Deep Reinforcement Learning and Control

Natural Policy Gradients

Fall 2020, CMU 10-703

Katerina Fragkiadaki

Stepsize for Actor-Critic?

0 . Initialize policy parameters θ and critic parameters ϕ.

1. Sample trajectories $\left\{\tau_{i}=\left\{s_{t}^{i}, a_{t}^{i}\right\}_{i=0}^{T}\right\}$ by deploying the current policy $\pi_{\theta}\left(a_{t} \mid s_{t}\right)$.
2. Fit value function $V_{\phi}^{\pi}(s)$ by MC or TD estimation (update ϕ)
3. Compute action advantages $A^{\pi}\left(s_{t}^{i}, a_{t}^{i}\right)=R\left(s_{t}^{i}, a_{t}^{i}\right)+\gamma V_{\phi}^{\pi}\left(s_{t+1}^{i}\right)-V_{\phi}^{\pi}\left(s_{t}^{i}\right)$
4. $\nabla_{\theta} U(\theta) \approx \hat{g}=\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{i} \mid s_{t}^{i}\right) A^{\pi}\left(s_{t}^{i}, a_{t}^{i}\right)$
5. $\theta \leftarrow \theta+\alpha \nabla_{\theta} U(\theta)$

What should be the step size?

Choosing a stepsize in RL VS SL

- Reinforcement learning objective

$$
\hat{U}^{P G} \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right) A^{\pi}\left(s_{t}^{(i)}, a_{t}^{(i)}\right), \quad \tau_{i} \sim \pi_{\theta}
$$

with gradient:

$$
\hat{g}^{P G} \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right) A^{\pi}\left(s_{t}^{(i)}, a_{t}^{(i)}, \quad \tau_{i} \sim \pi_{\theta}\right.
$$

Supervised learning objective using expert actions $\tilde{a} \sim \pi^{*}$:

$$
U^{S L}(\theta)=\frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{T} \log \pi_{\theta}\left(\tilde{\alpha}_{t}^{(i)} \mid s_{t}^{(i)}, \quad \tau_{i} \sim \pi^{*} \quad\right. \text { (+regularization) }
$$

with gradient:

$$
\hat{g}^{S L} \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\tilde{\alpha}_{t}^{(i)} \mid s_{t}^{(i)}\right), \quad \tau_{i} \sim \pi^{*}
$$

We want to take a gradient step:

$$
\theta^{\prime}=\theta+\alpha \nabla_{\theta} U(\theta)
$$

Choosing a stepsize

- Step too big: Bad policy->data collected under bad policy-> we cannot recover. In Supervised Learning, data does not depend on neural network weights.
- Step too small: Not efficient use of experience. In Supervised Learning, data can be trivially re-used.

Choosing a stepsize

- Step too big: Bad policy->data collected under bad policy-> we cannot recover. In Supervised Learning, data does not depend on neural network weights.
- Step too small: Not efficient use of experience. In Supervised Learning, data can be trivially re-used.

Gradient descent in parameter space does not take into account the resulting distance in the (output) policy space between $\pi_{\theta_{\text {old }}}(s)$ and $\pi_{\theta_{\text {new }}}(s)$

Choosing a stepsize

Consider a family of policies with parametrization:

$$
\pi_{\theta}(a)=\left\{\begin{array}{cc}
\sigma(\theta) & a=1 \\
1-\sigma(\theta) & a=2
\end{array}\right.
$$

The same parameter step $\Delta \theta=-2$ changes the policy more or less dramatically depending on where in the parameter space we are.

Notation

We will use the following to denote values of parameters and corresponding policies before and after an update:

$$
\begin{aligned}
\theta_{\text {old }} & \rightarrow \theta_{\text {new }} \\
\pi_{\text {old }} & \rightarrow \pi_{\text {new }} \\
\theta & \rightarrow \theta^{\prime} \\
\pi & \rightarrow \pi^{\prime}
\end{aligned}
$$

Gradient Descent in Distribution Space

Consider a parameterized distribution π_{θ} and an objective $U(\theta)$ that depends on θ through π_{θ} and for which we want to take a gradient step.

