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Stepsize for Actor-Cri;c?Actor-critic algorithms (with discount)
    
0. Ini;alize policy parameters θ and cri;c parameters ϕ .
1. Sample trajectories {τi = {si

t , ai
t}T

i=0} by deploying the current policy πθ(at |st) .
2. Fit value func;on Vπ

ϕ(s) by MC or TD es;ma;on (update ϕ)

3. Compute ac;on advantages Aπ(si
t , ai

t) = R(si
t , ai

t) + γVπ
ϕ(si

t+1) − Vπ
ϕ(si

t)

4. ∇θU(θ) ≈ ̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ(αi
t |si

t)Aπ(si
t , ai

t)

5. θ ← θ+α∇θU(θ)

What should be the step size?



Choosing a stepsize in RL VS SL

̂gPG ≈
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )Aπ(s(i)
t , a(i)

t ), τi ∼ πθ

Reinforcement learning objec;ve

Supervised learning objec;ve using expert ac;ons :ã ∼ π*

USL(θ) =
1
N

N

∑
i=1

T

∑
t=1

log πθ(α̃(i)
t |s(i)

t ), τi ∼ π* (+regulariza;on)

We want to take a gradient step:
θ′ = θ + α∇θU(θ)

πθold

̂gSL ≈
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α̃(i)
t |s(i)

t ), τi ∼ π*

with gradient:

with gradient:

ÛPG ≈
1
N

N

∑
i=1

T

∑
t=1

log πθ(α(i)
t |s(i)

t )Aπ(s(i)
t , a(i)

t ), τi ∼ πθ



Choosing a stepsize

θold

θnew

μθ(s)
σθ(s)

σθnew
(s)

μθnew
(s)

Architecture design

two network design + simple & stable
- no shared features between actor & critic

shared network design

s

πθ(a |s)

̂Vπ
ϕ(s)

• Step too big: Bad policy->data collected under bad policy-> we cannot recover. In 
Supervised Learning, data does not depend on neural network weights. 

• Step too small: Not efficient use of experience. In Supervised Learning, data can be 
trivially re-used.



Choosing a stepsize

θold

θnew
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σθ(s)
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μθnew
(s)

Architecture design

two network design + simple & stable
- no shared features between actor & critic

shared network design

s

πθ(a |s)

̂Vπ
ϕ(s)

Gradient descent in parameter space does not take into account the resulting distance 
in the (output) policy space between  and       πθold

(s) πθnew
(s)

• Step too big: Bad policy->data collected under bad policy-> we cannot recover. In 
Supervised Learning, data does not depend on neural network weights. 

• Step too small: Not efficient use of experience. In Supervised Learning, data can be 
trivially re-used.



θnew = θold + α ⋅ ̂g

The same parameter step  changes the policy more or less 
drama;cally depending on where in the parameter space we are. 

Δθ = − 2

The Problem is More Than Step Size

Consider a family of policies with parametrization:

⇡✓(a) =

⇢
�(✓) a = 1
1� �(✓) a = 2

Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

Big question: how do we come up with an update rule that doesn’t ever change the
policy more than we meant to?
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Consider a family of policies with parametriza;on: 

πθ(a) = { σ(θ) a = 1
1 − σ(θ) a = 2

Choosing a stepsize



We will use the following to denote values of parameters and 
corresponding policies before and a\er an update:

Two Limitations of “Vanilla” Policy Gradient Methods

I Hard to choose stepsizes
I Input data is nonstationary due to changing policy: observation and reward

distributions change
I Bad step is more damaging than in supervised learning, since it a↵ects

visitation distribution
I Step too far ! bad policy
I Next batch: collected under bad policy
I Can’t recover—collapse in performance

I Sample e�ciency
I Only one gradient step per environment sample
I Dependent on scaling of coordinates

Nota;on

θnew = θold + α ⋅ ̂g

θold → θnew
πold → πnew

θ → θ′ 

π → π′ 



Gradient Descent in Distribu;on Space

∇θ JPG(θ)
∥∇θ JPG(θ)∥

= lim
ϵ→0

1
ϵ

arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

d * = arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

θnew = θold + d *

Consider a parameterized distribution  and an objective  that depends on  
through  and for which we want to take a gradient step. 

