
Natural Policy Gradients

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon

School of Computer Science

Fall 2020, CMU 10-703

Stepsize for Actor-Cri;c?Actor-critic algorithms (with discount)

0. Ini;alize policy parameters θ and cri;c parameters ϕ .
1. Sample trajectories {τi = {si

t , ai
t}T

i=0} by deploying the current policy πθ(at |st) .
2. Fit value func;on Vπ

ϕ(s) by MC or TD es;ma;on (update ϕ)

3. Compute ac;on advantages Aπ(si
t , ai

t) = R(si
t , ai

t) + γVπ
ϕ(si

t+1) − Vπ
ϕ(si

t)

4. ∇θU(θ) ≈ ̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ(αi
t |si

t)Aπ(si
t , ai

t)

5. θ ← θ+α∇θU(θ)

What should be the step size?

Choosing a stepsize in RL VS SL

̂gPG ≈
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t)Aπ(s(i)
t , a(i)

t), τi ∼ πθ

Reinforcement learning objec;ve

Supervised learning objec;ve using expert ac;ons :ã ∼ π*

USL(θ) =
1
N

N

∑
i=1

T

∑
t=1

log πθ(α̃(i)
t |s(i)

t), τi ∼ π* (+regulariza;on)

We want to take a gradient step:
θ′ = θ + α∇θU(θ)

πθold

̂gSL ≈
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α̃(i)
t |s(i)

t), τi ∼ π*

with gradient:

with gradient:

ÛPG ≈
1
N

N

∑
i=1

T

∑
t=1

log πθ(α(i)
t |s(i)

t)Aπ(s(i)
t , a(i)

t), τi ∼ πθ

Choosing a stepsize

θold

θnew

μθ(s)
σθ(s)

σθnew
(s)

μθnew
(s)

Architecture design

two network design + simple & stable
- no shared features between actor & critic

shared network design

s

πθ(a |s)

̂Vπ
ϕ(s)

• Step too big: Bad policy->data collected under bad policy-> we cannot recover. In
Supervised Learning, data does not depend on neural network weights.

• Step too small: Not efficient use of experience. In Supervised Learning, data can be
trivially re-used.

Choosing a stepsize

θold

θnew

μθ(s)
σθ(s)

σθnew
(s)

μθnew
(s)

Architecture design

two network design + simple & stable
- no shared features between actor & critic

shared network design

s

πθ(a |s)

̂Vπ
ϕ(s)

Gradient descent in parameter space does not take into account the resulting distance
in the (output) policy space between and πθold

(s) πθnew
(s)

• Step too big: Bad policy->data collected under bad policy-> we cannot recover. In
Supervised Learning, data does not depend on neural network weights.

• Step too small: Not efficient use of experience. In Supervised Learning, data can be
trivially re-used.

θnew = θold + α ⋅ ̂g

The same parameter step changes the policy more or less
drama;cally depending on where in the parameter space we are.

Δθ = − 2

The Problem is More Than Step Size

Consider a family of policies with parametrization:

⇡✓(a) =

⇢
�(✓) a = 1
1� �(✓) a = 2

Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

Big question: how do we come up with an update rule that doesn’t ever change the
policy more than we meant to?

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 9 / 41

The Problem is More Than Step Size

Consider a family of policies with parametrization:

⇡✓(a) =

⇢
�(✓) a = 1
1� �(✓) a = 2

Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

Big question: how do we come up with an update rule that doesn’t ever change the
policy more than we meant to?

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 9 / 41

The Problem is More Than Step Size

Consider a family of policies with parametrization:

⇡✓(a) =

⇢
�(✓) a = 1
1� �(✓) a = 2

Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

Big question: how do we come up with an update rule that doesn’t ever change the
policy more than we meant to?