$$
\theta_{\text {new }}=\theta_{\text {old }}+d^{*}
$$

Gradient Descent in Distribution Space

Consider a parameterized distribution π_{θ} and an objective $U(\theta)$ that depends on θ through π_{θ} and for which we want to take a gradient step.

$$
\theta_{\text {new }}=\theta_{\text {old }}+d^{*}
$$

Gradient descent: the step in parameter space is determined by considering the Euclidean distance of the parameter vectors before and after the update:

$$
d^{*}=\arg \max _{\|d\| \leq e} U(\theta+d)
$$

Euclidean distance in parameter space
It is hard to predict how different is $\pi_{\theta_{\text {new }}}$ from $\pi_{\theta_{\text {old }}}$. It is hard to pick the threshold epsilon.

Gradient Descent in Distribution Space

Consider a parameterized distribution π_{θ} and an objective $U(\theta)$ that depends on θ through π_{θ} and for which we want to take a gradient step.

$$
\theta_{\text {new }}=\theta_{\text {old }}+d^{*}
$$

Gradient descent: the step in parameter space is determined by considering the Euclidean distance of the parameter vectors before and after the update:

$$
d^{*}=\arg \max _{\|d\| \leq e} U(\theta+d)
$$

Euclidean distance in parameter space
It is hard to predict how different is $\pi_{\theta_{\text {new }}}$ from $\pi_{\theta_{\text {old }}}$. It is hard to pick the threshold epsilon.

- Natural gradient descent: the step in parameter space is determined by considering the KL divergence in the distributions before and after the update:

$$
d^{*}=\arg \max _{\mathrm{KL}\left(\pi_{\theta} \| \pi_{\theta+d}\right) \leq e} U(\theta+d)
$$

KL divergence in distribution space

Easier to pick the distance threshold!

Gradient Descent in Distribution Space

Consider a parameterized distribution π_{θ} and an objective $U(\theta)$ that depends on θ through π_{θ} and for which we want to take a gradient step.

$$
\theta_{\text {new }}=\theta_{\text {old }}+d^{*}
$$

Gradient descent: the step in parameter space is determined by considering the Euclidean distance of the parameter vectors before and after the update:

$$
d^{*}=\arg \max _{\|d\| \leq e} U(\theta+d)
$$

Euclidean distance in parameter space
It is hard to predict how different is $\pi_{\theta_{\text {new }}}$ from $\pi_{\theta_{\text {old }}}$. It is hard to pick the threshold epsilon.

- Natural gradient descent: the step in parameter space is determined by considering the KL divergence in the distributions before and after the update:

$$
d^{*}=\arg \max _{\mathrm{KL}\left(\pi_{\theta} \| \pi_{\theta+d}\right) \leq e} U(\theta+d)
$$

KL divergence in distribution space

Easier to pick the distance threshold!

$$
\begin{aligned}
& D_{\mathrm{KL}}(P \| Q)=\sum_{i} P(i) \log \left(\frac{P(i)}{Q(i)}\right) \\
& D_{\mathrm{KL}}(P \| Q)=\int_{-\infty}^{\infty} p(x) \log \left(\frac{p(x)}{q(x)}\right) d x
\end{aligned}
$$

Solving the KL Constrained Problem

$$
d^{*}=\arg \max _{\mathrm{KL}\left(\pi_{\theta} \| \pi_{\theta+d}\right) \leq \epsilon} U(\theta+d)
$$

Unconstrained penalized objective:

$$
d^{*}=\arg \max _{d} U(\theta+d)-\lambda\left(\mathrm{D}_{\mathrm{KL}}\left[\pi_{\theta} \| \pi_{\theta+d}\right]-\epsilon\right)
$$

First order Taylor expansion for the objective and second order for the KL!

$$
\begin{aligned}
& \approx \underset{d}{\arg \max _{d} U\left(\theta_{\text {old }}\right)+\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}} \cdot d-\lambda\left(\mathrm{D}_{\mathrm{KL}}\left(\pi_{\theta_{\text {old }}} \mid \pi_{\theta_{\text {old }}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(\pi_{\theta_{\text {old }}} \mid \pi_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}\right.} \\
& \left.+\frac{1}{2} \lambda\left(\left.d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left[\pi_{\theta_{\text {old }}}| | \pi_{\theta}\right]\right|_{\theta=\theta_{\text {old }}} d\right)\right)+\lambda \epsilon
\end{aligned}
$$

