Fit value function Vπ

ϕ(s) by MC or TD estimation (update ϕ)

3. Compute action advantages Aπ(si
t , ai

t) = R(si
t , ai

t) + γVπ
ϕ(si

t+1) − Vπ
ϕ(si

t)

4. ∇θU(θ) ≈ ̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ(αi
t |si

t)Aπ(si
t , ai

t)

5. θ ← θ + α∇θU(θ)



Policy gradients so far

∇θ𝔼a∼πθ
R(a, s)

̂g =
1
N

N

∑
i=1

∇θ log Pθ(τ(i))R(τ(i)) =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )R(τ(i))

𝔼s∼dπθ(s), a∼πθ(a|s) ∇θ log πθ(a |s)[A(s, a; ϕ))]

max
θ

. 𝔼τ∼Pθ(τ) [R(τ)]
Policy objective:

Advantage actor critic policy gradient:



Another policy objective

𝔼∑
t

dQ(st, at)
dθ

= 𝔼∑
t

dQ(st, at)
dat

dat

dθ

max
θ

. 𝔼τ∼Pθ(τ) [R(τ)]
Previous policy objective:

max
θ

. 𝔼τ∼Pθ(τ) [
T

∑
t=1

Q(st, at)]
New policy objective:

Qs: 

• Can we backpropagate through the Q function approximator?

• If the policy is deterministic we already know how to do it via the chain rule!



Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT ] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at ]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Deep Deterministic Policy Gradients

𝔼 [
T

∑
t=1

dQ (st, at)
dat

dat

dθ ] = 𝔼 [
T

∑
t=1

d
dθ

Q (st, π (st, zt; θ))]Continuous control with deep reinforcement learning, Lilicrap et al. 2016

d
dθ

𝔼 [RT] = 𝔼 [
T

∑
t=1

dRT

dat

dat

dθ ] = 𝔼 [
T

∑
t=1

d
dat

𝔼 [RT |at]
dat

dθ ]
= 𝔼 [

T

∑
t=1

dQ (st, at)
dat

dat

dθ ] = 𝔼 [
T

∑
t=1

d
dθ

Q (st, π (st, zt; θ))]

𝔼∑
t

dQ(st, at)
dθ

= 𝔼
T

∑
t=1

dQ(st, at)
dat

dat

dθ

a = πθ(s)

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)



s DNN

(θQ)

s
DNN 
(θμ) a

Deep Deterministic Policy Gradients

We are following a stochastic behavior policy to collect data.

DDPG :Deep Q learning for continuous actions

a = μ(θ)

Q(s, a)

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

The computational graph:



Deep Deterministic Policy Gradients

Fitting the Q function



Another policy objective

max
θ

. 𝔼τ∼Pθ(τ) [R(τ)]
Previous policy objective:

max
θ

. 𝔼τ∼Pθ(τ) [
T

∑
t=1

Q(st, at)]
New policy objective:

Qs: 

• Can we backpropagate through the Q function approximator?

• If the policy is deterministic we already know how to do it via the chain rule!

• What if the policy is a parametrized Gaussian distribution?



Imagine we knew the reward function ρ(s, a)

πθ(s)

ρ(s, a)

s0

a0

r0

θ

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 



Deterministic policy

πθ(s)

ρ(s, a)

s0

a0

r0

θ
a = πθ(s)

I can compute the gradient with the chain rule.

∇θ ρ(s, a) =
dρ
da

da
dθ

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 

I want to learn  to maximize the average 
reward obtained.

θ

max .
θ

ρ(s0, a)



Stochastic policy

πθ(s)

ρ(s, a)

s0

a0

r0

θ

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 

I want to learn  to maximize the average 
reward obtained.

θ

∇θ ρ(s, a) =
dρ
da

da
dθ

max .
θ

𝔼aρ(s0, a)

∇θ𝔼aρ(s0, a)



Stochastic policy

πθ(s)

ρ(s, a)

s0

a0

r0

θ

𝔼a ∇θ log πθ(s)ρ(s0, a)

Likelihood ratio estimator, works for both 
continuous and discrete actions

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 

I want to learn  to maximize the average 
reward obtained.

θ

max .
θ

𝔼aρ(s0, a)



Example: Gaussian policy

πθ(s)

ρ(s, a)

s0

a0

r0

θ

µ✓(s) �✓(s)

a ∼ 𝒩(μ(s, θ), Σ(s, θ))

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 

If  is constant: σ2

∇θlog πθ(s, a) =
(a − μ(s; θ)) ∂μ(s; θ)

∂θ

σ2

I want to learn  to maximize the average 
reward obtained.