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 9 / 41

Consider a family of policies with parametriza;on:

πθ(a) = { σ(θ) a = 1
1 − σ(θ) a = 2

Choosing a stepsize

We will use the following to denote values of parameters and
corresponding policies before and a\er an update:

Two Limitations of “Vanilla” Policy Gradient Methods

I Hard to choose stepsizes
I Input data is nonstationary due to changing policy: observation and reward

distributions change
I Bad step is more damaging than in supervised learning, since it a↵ects

visitation distribution
I Step too far ! bad policy
I Next batch: collected under bad policy
I Can’t recover—collapse in performance

I Sample e�ciency
I Only one gradient step per environment sample
I Dependent on scaling of coordinates

Nota;on

θnew = θold + α ⋅ ̂g

θold → θnew
πold → πnew

θ → θ′

π → π′

Gradient Descent in Distribu;on Space

∇θ JPG(θ)
∥∇θ JPG(θ)∥

= lim
ϵ→0

1
ϵ

arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

d * = arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

θnew = θold + d *

Consider a parameterized distribution and an objective that depends on
through and for which we want to take a gradient step.

πθ U(θ) θ
πθ

Gradient Descent in Distribu;on Space

∇θ JPG(θ)
∥∇θ JPG(θ)∥

= lim
ϵ→0

1
ϵ

arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

d * = arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

θnew = θold + d *

Consider a parameterized distribution and an objective that depends on
through and for which we want to take a gradient step.

πθ U(θ) θ
πθ

Euclidean distance in parameter space

d * = arg max
∥d∥≤ϵ

U(θ + d)

It is hard to predict how different is from . It is hard to pick the threshold
epsilon.

πθnew
πθold

Gradient descent: the step in parameter space is determined by considering the Euclidean
distance of the parameter vectors before and after the update:

Gradient Descent in Distribu;on Space

∇θ JPG(θ)
∥∇θ JPG(θ)∥

= lim
ϵ→0

1
ϵ

arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

d * = arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

d * = arg max
KL(πθ∥πθ+d)≤ϵ

U(θ + d)

KL divergence in distribution space

Natural gradient descent: the step in parameter space is determined by considering
the KL divergence in the distributions before and after the update:

Easier to pick the distance threshold!

θnew = θold + d *

Consider a parameterized distribution and an objective that depends on
through and for which we want to take a gradient step.

πθ U(θ) θ
πθ

Euclidean distance in parameter space

d * = arg max
∥d∥≤ϵ

U(θ + d)

It is hard to predict how different is from . It is hard to pick the threshold
epsilon.

πθnew
πθold

Gradient descent: the step in parameter space is determined by considering the Euclidean
distance of the parameter vectors before and after the update:

Gradient Descent in Distribu;on Space

∇θ JPG(θ)
∥∇θ JPG(θ)∥

= lim
ϵ→0

1
ϵ

arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

d * = arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

d * = arg max
KL(πθ∥πθ+d)≤ϵ

U(θ + d)

KL divergence in distribution space

Natural gradient descent: the step in parameter space is determined by considering
the KL divergence in the distributions before and after the update:

Easier to pick the distance threshold!
DKL(P∥Q) = ∑

i

P(i)log (P(i)
Q(i))

DKL(P∥Q) = ∫
∞

−∞
p(x)log (p(x)

q(x)) d x

θnew = θold + d *

Consider a parameterized distribution and an objective that depends on
through and for which we want to take a gradient step.

πθ U(θ) θ
πθ

Euclidean distance in parameter space

d * = arg max
∥d∥≤ϵ

U(θ + d)

It is hard to predict how different is from . It is hard to pick the threshold
epsilon.

πθnew
πθold

Gradient descent: the step in parameter space is determined by considering the Euclidean
distance of the parameter vectors before and after the update:

Solving the KL Constrained Problem

d * = arg max
d

U(θ + d)−λ(DKL [πθ∥πθ+d]−ϵ)

Unconstrained penalized objective:

First order Taylor expansion for the objective and second order for the KL!

≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d−λ(DKL(πθold

|πθold
) + d⊤ ∇θDKL(πθold

|πθ) |θ=θold

+
1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d))+λϵ

≈ arg max
d

J(θold) + ∇θ J(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θKL [πθ∥πθ+d] |θ=θold

d) + λϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

d * = arg max
KL(πθ∥πθ+d)≤ϵ

U(θ + d)

πnew = argmaxπ�̄�πold
(π)

s.t. 𝔼s∼pπold(s)DKL(π∥πold)[s] ≤ ϵ

Solving the KL Constrained Problem

d * = arg max
d

U(θ + d)−λ(DKL [πθ∥πθ+d]−ϵ)

Unconstrained penalized objective:

First order Taylor expansion for the objective and second order for the KL!

≈ arg max
d

U(θold)+ ∇θU(θ) |θ=θold
⋅ d − λ(DKL(πθold

|πθold
) + d⊤ ∇θDKL(πθold

|πθ) |θ=θold

+
1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d))+λϵ

≈ arg max
d

J(θold) + ∇θ J(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θKL [πθ∥πθ+d] |θ=θold

d) + λϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

d * = arg max
KL(πθ∥πθ+d)≤ϵ

U(θ + d)

πnew = argmaxπ�̄�πold
(π)

s.t. 𝔼s∼pπold(s)DKL(π∥πold)[s] ≤ ϵ

what is this?

The police gradient: ∇θ log πθ(a |s)A(a |s) |θ=θold

Solving the KL Constrained Problem

d * = arg max
d

U(θ + d)−λ(DKL [πθ∥πθ+d]−ϵ)

Unconstrained penalized objective:

First order Taylor expansion for the objective and second order for the KL!

≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d−λ(DKL(πθold

|πθold
) + d⊤ ∇θDKL(πθold

|πθ) |θ=θold

+
1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d))+λϵ

≈ arg max
d

J(θold) + ∇θ J(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θKL [πθ∥πθ+d] |θ=θold

d) + λϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

d * = arg max
KL(πθ∥πθ+d)≤ϵ

U(θ + d)

πnew = argmaxπ�̄�πold
(π)

s.t. 𝔼s∼pπold(s)DKL(π∥πold)[s] ≤ ϵ

Solving the KL Constrained Problem

d * = arg max
d

U(θ + d)−λ(DKL [πθ∥πθ+d]−ϵ)

Unconstrained penalized objective:

First order Taylor expansion for the objective and second order for the KL!

≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d−λ(DKL(πθold

|πθold
) + d⊤ ∇θDKL(πθold

|πθ) |θ=θold

+
1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d))+λϵ

≈ arg max
d

J(θold) + ∇θ J(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θKL [πθ∥πθ+d] |θ=θold

d) + λϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

d * = arg max
KL(πθ∥πθ+d)≤ϵ

U(θ + d)

πnew = argmaxπ�̄�πold
(π)

s.t. 𝔼s∼pπold(s)DKL(π∥πold)[s] ≤ ϵ

Solving the KL Constrained Problem

d * = arg max
d

U(θ + d)−λ(DKL [πθ∥πθ+d]−ϵ)

Unconstrained penalized objective:

First order Taylor expansion for the objective and second order for the KL!

≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d)+λϵ

≈ arg max
d

J(θold) + ∇θ J(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θKL [πθ∥πθ+d] |θ=θold

d) + λϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

d * = arg max
KL(πθ∥πθ+d)≤ϵ

U(θ + d)

πnew = argmaxπ�̄�πold
(π)

s.t. 𝔼s∼pπold(s)DKL(π∥πold)[s] ≤ ϵ

Taylor expansion of KL

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x))

Taylor expansion of KL

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x))

Taylor expansion of KL

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x))

∇θDKL(pθold
|pθ) |θ=θold

= −∇θ𝔼x∼pθold
log Pθ(x) |θ=θold

+ ∇θ𝔼x∼pθold
log Pθold

(x) |θ=θold

Taylor expansion of KL

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x))

∇θDKL(pθold
|pθ) |θ=θold

= −∇θ𝔼x∼pθold
log Pθ(x) |θ=θold

+ ∇θ𝔼x∼pθold
log Pθold

(x) |θ=θold

= −𝔼x∼pθold
∇θlog Pθ(x) |θ=θold

Taylor expansion of KL

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x))