πθ U(θ) θ
πθ
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Consider a parameterized distribution  and an objective  that depends on  
through  and for which we want to take a gradient step. 

πθ U(θ) θ
πθ

Euclidean distance in parameter space

d * = arg max
∥d∥≤ϵ

U(θ + d)

It is hard to predict how different is  from . It is hard to pick the threshold 
epsilon.

πθnew
πθold

Gradient descent: the step in parameter space is  determined by considering the Euclidean 
distance of the parameter vectors before and after the update:
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Gradient Descent in Distribu;on Space

∇θ JPG(θ)
∥∇θ JPG(θ)∥

= lim
ϵ→0

1
ϵ

arg min
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KL divergence in distribution space

Natural gradient descent: the step in parameter space is determined by considering 
the KL divergence in the distributions before and after the update:

Easier to pick the distance threshold!
DKL(P∥Q) = ∑

i

P(i)log ( P(i)
Q(i) )

DKL(P∥Q) = ∫
∞

−∞
p(x)log ( p(x)

q(x) ) d x
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Solving the KL Constrained Problem

d * = arg max
d

U(θ + d)−λ(DKL [πθ∥πθ+d]−ϵ)

Unconstrained penalized objective:

First order Taylor expansion for the objective and second order for the KL!

≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d−λ(DKL(πθold

|πθold
) + d⊤ ∇θDKL(πθold

|πθ) |θ=θold

+
1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d))+λϵ

≈ arg max
d

J(θold) + ∇θ J(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θKL [πθ∥πθ+d] |θ=θold

d) + λϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

d * = arg max
KL(πθ∥πθ+d)≤ϵ

U(θ + d)

πnew = argmaxπ�̄�πold
(π)

s.t. 𝔼s∼pπold(s)DKL(π∥πold)[s] ≤ ϵ



Solving the KL Constrained Problem

d * = arg max
d

U(θ + d)−λ(DKL [πθ∥πθ+d]−ϵ)

Unconstrained penalized objective:

First order Taylor expansion for the objective and second order for the KL!

≈ arg max
d

U(θold)+ ∇θU(θ) |θ=θold
⋅ d − λ(DKL(πθold

|πθold
) + d⊤ ∇θDKL(πθold

|πθ) |θ=θold

+
1
2
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1
2
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what is this?

The police gradient:  ∇θ log πθ(a |s)A(a |s) |θ=θold
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Taylor expansion of KL

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x) )
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2
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Taylor expansion of KL
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F(θold) = 𝔼x∼pθold [∇θlog pθ(x) |θ=θold
∇θlog pθ(x) |⊤

θ=θold ]

The Fisher information matrix

F(θold) ≈
N

∑
i=1,x(i)∼pθold

[∇θlog pθ(x(i)) |θ=θold
∇θlog pθ(x(i)) |⊤

θ=θold ]
Can be approximated by sampling:



Solving the KL Constrained Problem

d * = arg max
d

U(θ + d)−λ(DKL [πθ∥πθ+d]−ϵ)

Unconstrained penalized objective:

First order Taylor expansion for the objective and second order for the KL!

≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d)+λϵ

≈ arg max
d

J(θold) + ∇θ J(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θKL [πθ∥πθ+d] |θ=θold

d) + λϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

θnew = argmaxθ�̄�πθold
(πθ)

s.t. 𝔼s∼pπold(s)DKL(πθ∥πθold
)[s] ≤ ϵ

πnew = argmaxπ�̄�πold
(π)

s.t. 𝔼s∼pπold(s)DKL(π∥πold)[s] ≤ ϵ

= arg max
d

∇θU(θ) |θ=θold
⋅ d −

1
2

λ(d⊤F(θold)d)

= arg min
d

− ∇θU(θ) |θ=θold
⋅ d +

1
2

λ(d⊤F(θold)d)

Substitute for the information matrix:



d * = arg max
d

U(θ + d) − λ(DKL [πθ∥πθ+d] − ϵ)

Unconstrained penalized objective:

First order Taylor expansion for the loss and second order for the KL:

≈ arg max
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Setting the gradient to zero: 0 =
∂
∂d (−∇θU(θ) |θ=θold

⋅ d +
1
2

λ(d⊤F(θold)d))
= −∇θU(θ) |θ=θold

+
1
2

λ(F(θold))d

d =
2
λ

F−1(θold)∇θU(θ) |θ=θold

θnew = θold + α ⋅ gN

gN = F−1(θold)∇θU(θ) |θ=θold

Solving the KL Constrained Problem



Setting the gradient to zero: 0 =
∂
∂d (−∇θU(θ) |θ=θold

⋅ d +
1
2

λ(d⊤F(θold)d))
= −∇θU(θ) |θ=θold

+
1
2

λ(F(θold))d

d =
2
λ

F−1(θold)∇θU(θ) |θ=θold

θnew = θold + α ⋅ gN

gN = F−1(θold)∇θU(θ) |θ=θold

Solving the KL Constrained Problem

The natural gradient:



Natural Gradient Descent
Setting the gradient to zero: 0 =

∂
∂d (−∇θU(θ) |θ=θold

⋅ d +
1
2

λ(d⊤F(θold)d))
= −∇θU(θ) |θ=θold

+
1
2

λ(F(θold))d

d =
2
λ

F−1(θold)∇θU(θ) |θ=θold

The natural gradient: what is this?

The police gradient:  ∇θ log πθ(a |s)A(a |s)θnew = θold + α ⋅ gN

gN = F−1(θold)∇θU(θ) |θ=θold



Natural Gradient Descent
Setting the gradient to zero: 0 =

∂
∂d (−∇θU(θ) |θ=θold

⋅ d +
1
2

λ(d⊤F(θold)d))
= −∇θU(θ) |θ=θold

+
1
2

λ(F(θold))d

d =
2
λ

F−1(θold)∇θU(θ) |θ=θold

The natural gradient:

θnew = θold+α ⋅ gN

How shall we choose stepsize along the 
natural gradient direction

gN = F−1(θold)∇θU(θ) |θ=θold



Stepsize along the Natural Gradient direc;on

The natural gradient: gN = F−1(θold)∇θU(θ)

θnew = θold+α ⋅ gN

DKL(πθold
|πθ) ≈

1
2

(θ − θold)⊤F(θold)(θ − θold) =
1
2

(αgN)⊤F(αgN)

1
2

(αgN)⊤F(αgN) = ϵ

I want the KL between old and new policies to be at most .ϵ

α =
2ϵ

(g⊤
NF−1gN)

Let’s solve for the stepzise along the natural gradient direction:

By the 2nd order Taylor expansion of KL:



Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation 

ϵθk+1 = θk +
2ϵ

̂gT
k

̂F−1
k ̂gk

̂F−1
k ̂gk

̂F−1
k



Trust Region Policy Optimization

Trust Region Policy Optimization is implemented as TNPG plus a line search. Putting
it all together:

Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters ✓0
for k = 0, 1, 2, ... do

Collect set of trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Form sample estimates for

policy gradient ĝk (using advantage estimates)

and KL-divergence Hessian-vector product function f (v) = Ĥkv

Use CG with ncg iterations to obtain xk ⇡ Ĥ
�1
k

ĝk

Estimate proposed step �k ⇡

q
2�

xT
k
Ĥk xk

xk

Perform backtracking line search with exponential decay to obtain final update

✓k+1 = ✓k + ↵j�k

end for
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TRPO= NPG +Linesearch+monotonic improvement theorem

θk+1 = θk +
2ϵ

̂gT
k

̂F−1
k ̂gk

̂F−1
k ̂gk

2ϵ

NPG : θk+1 = θk +
2ϵ

̂gT
k

̂F−1
k ̂gk

̂F−1
k ̂gk



Due to the quadra;c approxima;on, the KL constraint may be violated!  What if we just do a 
line search to find the best stepsize, making sure:  

• I am improving my objec;ve  

• The KL constraint is not violated.

