Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control

Determinist PG, Re-parametrized PG

Spring 2021, CMU 10-403

Katerina Fragkiadaki

Advantage Actor-Critic

0. Initialize policy parameters 6 and critic parameters ¢ .
1. Sample trajectories {7; = {s/,a}},_,} by deploying the current policy (| s,) -

2. Fit value function Vg(s) by MC or TD estimation (update ¢)
3. Compute action advantages A”(Sti, ai) = R(Sti, ai) + yVZb[(Sti+l) — Vg(sti

4.V U(O) ~ § = Z Z Vglog my(a | sHA™ (s, a)

llt—

5.0 =« 0+ aV,U0)

Policy gradients so far

Policy objective:

max. E._p [R@)

Advantage actor critic policy gradient:

[ESNd”G(S), a~mnpy(als) Vﬁlog ”e(a | S) [A(S, a, ¢))]

Another policy objective

Previous policy objective:

max. E._p [R@)

New policy objective:

T

max. E__p Z Q(s,, a,)
=1

Qs:

e Can we backpropagate through the Q function approximator?
e If the policy is deterministic we already know how to do it via the chain rule!

. Z dQ(S, a,) Z dQ(st a,) dat

5 5

Deep Deterministic Policy Gradients

ar

dQ(s,, a,)
) d0

[

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

- Z dQ(St, at) dat
da do

a = my(s)

=1 !

Deep Deterministic Policy Gradients

The computational graph:

We are following a stochastic behavior policy to collect data.
DDPG :Deep Q learning for continuous actions

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Deep Deterministic Policy Gradients

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|#%) and actor y(s|6*) with weights §< and 6+,
Initialize target network Q' and u/ with weights 9 « 69, 9#° + 9+
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s,
fort=1,Tdo
Select action a; = u(s¢|6*) + N; according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s; 1
Store transition (sy, a;, 74, S¢+1) in R
Sample a random minibatch of N transitions (s;, a;, 7, S;+1) from R
Set y; = r; + YQ' (Siv1, 1 (5i410*)|09) L :
Update critic by minimizing the loss: L = + 3, (y: — Q(s:,a:/609))? Fitting the Q function
Update the actor policy using the sampled policy gradient:

Si

1
VQ#J ~ N ;VCLQ(S) a’loQ)|s=8i,a=u(si)v9”p’(s|0u)

Update the target networks:
09 «— 769 + (1 —7)9°
O — T + (1 — 7)o"

end for
end for

Another policy objective

Previous policy objective:

max. £ py) R

New policy objective:

T

max. E__p Z Q(s,, a,)
=1

Qs:

e Can we backpropagate through the Q function approximator?

e If the policy is deterministic we already know how to do it via the chain rule!
e What if the policy is a parametrized Gaussian distribution?

Imagine we knew the reward function p(s, a)

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

Deterministic policy

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn @ to maximize the average
reward obtained.

max. p(sy, a)
0

| can compute the gradient with the chain rule.

dp da

a = 7[(9(5) V@,O(S, Cl) = %E

Stochastic policy

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn @ to maximize the average
reward obtained.

max. [E_p(sy, a)
0

VQ[Eap(SOa a)

Stochastic policy

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn @ to maximize the average
reward obtained.

max. [E_p(sy, a)
0

Likelihood ratio estimator, works for both
continuous and discrete actions

E, Vglog my(s)p(sy, @)

Example: Gaussian policy

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn @ to maximize the average
reward obtained.

max. [E_p(sy,a)
0

Likelihood ratio estimator, works for both
continuous and discrete actions

E, Volog my(s)p(sy, a)

If 62 is constant:
ou(s; 0)
(a — p(s; 0)—

G2

V@log ﬂ@(S, a) —

Example: Gaussian policy

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

We can either:
e Assume o fixed (nhot learned)

e Learn o(s, @) one value for all action coordinates
(spherical or isotropic Gaussian)

o Learn 6'(s,0),i = 1---n (diagonal covariance)

 Learn a full covariance matrix 2(s, 8)

Example: Gaussian policy

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

We can either:
e Assume o fixed (nhot learned)

e Learn o(s, &) one value for all action coordinates
(spherical or isotropic Gaussian)

o Learn 6'(s,0),i = 1---n (diagonal covariance)

 Learn a full covariance matrix 2(s, 8)

Re-parametrization for Gaussian

Instead of: a ~ A (u(s, 0), 2(s, 0))

We can write: a = u(s, 0) + zo(s,0) z ~ V(0,1)

Because: [E_(u(s, 0) + zo(s, 0)) = u(s, 0)
Var (u(s, 0) + zo(s, 0)) = o(s, 0)*1

nxn

Qs:

0 3 - Does a depend on 0 ?

max. [p(sy, a(z)) - Does zdependon 6 ?