∇θDKL(pθold
|pθ) |θ=θold

= −∇θ𝔼x∼pθold
log Pθ(x) |θ=θold

+ ∇θ𝔼x∼pθold
log Pθold

(x) |θ=θold

= −𝔼x∼pθold
∇θlog Pθ(x) |θ=θold

= −𝔼x∼pθold

1
Pθold

(x)
∇θPθ(x) |θ=θold

Taylor expansion of KL

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x))

∇θDKL(pθold
|pθ) |θ=θold

= −∇θ𝔼x∼pθold
log Pθ(x) |θ=θold

+ ∇θ𝔼x∼pθold
log Pθold

(x) |θ=θold

= −𝔼x∼pθold
∇θlog Pθ(x) |θ=θold

= −𝔼x∼pθold

1
Pθold

(x)
∇θPθ(x) |θ=θold

= ∫x
Pθold

(x)
1

Pθold
(x)

∇θPθ(x) |θ=θold

Taylor expansion of KL

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x))

∇θDKL(pθold
|pθ) |θ=θold

= −∇θ𝔼x∼pθold
log Pθ(x) |θ=θold

+ ∇θ𝔼x∼pθold
log Pθold

(x) |θ=θold

= −𝔼x∼pθold
∇θlog Pθ(x) |θ=θold

= −𝔼x∼pθold

1
Pθold

(x)
∇θPθ(x) |θ=θold

= ∫x
Pθold

(x)
1

Pθold
(x)

∇θPθ(x) |θ=θold

= ∫x
∇θPθ(x) |θ=θold

Taylor expansion of KL

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x))

∇θDKL(pθold
|pθ) |θ=θold

= −∇θ𝔼x∼pθold
log Pθ(x) |θ=θold

+ ∇θ𝔼x∼pθold
log Pθold

(x) |θ=θold

= −𝔼x∼pθold
∇θlog Pθ(x) |θ=θold

= −𝔼x∼pθold

1
Pθold

(x)
∇θPθ(x) |θ=θold

= ∫x
Pθold

(x)
1

Pθold
(x)

∇θPθ(x) |θ=θold

= ∫x
∇θPθ(x) |θ=θold

= ∇θ ∫x
Pθ(x) |θ=θold

.

= 0

Taylor expansion of KL

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x))

∇2
θDKL(pθold

|pθ) |θ=θold
= −𝔼x∼pθold

∇2
θlog Pθ(x) |θ=θold

Taylor expansion of KL

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x))

∇2
θDKL(pθold

|pθ) |θ=θold
= −𝔼x∼pθold

∇2
θlog Pθ(x) |θ=θold

= −𝔼x∼pθold
∇θ(∇θPθ(x)

Pθ(x)) |θ=θold

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

Taylor expansion of KL

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x))

∇2
θDKL(pθold

|pθ) |θ=θold
= −𝔼x∼pθold

∇2
θlog Pθ(x) |θ=θold

= −𝔼x∼pθold
∇θ(∇θPθ(x)

Pθ(x)) |θ=θold

= −𝔼x∼pθold (∇2
θPθ(x)Pθ(x) − ∇θPθ(x)∇θPθ(x)⊤

Pθ(x)2) |θ=θold

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

Taylor expansion of KL

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x))

∇2
θDKL(pθold

|pθ) |θ=θold
= −𝔼x∼pθold

∇2
θlog Pθ(x) |θ=θold

= −𝔼x∼pθold
∇θ(∇θPθ(x)

Pθ(x)) |θ=θold

= −𝔼x∼pθold (∇2
θPθ(x)Pθ(x) − ∇θPθ(x)∇θPθ(x)⊤

Pθ(x)2) |θ=θold

= −𝔼x∼pθold

∇2
θPθ(x) |θ=θold

Pθold
(x)

+ 𝔼x∼pθold
∇θlog Pθ(x)∇θlog Pθ(x)⊤ |θ=θold

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

Taylor expansion of KL

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x))