�̄�πold
(π)

Trust Region Policy Optimization

Small problems with NPG update:
Might not be robust to trust region size �; at some iterations � may be too large and
performance can degrade
Because of quadratic approximation, KL-divergence constraint may be violated

Solution:
Require improvement in surrogate (make sure that L✓k (✓k+1) � 0)
Enforce KL-constraint

How? Backtracking line search with exponential decay (decay coe↵ ↵ 2 (0, 1), budget L)

Algorithm 2 Line Search for TRPO

Compute proposed policy step �k =
q

2�

ĝT
k
Ĥ
�1
k

ĝk

Ĥ
�1
k

ĝk

for j = 0, 1, 2, ..., L do

Compute proposed update ✓ = ✓k + ↵j�k

if L✓k (✓) � 0 and D̄KL(✓||✓k)  � then

accept the update and set ✓k+1 = ✓k + ↵j�k

break
end if

end for
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maximize
θ

𝔼t [ πθ(at |st)
πθold (at |st)

̂At]
 subject to 𝔼t [KL [πθold ( ⋅ |st), πθ ( ⋅ |st)]] ≤ δ

Trust Region Policy Op3miza3on, Schulman et al. 2015

Trust Region Policy Op;miza;on

�̄�πold
(π)

2ϵ



Can I achieve similar performance without second order information (no Fisher matrix!)

Proximal Policy Op;miza;on

Proximal Policy Optimization Algorithms. J. Schulman, F. Wolski, P. Dhariwal, A. Radfor and O. Klimov



Can I achieve similar performance without second order information (no Fisher matrix!)

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce
KL constraint without computing natural gradients. Two variants:

Adaptive KL Penalty
Policy update solves unconstrained optimization problem

✓k+1 = argmax
✓

L✓k (✓)� �k D̄KL(✓||✓k )

Penalty coe�cient �k changes between iterations to approximately enforce
KL-divergence constraint

Clipped Objective
New objective function: let rt(✓) = ⇡✓(at |st)/⇡✓k (at |st). Then

LCLIP

✓k
(✓) = E

⌧⇠⇡k

"
TX

t=0

h
min(rt(✓)Â

⇡k

t
, clip (rt(✓), 1� ✏, 1 + ✏) Â⇡k

t
)
i#

where ✏ is a hyperparameter (maybe ✏ = 0.2)
Policy update is ✓k+1 = argmax✓ LCLIP

✓k
(✓)
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Proximal Policy Op;miza;on

Proximal Policy Optimization Algorithms. J. Schulman, F. Wolski, P. Dhariwal, A. Radfor and O. Klimov

�̄�θk
(θ)
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⇡k

t
, clip (rt(✓), 1� ✏, 1 + ✏) Â⇡k
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Proximal Policy Op;miza;on

Proximal Policy Optimization Algorithms. J. Schulman, F. Wolski, P. Dhariwal, A. Radfor and O. Klimov

�̄�θk
(θ)
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PPO: Adap;ve KL Penalty



• Recall the surrogate objec;ve: 

 

• Form a lower bound via clipped importance ra;o: 

 

�̄�(π) = �̂�t [
πθ (at |st)

πθold (at |st)
̂At] = �̂�t [rt(θ) ̂At]

LCLIP(θ) = �̂�t [min (rt(θ) ̂At, clip (rt(θ),1 − ϵ,1 + ϵ) ̂At)]

PPO: Clipped Objec;ve
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PPO: Clipped Objec;veProximal Policy Optimization with Clipped Objective

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters ✓0, clipping threshold ✏
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Compute policy update

✓k+1 = argmax
✓

L
CLIP

✓k (✓)

by taking K steps of minibatch SGD (via Adam), where

L
CLIP

✓k (✓) = E
⌧⇠⇡k

"
TX

t=0

h
min(rt(✓)Â

⇡k

t , clip (rt(✓), 1� ✏, 1 + ✏) Â⇡k

t )
i#

end for

Clipping prevents policy from having incentive to go far away from ✓k+1

Clipping seems to work at least as well as PPO with KL penalty, but is simpler to
implement
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PPO: Clipped Objec;veEmpirical Performance of PPO

Figure: Performance comparison between PPO with clipped objective and various other deep RL
methods on a slate of MuJoCo tasks. 10

10Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 39 / 41