Solving the KL Constrained Problem

$$
d^{*}=\arg \max _{\mathrm{KL}\left(\pi_{\theta} \| \pi_{\theta+d}\right) \leq \epsilon} U(\theta+d)
$$

Unconstrained penalized objective:

$$
d^{*}=\arg \max _{d} U(\theta+d)-\lambda\left(\mathrm{D}_{\mathrm{KL}}\left[\pi_{\theta} \| \pi_{\theta+d}\right]-\epsilon\right)
$$

First order Taylor expansion for the objective and second order for the KL!

$$
\begin{aligned}
& \approx \arg \max _{d} U\left(\theta_{\text {old }}\right)+\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}} \cdot d-\lambda\left(\mathrm{D}_{\mathrm{KL}}\left(\pi_{\theta_{\text {old }}} \mid \pi_{\theta_{\text {old }}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(\pi_{\theta_{\text {old }}} \mid \pi_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}\right. \\
& \left.+\frac{1}{2} \lambda\left(\left.d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left[\pi_{\theta_{\text {old }}} \| \pi_{\theta}\right]\right|_{\theta=\theta_{\text {old }}} d\right)\right)+\lambda \epsilon \\
& \quad \text { what is this? } \\
& \quad \text { The police gradient: }\left.\nabla_{\theta} \log \pi_{\theta}(a \mid s) A(a \mid s)\right|_{\theta=\theta_{\text {old }}}
\end{aligned}
$$

Solving the KL Constrained Problem

$$
d^{*}=\arg \max _{\mathrm{KL}\left(\pi_{\theta} \| \pi_{\theta+d}\right) \leq \epsilon} U(\theta+d)
$$

Unconstrained penalized objective:

$$
d^{*}=\arg \max _{d} U(\theta+d)-\lambda\left(\mathrm{D}_{\mathrm{KL}}\left[\pi_{\theta} \| \pi_{\theta+d}\right]-\epsilon\right)
$$

First order Taylor expansion for the objective and second order for the KL!

$$
\begin{aligned}
& \approx \arg \max _{d} U\left(\theta_{\text {old }}\right)+\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}} \cdot d-\lambda\left(\mathrm{D}_{\mathrm{KL}}\left(\int / \theta_{\text {old }} \mid \pi_{\theta_{\text {old }}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(\pi \int_{\text {old }} \mid \pi_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}\right. \\
& \left.+\frac{1}{2} \lambda\left(\left.d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left[\pi_{\theta_{\text {old }}}| | \pi_{\theta}\right]\right|_{\theta=\theta_{\text {old }}} d\right)\right)+\lambda \epsilon
\end{aligned}
$$

Solving the KL Constrained Problem

$$
d^{*}=\arg \max _{\mathrm{KL}\left(\pi_{\theta} \| \pi_{\theta+d}\right) \leq \epsilon} U(\theta+d)
$$

Unconstrained penalized objective:

$$
d^{*}=\arg \max _{d} U(\theta+d)-\lambda\left(\mathrm{D}_{\mathrm{KL}}\left[\pi_{\theta} \| \pi_{\theta+d}\right]-\epsilon\right)
$$

First order Taylor expansion for the objective and second order for the KL!

$$
\begin{aligned}
& \approx \arg \max _{d} U\left(\theta_{\text {old }}\right)+\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}} \cdot d-\lambda\left(\mathrm{D}_{\mathrm{KL}}\left(\int / \theta_{\text {old }} \mid \pi_{\theta_{\text {old }}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(\pi \int_{\text {old }} \mid \pi_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}\right. \\
& \left.+\frac{1}{2} \lambda\left(\left.d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left[\pi_{\theta_{\text {old }}}| | \pi_{\theta}\right]\right|_{\theta=\theta_{\text {old }}} d\right)\right)+\lambda \epsilon
\end{aligned}
$$

Solving the KL Constrained Problem

$$
d^{*}=\arg \max _{\mathrm{KL}\left(\pi_{\theta} \| \pi_{\theta+d}\right) \leq \epsilon} U(\theta+d)
$$