∇2
θDKL(pθold

|pθ) |θ=θold
= −𝔼x∼pθold

∇2
θlog Pθ(x) |θ=θold

= −𝔼x∼pθold
∇θ(∇θPθ(x)

Pθ(x)) |θ=θold

= −𝔼x∼pθold (∇2
θPθ(x)Pθ(x) − ∇θPθ(x)∇θPθ(x)⊤

Pθ(x)2) |θ=θold

= −𝔼x∼pθold

∇2
θPθ(x) |θ=θold

Pθold
(x)

+ 𝔼x∼pθold
∇θlog Pθ(x)∇θlog Pθ(x)⊤ |θ=θold

= 𝔼x∼pθold
∇θlog Pθ(x)∇θlog Pθ(x)⊤ |θ=θold

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

Taylor expansion of KL

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)

∇2
θDKL(pθold

|pθ) |θ=θold
= 𝔼x∼pθold

∇θlog Pθ(x)∇θlog Pθ(x)⊤ |θ=θold

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

F(θold) = 𝔼x∼pθold [∇θlog pθ(x) |θ=θold
∇θlog pθ(x) |⊤

θ=θold]

The Fisher information matrix

F(θold) ≈
N

∑
i=1,x(i)∼pθold

[∇θlog pθ(x(i)) |θ=θold
∇θlog pθ(x(i)) |⊤

θ=θold]
Can be approximated by sampling:

Solving the KL Constrained Problem

d * = arg max
d

U(θ + d)−λ(DKL [πθ∥πθ+d]−ϵ)

Unconstrained penalized objective:

First order Taylor expansion for the objective and second order for the KL!

≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d)+λϵ

≈ arg max
d

J(θold) + ∇θ J(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θKL [πθ∥πθ+d] |θ=θold

d) + λϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

πnew = argmaxπ�̄�πold
(π)

s.t. 𝔼s∼pπold(s)DKL(π∥πold)[s] ≤ ϵ

= arg max
d

∇θU(θ) |θ=θold
⋅ d −

1
2

λ(d⊤F(θold)d)

= arg min
d

− ∇θU(θ) |θ=θold
⋅ d +

1
2

λ(d⊤F(θold)d)

Substitute for the information matrix:

d * = arg max
d

U(θ + d) − λ(DKL [πθ∥πθ+d] − ϵ)

Unconstrained penalized objective:

First order Taylor expansion for the loss and second order for the KL:

≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d) + λϵ

= arg max
d

∇θU(θ) |θ=θold
⋅ d −

1
2

λ(d⊤F(θold)d)

= arg min
d

− ∇θU(θ) |θ=θold
⋅ d +

1
2

λ(d⊤F(θold)d)

Substitute for the information matrix:

Solving the KL Constrained Problem

Setting the gradient to zero: 0 =
∂
∂d (−∇θU(θ) |θ=θold

⋅ d +
1
2

λ(d⊤F(θold)d))
= −∇θU(θ) |θ=θold

+
1
2

λ(F(θold))d

d =
2
λ

F−1(θold)∇θU(θ) |θ=θold

θnew = θold + α ⋅ gN

gN = F−1(θold)∇θU(θ) |θ=θold

Solving the KL Constrained Problem

Setting the gradient to zero: 0 =
∂
∂d (−∇θU(θ) |θ=θold

⋅ d +
1
2

λ(d⊤F(θold)d))
= −∇θU(θ) |θ=θold

+
1
2

λ(F(θold))d

d =
2
λ

F−1(θold)∇θU(θ) |θ=θold

θnew = θold + α ⋅ gN

gN = F−1(θold)∇θU(θ) |θ=θold

Solving the KL Constrained Problem

The natural gradient:

Natural Gradient Descent
Setting the gradient to zero: 0 =

∂
∂d (−∇θU(θ) |θ=θold

⋅ d +
1
2

λ(d⊤F(θold)d))
= −∇θU(θ) |θ=θold

+
1
2

λ(F(θold))d

d =
2
λ

F−1(θold)∇θU(θ) |θ=θold

The natural gradient: what is this?