Re-parametrization for Gaussian

Instead of: a ~ A (u(s, 0), 2(s, 0))

We can write: a = u(s, 0) + zo(s,0) z ~ N (0, Ian)

What do we gain?
Vo, |p (a(é’, z),s)] = E,

da(0,z) du(s,0) do(s, 0)
0 40 T a0

dp (a(0,2),s) da(0, 7)
da do

Re-parametrization for Gaussian

Instead of: a ~ A (u(s, 0), 2(s, 0))

We can write: a = u(s, 0) + zo(s,0) z ~ N (0, Inxn)

What do we gain?
Vo, |p (a(é’, z),s)] = E,

da(0,z) du(s,0) do(s, 0)
a9 do do

dp (a(0,2),s) da(0, 7)
da do

max. [E_p(sy,a) Sample estimate:

* V@l i [p (a(@, Z,-),s)] =

1
max. [E,p(sy, a(z)) N3 N1

Re-parametrization for Gaussian

Likelihood ratio grad estimator:

VA AN

! dp (a(0,2),5) da(0,z)
2 da df

= Vlog my(s,a)p(s, a)

Deep Deterministic Policy Gradients

ar

dQ(s,, a,)
) d0

[

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

- Z dQ(St, at) dat
da do

a = my(s)

=1 !

Re-parametrized Policy Gradients

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes
the distribution to sample from)

a = pu(s;0) + zo(s;0)

Learning continuous control by stochastic value gradients, Hees et al.

Re-parametrized Policy Gradients

0

deterministic node: the value is a
deterministic function of its input
I stochastic node: the value is sampled
based on its input (which parametrizes
o the distribution to sample from)

e Reparameterize: a, = n(s, z,, 0). z, Is hoise from fixed distribution

0

5

. Z dQ(st, a,)

5

a = u(s;0)+ zo(s;0)
I

=

ZT: dQ(st, at) da, _ Z dQ(st, a) <d,u(St, 9) da(st, e)>
do do

=1 =1 Ay

Stochastic Value Gradients VO

for iteration=1,2,... do
Execute policy my to collect T timesteps of data

Update g using g o< Vo 3.7 Q(s¢, 7(se, z:; 0))

Update Qg using g o< Vo 3.0 (Qq(se, a:) — Q¢)?, e.g. with TD()\)
end for

Computing Gradients of Expectations

When the variable w.r.t. which we are differentiating appears inside the
expectation:

df(x(0)) dx
dx do

V(9|ExNP(x)f ()C(@)) — [EXNP(X) VQf ()C(H)) — |Ex~P(x)

> When the variable w.r.t. which we are differentiating appears in the
distribution: -
Istribution VH P f(x)

Likelihood ratio gradient estimator:

—x~Py(x) Vé’log P Q(X)f ()C)
Re-parametrized gradient for Gaussian distributions:

df dud) do(0)

7 _ZN/V(OJ)f(x(Z’ 0)) = [EZNA/(O,I) dx(do i do

Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control

Goal Relabeling

Spring 2021, CMU 10-403

Katerina Fragkiadaki

Universal value function Approximators

V(is;0) = V(s,g;0)

-

e All methods we have learnt so far can be used.

e At the beginning of an episode, we sample not only a start state but also
a goal g, which stays constant throughout the episode

e The experience tuples should contain the goal.

(s,a,r,s’) = (S, g,a,r, S’)

Universal Value Function Approximators, Schaul et al.

7(s; 0)

n(s, g;0)

Hindsight Experience Replay

Marcin Andrychowicz*, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel’, Wojciech Zaremba'
OpenAl

Main idea: use failed executions under one goal g, as successful executions

under an alternative goal g’ (which is where we ended at the end of the
episode).

/ Goal g’
/ 4
® No reward :-(reward :-)
Goal g Our reacher at the end of the Our reacher at the end of the episode

episode (s, g,a,O,s’) (S,g,’a,l,sf)

Hindsight Experience Replay

Algorithm 1 Hindsight Experience Replay (HER)

Given:
e an off-policy RL algorithm A, >e.g. DQN, DDPG, NAF, SDQN
e astrategy S for sampling goals for replay, >e.g S(sg,...,s7) =m(sr)
e areward functionr: S x A x G — R. >e.g r(s,a,g9) = —[fy(s) =0
Initialize A > e.g. initialize neural networks

Initialize replay buffer R
for episode=1, M do
Sample a goal g and an initial state sy.
fort = 0,7 —1do
Sample an action a; using the behavioral policy from A:
a; < mp(5¢]|9) > || denotes concatenation
Execute the action a; and observe a new state s; 1
end for
fort = 0,7 —1do
Ty ‘= T(St, at,g)

Store the transition (s¢||g, a¢, r¢, Si+1/lg) in R > standard experience replay
Sample a set of additional goals for replay G := S(current episode) o
for ¢’ € G do G : the states of the current episode
r' = 1r(s,ar,9')
Store the transition (s;||¢’, a¢, v, s¢v1l|g’) in R > HER
end for
end for \Usually as additional goal
fort = 1, N do we pick the goal that this

Sample a minibatch B from the replay buffer R
Perform one step of optimization using A and minibatch B
end for
end for

episode achieved, and the
reward becomes non zero

Hindsight Experience Replay

- = DDPG - DDPG+count-based exploration - DDPG+HER — DDPG+HER (version from Sec. 4.5)

pushing sliding pick-and-place
100% 100% 100% :

80% 80% 80%
9
€ 60% * 60% 60%
8 40% 40% 40%
>

20% 20% 20%

0% —— 0% = = _mm ma e mm m 0%

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

epoch number (every epoch = 800 episodes = 800x50 timesteps)