Unconstrained penalized objective:

$$
d^{*}=\arg \max _{d} U(\theta+d)-\lambda\left(\mathrm{D}_{\mathrm{KL}}\left[\pi_{\theta} \| \pi_{\theta+d}\right]-\epsilon\right)
$$

First order Taylor expansion for the objective and second order for the KL!

$$
\approx \arg \max _{d} U\left(\theta_{\text {old }}\right)+\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}} \cdot d-\frac{1}{2} \lambda\left(\left.d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left[\pi_{\theta_{\text {old }}} \| \pi_{\theta}\right]\right|_{\theta=\theta_{\text {old }}} d\right)+\lambda \epsilon
$$

Taylor expansion of KL

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right) \approx \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta_{o l d}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}+\left.\frac{1}{2} d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}} d
$$

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)=\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log \left(\frac{P_{\theta_{\text {old }}}(x)}{P_{\theta}(x)}\right)
$$

Taylor expansion of KL

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right) \approx \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta_{\text {old }}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}+\left.\frac{1}{2} d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}} d
$$

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)=\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log \left(\frac{P_{\theta_{\text {old }}}(x)}{P_{\theta}(x)}\right)
$$

Taylor expansion of KL

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right) \approx \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta_{\text {old }}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}+\left.\frac{1}{2} d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}} d
$$

$\left.\nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}=-\left.\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}}+\left.\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log P_{\theta_{\text {old }}}(x)\right|_{\theta=\theta_{\text {old }}}$

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)=\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log \left(\frac{P_{\theta_{\text {old }}}(x)}{P_{\theta}(x)}\right)
$$

Taylor expansion of KL

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right) \approx \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta_{\text {old }}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}+\left.\frac{1}{2} d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}} d \\
& \begin{aligned}
\left.\nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}} & =-\left.\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}}+\left.\nabla_{\theta} \mathbb{E}_{x \sim p_{\text {old }}} \log P_{\theta_{\text {old }}}(x)\right|_{\theta=\theta_{\text {old }}} \\
& =-\mathbb{E}_{\left.x \sim p_{\theta_{\text {old }}} \nabla_{\theta} \log P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}}}
\end{aligned}
\end{aligned}
$$

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{o l d}} \mid p_{\theta}\right)=\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log \left(\frac{P_{\theta_{\text {old }}}(x)}{P_{\theta}(x)}\right)
$$

Taylor expansion of KL

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right) \approx \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta_{\text {old }}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}+\left.\frac{1}{2} d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}} d \\
& \begin{aligned}
\left.\nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}} & =-\left.\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}}+\left.\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log P_{\theta_{\text {old }}}(x)\right|_{\theta=\theta_{\text {old }}} \\
& =-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \nabla_{\theta} \log P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}} \\
& =-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \frac{1}{P_{\theta_{\text {old }}}(x)} \nabla_{\theta} P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}}
\end{aligned}
\end{aligned}
$$

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)=\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log \left(\frac{P_{\theta_{\text {old }}}(x)}{P_{\theta}(x)}\right)
$$

Taylor expansion of KL

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right) \approx \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta_{\text {old }}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}+\left.\frac{1}{2} d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}} d \\
&\left.\nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}=-\left.\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}}+\left.\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log P_{\theta_{\text {old }}}(x)\right|_{\theta=\theta_{\text {old }}} \\
&=-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \nabla_{\theta} \log P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}} \\
&=-\left.\mathbb{E}_{x \sim p_{\theta \text { old }}} \frac{1}{P_{\theta_{\text {old }}}(x)} \nabla_{\theta} P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}} \\
&=\left.\int_{x} P_{\theta_{\text {old }}}(x) \frac{1}{P_{\theta_{\text {old }}}(x)} \nabla_{\theta} P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}}
\end{aligned}
$$

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)=\mathbb{E}_{x \sim p_{\theta_{o l d}}} \log \left(\frac{P_{\theta_{\text {old }}}(x)}{P_{\theta}(x)}\right)
$$