The police gradient: ∇θ log πθ(a |s)A(a |s)θnew = θold + α ⋅ gN

gN = F−1(θold)∇θU(θ) |θ=θold

Natural Gradient Descent
Setting the gradient to zero: 0 =

∂
∂d (−∇θU(θ) |θ=θold

⋅ d +
1
2

λ(d⊤F(θold)d))
= −∇θU(θ) |θ=θold

+
1
2

λ(F(θold))d

d =
2
λ

F−1(θold)∇θU(θ) |θ=θold

The natural gradient:

θnew = θold+α ⋅ gN

How shall we choose stepsize along the
natural gradient direction

gN = F−1(θold)∇θU(θ) |θ=θold

Stepsize along the Natural Gradient direc;on

The natural gradient: gN = F−1(θold)∇θU(θ)

θnew = θold+α ⋅ gN

DKL(πθold
|πθ) ≈

1
2

(θ − θold)⊤F(θold)(θ − θold) =
1
2

(αgN)⊤F(αgN)

1
2

(αgN)⊤F(αgN) = ϵ

I want the KL between old and new policies to be at most .ϵ

α =
2ϵ

(g⊤
NF−1gN)

Let’s solve for the stepzise along the natural gradient direction:

By the 2nd order Taylor expansion of KL:

Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation

ϵθk+1 = θk +
2ϵ

̂gT
k

̂F−1
k ̂gk

̂F−1
k ̂gk

̂F−1
k

Trust Region Policy Optimization

Trust Region Policy Optimization is implemented as TNPG plus a line search. Putting
it all together:

Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters ✓0
for k = 0, 1, 2, ... do

Collect set of trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Form sample estimates for

policy gradient ĝk (using advantage estimates)

and KL-divergence Hessian-vector product function f (v) = Ĥkv

Use CG with ncg iterations to obtain xk ⇡ Ĥ
�1
k

ĝk

Estimate proposed step �k ⇡

q
2�

xT
k
Ĥk xk

xk

Perform backtracking line search with exponential decay to obtain final update

✓k+1 = ✓k + ↵j�k

end for

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 33 / 41

TRPO= NPG +Linesearch+monotonic improvement theorem

θk+1 = θk +
2ϵ

̂gT
k

̂F−1
k ̂gk

̂F−1
k ̂gk

2ϵ

NPG : θk+1 = θk +
2ϵ

̂gT
k

̂F−1
k ̂gk

̂F−1
k ̂gk

Due to the quadra;c approxima;on, the KL constraint may be violated! What if we just do a
line search to find the best stepsize, making sure:

• I am improving my objec;ve

• The KL constraint is not violated.

�̄�πold
(π)

Trust Region Policy Optimization

Small problems with NPG update:
Might not be robust to trust region size �; at some iterations � may be too large and
performance can degrade
Because of quadratic approximation, KL-divergence constraint may be violated

Solution:
Require improvement in surrogate (make sure that L✓k (✓k+1) � 0)
Enforce KL-constraint

How? Backtracking line search with exponential decay (decay coe↵ ↵ 2 (0, 1), budget L)

Algorithm 2 Line Search for TRPO

Compute proposed policy step �k =
q

2�

ĝT
k
Ĥ
�1
k

ĝk

Ĥ
�1
k

ĝk

for j = 0, 1, 2, ..., L do

Compute proposed update ✓ = ✓k + ↵j�k

if L✓k (✓) � 0 and D̄KL(✓||✓k) � then

accept the update and set ✓k+1 = ✓k + ↵j�k

break
end if

end for

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 32 / 41

maximize
θ

𝔼t [πθ(at |st)
πθold (at |st)

̂At]
 subject to 𝔼t [KL [πθold (⋅ |st), πθ (⋅ |st)]] ≤ δ

Trust Region Policy Op3miza3on, Schulman et al. 2015

Trust Region Policy Op;miza;on

�̄�πold
(π)

2ϵ

Can I achieve similar performance without second order information (no Fisher matrix!)