θ

𝔼a ∇θ log πθ(s)ρ(s0, a)

Likelihood ratio estimator, works for both 
continuous and discrete actions

max .
θ

𝔼aρ(s0, a)



Example: Gaussian policy

πθ(s)

ρ(s, a)

s0

a0

r0

θ

µ✓(s) �✓(s)

a ∼ 𝒩(μ(s, θ), Σ(s, θ))

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 

We can either:


• Assume  fixed (not learned)


• Learn  one value for all action coordinates 
(spherical or isotropic Gaussian)


• Learn  (diagonal covariance)


• Learn a full covariance matrix 


σ

σ(s, θ)

σi(s, θ), i = 1⋯n

Σ(s, θ)



Example: Gaussian policy

πθ(s)

ρ(s, a)

s0

a0

r0

θ

µ✓(s) �✓(s)

a ∼ 𝒩(μ(s, θ), Σ(s, θ))

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 

We can either:


• Assume  fixed (not learned)


• Learn  one value for all action coordinates 
(spherical or isotropic Gaussian)


• Learn  (diagonal covariance)


• Learn a full covariance matrix 


σ

σ(s, θ)

σi(s, θ), i = 1⋯n

Σ(s, θ)



Re-parametrization for Gaussian

πθ(s)

ρ(s, a)

s0

r0

θ

µ✓(s) �✓(s)

z

a0

Instead of: a ∼ 𝒩(μ(s, θ), Σ(s, θ))

We can write:   a = μ(s, θ) + zσ(s, θ) z ∼ 𝒩(0, In×n)

Qs:


• Does  depend on  ?


• Does  depend on  ?

a θ

z θ

max .
θ

𝔼aρ(s0, a)

max .
θ

𝔼zρ(s0, a(z))

Because:  
                

𝔼z(μ(s, θ) + zσ(s, θ)) = μ(s, θ)
Varz(μ(s, θ) + zσ(s, θ)) = σ(s, θ)2In×n



Re-parametrization for Gaussian

πθ(s)

ρ(s, a)

s0

r0

θ

µ✓(s) �✓(s)

z

a0

What do we gain? 


∇θ𝔼z [ρ (a(θ, z), s)] = 𝔼z
dρ (a(θ, z), s)

da
da(θ, z)

dθ
da(θ, z)

dθ
=

dμ(s, θ)
dθ

+ z
dσ(s, θ)

dθ

max .
θ

𝔼aρ(s0, a)

max .
θ

𝔼zρ(s0, a(z))

Instead of: a ∼ 𝒩(μ(s, θ), Σ(s, θ))

We can write:   a = μ(s, θ) + zσ(s, θ) z ∼ 𝒩(0, In×n)



Re-parametrization for Gaussian

πθ(s)

ρ(s, a)

s0

r0

θ

µ✓(s) �✓(s)

z

a0

Sample estimate:

∇θ
1
N

N

∑
i=1

[ρ (a(θ, zi), s)] =
1
N

N

∑
i=1

dρ (a(θ, z), s)
da

da(θ, z)
dθ

|z=zi

What do we gain? 


∇θ𝔼z [ρ (a(θ, z), s)] = 𝔼z
dρ (a(θ, z), s)

da
da(θ, z)

dθ
da(θ, z)

dθ
=

dμ(s, θ)
dθ

+ z
dσ(s, θ)

dθ

max .
θ

𝔼aρ(s0, a)

max .
θ

𝔼zρ(s0, a(z))

Instead of: a ∼ 𝒩(μ(s, θ), Σ(s, θ))

We can write:   a = μ(s, θ) + zσ(s, θ) z ∼ 𝒩(0, In×n)



Re-parametrization for Gaussian

πθ(s)

ρ(s, a)

s0

r0

θ

µ✓(s) �✓(s)

z ∼ 𝒩(0,I)z

a0 a = μ(s, θ) + z ⊙ σ(s, θ)

The pathwise 
derivative uses the 

derivative of the 
reward w.r.t. the 

action!