Taylor expansion of KL

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right) \approx \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta_{\text {old }}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}+\left.\frac{1}{2} d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}} d \\
&\left.\nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}=-\left.\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}}+\left.\nabla_{\theta} \mathbb{E}_{x \sim p_{\text {old }}} \log P_{\theta_{\text {old }}}(x)\right|_{\theta=\theta_{\text {old }}} \\
&=-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \nabla_{\theta} \log P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}} \\
&=-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \frac{1}{P_{\theta_{\text {old }}}(x)} \nabla_{\theta} P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}} \\
&=\left.\int_{x} P_{\theta_{\text {old }}}(x) \frac{1}{P_{\theta_{\text {old }}}(x)} \nabla_{\theta} P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}} \\
&=\left.\int_{x} \nabla_{\theta} P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}}
\end{aligned}
$$

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{o l d}} \mid p_{\theta}\right)=\mathbb{E}_{x \sim p_{\theta_{o l d}}} \log \left(\frac{P_{\theta_{\text {old }}}(x)}{P_{\theta}(x)}\right)
$$

Taylor expansion of KL

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right) \approx \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta_{\text {old }}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}+\left.\frac{1}{2} d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}} d \\
&\left.\nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}=-\left.\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log P_{\theta}(x)\right|_{\theta=\theta_{o l d}}+\left.\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta_{o l d}}} \log P_{\theta_{\text {old }}}(x)\right|_{\theta=\theta_{\text {old }}} \\
&=-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \nabla_{\theta} \log P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}} \\
&=-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \frac{1}{P_{\theta_{\text {old }}}(x)} \nabla_{\theta} P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}} \\
&=\left.\int_{x} P_{\theta_{\text {old }}}(x) \frac{1}{P_{\theta_{\text {old }}}(x)} \nabla_{\theta} P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}} \\
&=\left.\int_{x} \nabla_{\theta} P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}} \\
&=\left.\nabla_{\theta} \int_{x} P_{\theta}(x)\right|_{\theta=\theta_{o l d}} . \quad \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{o l d}} \mid p_{\theta}\right)=\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log \left(\frac{P_{\theta_{\text {old }}}(x)}{P_{\theta}(x)}\right) \\
&=0
\end{aligned}
$$

Taylor expansion of KL

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right) \approx \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta_{\text {old }}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}+\left.\frac{1}{2} d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}} d \\
& \left.\nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}=-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \nabla_{\theta}^{2} \log P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}}
\end{aligned}
$$

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)=\mathbb{E}_{x \sim p_{\theta_{o l d}}} \log \left(\frac{P_{\theta_{\text {old }}}(x)}{P_{\theta}(x)}\right)
$$

Taylor expansion of KL

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right) \approx \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta_{\text {old }}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}+\left.\frac{1}{2} d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}} d \\
& \begin{aligned}
\left.\nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}} & =-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \nabla_{\theta}^{2} \log P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}} \\
& =-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \nabla_{\theta}\left(\frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)}\right)\right|_{\theta=\theta_{\text {old }}}
\end{aligned}
\end{aligned}
$$

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)=\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log \left(\frac{P_{\theta_{\text {old }}}(x)}{P_{\theta}(x)}\right)
$$

Taylor expansion of KL

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right) \approx \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta_{\text {old }}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}+\left.\frac{1}{2} d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}} d
$$

$$
\left.\nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)\right|_{\theta=\theta_{\text {old }}}=-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \nabla_{\theta}^{2} \log P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}}
$$

$$
\begin{aligned}
& =-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \nabla_{\theta}\left(\frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)}\right)\right|_{\theta=\theta_{\text {old }}} \\
& =-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}}\left(\frac{\nabla_{\theta}^{2} P_{\theta}(x) P_{\theta}(x)-\nabla_{\theta} P_{\theta}(x) \nabla_{\theta} P_{\theta}(x)^{\top}}{P_{\theta}(x)^{2}}\right)\right|_{\theta=\theta_{\text {old }}}
\end{aligned}
$$

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)=\mathbb{E}_{x \sim p_{\theta_{o l d}}} \log \left(\frac{P_{\theta_{\text {old }}}(x)}{P_{\theta}(x)}\right)
$$