Proximal Policy Op;miza;on

Proximal Policy Optimization Algorithms. J. Schulman, F. Wolski, P. Dhariwal, A. Radfor and O. Klimov

Can I achieve similar performance without second order information (no Fisher matrix!)

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce
KL constraint without computing natural gradients. Two variants:

Adaptive KL Penalty
Policy update solves unconstrained optimization problem

✓k+1 = argmax
✓

L✓k (✓)� �k D̄KL(✓||✓k)

Penalty coe�cient �k changes between iterations to approximately enforce
KL-divergence constraint

Clipped Objective
New objective function: let rt(✓) = ⇡✓(at |st)/⇡✓k (at |st). Then

LCLIP

✓k
(✓) = E

⌧⇠⇡k

"
TX

t=0

h
min(rt(✓)Â

⇡k

t
, clip (rt(✓), 1� ✏, 1 + ✏) Â⇡k

t
)
i#

where ✏ is a hyperparameter (maybe ✏ = 0.2)
Policy update is ✓k+1 = argmax✓ LCLIP

✓k
(✓)

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 35 / 41

Proximal Policy Op;miza;on

Proximal Policy Optimization Algorithms. J. Schulman, F. Wolski, P. Dhariwal, A. Radfor and O. Klimov

�̄�θk
(θ)

Can I achieve similar performance without second order information (no Fisher matrix!)

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce
KL constraint without computing natural gradients. Two variants:

Adaptive KL Penalty
Policy update solves unconstrained optimization problem

✓k+1 = argmax
✓

L✓k (✓)� �k D̄KL(✓||✓k)

Penalty coe�cient �k changes between iterations to approximately enforce
KL-divergence constraint

Clipped Objective
New objective function: let rt(✓) = ⇡✓(at |st)/⇡✓k (at |st). Then

LCLIP

✓k
(✓) = E

⌧⇠⇡k

"
TX

t=0

h
min(rt(✓)Â

⇡k

t
, clip (rt(✓), 1� ✏, 1 + ✏) Â⇡k

t
)
i#

where ✏ is a hyperparameter (maybe ✏ = 0.2)
Policy update is ✓k+1 = argmax✓ LCLIP

✓k
(✓)

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 35 / 41

Proximal Policy Op;miza;on

Proximal Policy Optimization Algorithms. J. Schulman, F. Wolski, P. Dhariwal, A. Radfor and O. Klimov

�̄�θk
(θ)

Slide from Joshua Achiam

PPO: Adap;ve KL Penalty

• Recall the surrogate objec;ve:

• Form a lower bound via clipped importance ra;o:

�̄�(π) = �̂�t [
πθ (at |st)

πθold (at |st)
̂At] = �̂�t [rt(θ) ̂At]

LCLIP(θ) = �̂�t [min (rt(θ) ̂At, clip (rt(θ),1 − ϵ,1 + ϵ) ̂At)]

PPO: Clipped Objec;ve

Proximal Policy Optimization Algorithms. J. Schulman, F. Wolski, P. Dhariwal, A. Radfor and O. KlimovSlide from Joshua Achiam

PPO: Clipped Objec;veProximal Policy Optimization with Clipped Objective

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters ✓0, clipping threshold ✏
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Compute policy update

✓k+1 = argmax
✓

L
CLIP

✓k (✓)

by taking K steps of minibatch SGD (via Adam), where

L
CLIP

✓k (✓) = E
⌧⇠⇡k

"
TX

t=0

h
min(rt(✓)Â

⇡k

t , clip (rt(✓), 1� ✏, 1 + ✏) Â⇡k

t)
i#

end for

Clipping prevents policy from having incentive to go far away from ✓k+1

Clipping seems to work at least as well as PPO with KL penalty, but is simpler to
implement

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 37 / 41Proximal Policy Optimization Algorithms. J. Schulman, F. Wolski, P. Dhariwal, A. Radfor and O. KlimovSlide from Joshua Achiam

PPO: Clipped Objec;veEmpirical Performance of PPO

Figure: Performance comparison between PPO with clipped objective and various other deep RL
methods on a slate of MuJoCo tasks. 10

10Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 39 / 41