𝔼a ∇θ log πθ(s, a)ρ(s, a) 𝔼z
dρ (a(θ, z), s)

da
da(θ, z)

dθ

Likelihood ratio grad estimator: Pathwise derivative:



Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

Using a Q-function
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= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Deep Deterministic Policy Gradients

𝔼 [
T

∑
t=1

dQ (st, at)
dat

dat

dθ ] = 𝔼 [
T

∑
t=1

d
dθ

Q (st, π (st, zt; θ))]Continuous control with deep reinforcement learning, Lilicrap et al. 2016
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∑
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dQ(st, at)
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dθ

a = πθ(s)

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)



Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)

I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈
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∑
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dQ (st, at)
dat

dat

dθ ] = 𝔼 [
T

∑
t=1

d
dθ

Q (st, π (st, zt; θ))]Continuous control with deep reinforcement learning, Lilicrap et al. 2016
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dθ

𝔼 [RT] = 𝔼 [
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∑
t=1

dRT

dat
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Q (st, π (st, zt; θ))]

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

Re-parametrized Policy Gradients



s DNN

DPG in Simulated Physics
I Physics domains are simulated in MuJoCo
I End-to-end learning of control policy from raw pixels s
I Input state s is stack of raw pixels from last 4 frames
I Two separate convnets are used for Q and ⇡
I Policy ⇡ is adjusted in direction that most improves Q

Q(s,a)

π(s)

as DNN a
(✓µ)

(✓Q)

z

z ⇠ N (0, 1)
a = µ(s; ✓) + z�(s; ✓)

Learning continuous control by stochastic value gradients, Hees et al.



Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)

I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈
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dQ (st, at)
dat

dat

dθ ] = 𝔼 [
T

∑
t=1

d
dθ

Q (st, π (st, zt; θ))]
deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Only works if P(s2 | s1, a1) is known _̈

• Reparameterize: .  is noise from fixed distributionat = π(st, zt, θ) zt

Re-parametrized Policy Gradients

a = µ(s; ✓) + z�(s; ✓)

da(θ, z)
dθ

=
dμ(s, θ)

dθ
+ z

dσ(s, θ)
dθ
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𝔼∑
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dθ

= 𝔼
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t=1
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dθ
= 𝔼

T

∑
t=1

dQ(st, at)
dat ( dμ(st; θ)

dθ
+ zt

dσ(st; θ)
dθ )



Stochastic Value Gradients V0
SVG(0) Algorithm

I Learn Q� to approximate Q⇡,�
, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do
Execute policy ⇡✓ to collect T timesteps of data

Update ⇡✓ using g / r✓

P
T

t=1
Q(st , ⇡(st , zt ; ✓))

Update Q� using g / r�

P
T

t=1
(Q�(st , at) � Q̂t)

2
, e.g. with TD(�)

end for

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015

Learning continuous control by stochastic value gradients, Hees et al.



Computing Gradients of Expectations

∇θ𝔼x∼Pθ(x) f(x)
When the variable w.r.t. which we are differentiating appears in the 
distribution:

∇θ𝔼x∼P(x) f(x(θ)) = 𝔼x∼P(x) ∇θ f(x(θ)) = 𝔼x∼P(x)
df(x(θ))

dx
dx
dθ

When the variable w.r.t. which we are differentiating appears inside the 
expectation:

Likelihood ratio gradient estimator:

𝔼x∼Pθ(x) ∇θlog Pθ(x)f(x)

∇θ𝔼z∼𝒩(0,I) f(x(z, θ)) = 𝔼z∼𝒩(0,I)
df
dx

(
dμ(θ)

dθ
+ z

dσ(θ)
dθ

)

Re-parametrized gradient for Gaussian distributions:
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Universal value function Approximators

Universal Value Function Approximators, Schaul et al.

V(s; θ) V(s, g; θ)

• All methods we have learnt so far can be used.

• At the beginning of an episode, we sample not only a start state but also 

a goal g, which stays constant throughout the episode

• The experience tuples should contain the goal.

π(s; θ) π(s, g; θ)

(s, a, r, s′￼) (s, g, a, r, s′￼)



Hindsight Experience Replay

No reward :-(

Goal g
Our reacher at the end of the 
episode (s, g, a,0,s′￼)

Goal g’

Our reacher at the end of the episode 
(s, g′￼, a,1,s′￼)

reward :-)

Main idea: use failed executions under one goal , as successful executions 
under an alternative goal  (which is where we ended at the end of the 
episode).

g
g′￼



Hindsight Experience Replay

Usually as additional goal 
we pick the goal that this 
episode achieved, and the 
reward becomes non zero

 the states of the current episodeG :



Hindsight Experience Replay