Taylor expansion of KL

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\theta d}} \mid p_{\theta}\right) \approx \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{o d}} \mid p_{\theta_{o d d}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\theta d}} \mid p_{\theta}\right)\right|_{\theta=\theta_{o l d}}+\left.\frac{1}{2} d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{0 d}} \mid p_{\theta}\right)\right|_{\theta=\theta_{o d d}} d
$$

$$
\left.\nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{o d d}} \mid p_{\theta}\right)\right|_{\theta=\theta_{o d}}=-\left.\mathbb{E}_{x \sim p_{o d d}} \nabla_{\theta}^{2} \log P_{\theta}(x)\right|_{\theta=\theta_{o l d}}
$$

$$
\begin{aligned}
& =-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \nabla_{\theta}\left(\frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)}\right)\right|_{\theta=\theta_{\text {old }}} \\
& =-\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}}\left(\frac{\nabla_{\theta}^{2} P_{\theta}(x) P_{\theta}(x)-\nabla_{\theta} P_{\theta}(x) \nabla_{\theta} P_{\theta}(x)^{\top}}{P_{\theta}(x)^{2}}\right)\right|_{\theta=\theta_{\text {old }}} \\
& =-\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \frac{\left.\nabla_{\theta}^{2} P_{\theta}(x)\right|_{\theta=\theta_{\text {old }}}}{P_{\theta_{\text {old }}}(x)}+\left.\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \nabla_{\theta} \log P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x)^{\top}\right|_{\theta=\theta_{o}}
\end{aligned}
$$

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\text {old }}} \mid p_{\theta}\right)=\mathbb{E}_{x \sim p_{\theta_{\text {old }}}} \log \left(\frac{P_{\theta_{\text {old }}}(x)}{P_{\theta}(x)}\right)
$$

Taylor expansion of KL

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\theta d}} \mid p_{\theta}\right) \approx \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{o d}} \mid p_{\theta_{o d d}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{\theta d}} \mid p_{\theta}\right)\right|_{\theta=\theta_{o l d}}+\left.\frac{1}{2} d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{0 d}} \mid p_{\theta}\right)\right|_{\theta=\theta_{o d d}} d
$$

$$
\left.\nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{o d}} \mid p_{\theta}\right)\right|_{\theta=\theta_{o l d}}=-\left.\mathbb{E}_{x \sim p_{o l d}} \nabla_{\theta}^{2} \log P_{\theta}(x)\right|_{\theta=\theta_{o l d}}
$$

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{o l d}} \mid p_{\theta}\right)=\mathbb{E}_{x \sim p_{0 \text { old }}} \log \left(\frac{P_{\theta_{\text {old }}}(x)}{P_{\theta}(x)}\right)
$$

$$
\begin{aligned}
& =-\left.\mathbb{E}_{x \sim p_{\theta_{0 \text { old }}}} \nabla_{\theta}\left(\frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)}\right)\right|_{\theta=\theta_{\text {old }}} \\
& =-\left.\mathbb{E}_{x \sim p_{\theta_{0 l d}}}\left(\frac{\nabla_{\theta}^{2} P_{\theta}(x) P_{\theta}(x)-\nabla_{\theta} P_{\theta}(x) \nabla_{\theta} P_{\theta}(x)^{\top}}{P_{\theta}(x)^{2}}\right)\right|_{\theta=\theta_{o d d}} \\
& =-\mathbb{E}_{x \sim p_{o l d}} \frac{\left.\nabla_{\theta}^{2} P_{\theta}(x)\right|_{\theta=\theta_{o l d}}}{P_{\theta_{o l d}}(x)}+\left.\mathbb{E}_{x \sim p_{\theta_{0 l}}} \nabla_{\theta} \log P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x)^{\top}\right|_{\theta=\theta} \\
& =\left.\mathbb{E}_{x \sim p_{o \text { old }}} \nabla_{\theta} \log P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x)^{\top}\right|_{\theta=\theta_{\text {odd }}}
\end{aligned}
$$

Taylor expansion of KL

$$
\mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{0 d}} \mid p_{\theta}\right) \approx \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{0 d}} \mid p_{\theta_{o d l}}\right)+\left.d^{\top} \nabla_{\theta} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{0 d}} \mid p_{\theta}\right)\right|_{\theta=\theta_{o l d}}+\left.\frac{1}{2} d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{0 d}} \mid p_{\theta}\right)\right|_{\theta=\theta_{o l d}} d
$$

$$
\left.\nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left(p_{\theta_{o d}} \mid p_{\theta}\right)\right|_{\theta=\theta_{o l d}}=\left.\mathbb{E}_{x \sim p_{\theta_{0 d /}}} \nabla_{\theta} \log P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x)^{\top}\right|_{\theta=\theta_{o l d}}
$$

The Fisher information matrix

$$
\mathbf{F}\left(\theta_{o l d}\right)=\mathbb{E}_{x \sim p_{\theta_{\text {old }}}}\left[\left.\left.\nabla_{\theta} \log p_{\theta}(x)\right|_{\theta=\theta_{o l d}} \nabla_{\theta} \log p_{\theta}(x)\right|_{\theta=\theta_{\text {old }}} ^{\top}\right]
$$

Can be approximated by sampling:

$$
\mathbf{F}\left(\theta_{\text {old }}\right) \approx \sum_{i=1, x^{(i)} \sim p_{\theta_{\text {old }}}}^{N}\left[\left.\left.\nabla_{\theta} \log p_{\theta}\left(x^{(i)}\right)\right|_{\theta=\theta_{\text {old }}} \nabla_{\theta} \log p_{\theta}\left(x^{(i)}\right)\right|_{\theta=\theta_{\text {old }}} ^{\top}\right]
$$

Solving the KL Constrained Problem

Unconstrained penalized objective:

$$
d^{*}=\arg \max _{d} U(\theta+d)-\lambda\left(\mathrm{D}_{\mathrm{KL}}\left[\pi_{\theta} \| \pi_{\theta+d}\right]-\epsilon\right)
$$

First order Taylor expansion for the objective and second order for the KL!

$$
\approx \arg \max _{d} U\left(\theta_{\text {old }}\right)+\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}} \cdot d-\frac{1}{2} \lambda\left(\left.d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left[\pi_{\theta_{\text {old }}} \| \pi_{\theta}\right]\right|_{\theta=\theta_{\text {old }}} d\right)+\lambda \epsilon
$$

Substitute for the information matrix:

$$
\begin{aligned}
& =\left.\arg \max _{d} \nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}} \cdot d-\frac{1}{2} \lambda\left(d^{\top} \mathbf{F}\left(\theta_{\text {old }}\right) d\right) \\
& =\arg \min _{d}-\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}} \cdot d+\frac{1}{2} \lambda\left(d^{\top} \mathbf{F}\left(\theta_{\text {old }}\right) d\right)
\end{aligned}
$$

Solving the KL Constrained Problem

Unconstrained penalized objective:

$$
d^{*}=\arg \max _{d} U(\theta+d)-\lambda\left(\mathrm{D}_{\mathrm{KL}}\left[\pi_{\theta} \| \pi_{\theta+d}\right]-\epsilon\right)
$$

First order Taylor expansion for the loss and second order for the KL:

$$
\approx \arg \max _{d} U\left(\theta_{o l d}\right)+\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}} \cdot d-\frac{1}{2} \lambda\left(\left.d^{\top} \nabla_{\theta}^{2} \mathrm{D}_{\mathrm{KL}}\left[\pi_{\theta_{\text {old }}} \| \pi_{\theta}\right]\right|_{\theta=\theta_{\text {old }}} d\right)+\lambda \epsilon
$$

Substitute for the information matrix:

$$
\begin{aligned}
& =\left.\arg \max _{d} \nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}} \cdot d-\frac{1}{2} \lambda\left(d^{\top} \mathbf{F}\left(\theta_{\text {old }}\right) d\right) \\
& =\arg \min _{d}-\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}} \cdot d+\frac{1}{2} \lambda\left(d^{\top} \mathbf{F}\left(\theta_{\text {old }}\right) d\right)
\end{aligned}
$$

Solving the KL Constrained Problem

Setting the gradient to zero:

$$
\begin{aligned}
0 & =\frac{\partial}{\partial d}\left(-\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}} \cdot d+\frac{1}{2} \lambda\left(d^{\top} \mathbf{F}\left(\theta_{\text {old }}\right) d\right)\right) \\
& =-\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}}+\frac{1}{2} \lambda\left(\mathbf{F}\left(\theta_{\text {old }}\right)\right) d \\
d & =\left.\frac{2}{\lambda} \mathbf{F}^{-1}\left(\theta_{\text {old }}\right) \nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}}
\end{aligned}
$$

$$
g_{N}=\left.\mathbf{F}^{-1}\left(\theta_{o l d}\right) \nabla_{\theta} U(\theta)\right|_{\theta=\theta_{o l d}}
$$

$$
\theta_{\text {new }}=\theta_{\text {old }}+\alpha \cdot g_{N}
$$

Solving the KL Constrained Problem

Setting the gradient to zero:

$$
\begin{aligned}
0 & =\frac{\partial}{\partial d}\left(-\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}} \cdot d+\frac{1}{2} \lambda\left(d^{\top} \mathbf{F}\left(\theta_{\text {old }}\right) d\right)\right) \\
& =-\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}}+\frac{1}{2} \lambda\left(\mathbf{F}\left(\theta_{\text {old }}\right)\right) d \\
d & =\left.\frac{2}{\lambda} \mathbf{F}^{-1}\left(\theta_{\text {old }}\right) \nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}}
\end{aligned}
$$

The natural gradient: $\quad g_{N}=\left.\mathbf{F}^{-1}\left(\theta_{\text {old }}\right) \nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}}$

$$
\theta_{\text {new }}=\theta_{\text {old }}+\alpha \cdot g_{N}
$$

Natural Gradient Descent

Setting the gradient to zero:

$$
\begin{aligned}
0 & =\frac{\partial}{\partial d}\left(-\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{o l d}} \cdot d+\frac{1}{2} \lambda\left(d^{\top} \mathbf{F}\left(\theta_{o l d}\right) d\right)\right) \\
& =-\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{o l d}}+\frac{1}{2} \lambda\left(\mathbf{F}\left(\theta_{o l d}\right)\right) d \\
d & =\left.\frac{2}{\lambda} \mathbf{F}^{-1}\left(\theta_{o l d}\right) \nabla_{\theta} U(\theta)\right|_{\theta=\theta_{o l d}}
\end{aligned}
$$

The natural gradient: $\quad g_{N}=\left.\mathbf{F}^{-1}\left(\theta_{\text {old }}\right) \nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}}$ what is this?

$$
\theta_{\text {new }}=\theta_{\text {old }}+\alpha \cdot g_{N} \quad \text { The police gradient: } \nabla_{\theta} \log \pi_{\theta}(a \mid s) A(a \mid s)
$$

Natural Gradient Descent

Setting the gradient to zero:

$$
\begin{aligned}
0 & =\frac{\partial}{\partial d}\left(-\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{o l d}} \cdot d+\frac{1}{2} \lambda\left(d^{\top} \mathbf{F}\left(\theta_{o l d}\right) d\right)\right) \\
& =-\left.\nabla_{\theta} U(\theta)\right|_{\theta=\theta_{o l d}}+\frac{1}{2} \lambda\left(\mathbf{F}\left(\theta_{\text {old }}\right)\right) d \\
d & =\left.\frac{2}{\lambda} \mathbf{F}^{-1}\left(\theta_{o l d}\right) \nabla_{\theta} U(\theta)\right|_{\theta=\theta_{o l d}}
\end{aligned}
$$

The natural gradient: $\quad g_{N}=\left.\mathbf{F}^{-1}\left(\theta_{\text {old }}\right) \nabla_{\theta} U(\theta)\right|_{\theta=\theta_{\text {old }}}$

$$
\theta_{\text {new }}=\theta_{\text {old }}+\alpha \cdot g_{N}
$$

How shall we choose stepsize along the natural gradient direction

Stepsize along the Natural Gradient direction

The natural gradient: $\quad g_{N}=\mathbf{F}^{-1}\left(\theta_{o l d}\right) \nabla_{\theta} U(\theta)$

$$
\theta_{\text {new }}=\theta_{\text {old }}+\alpha \cdot g_{N}
$$

By the 2nd order Taylor expansion of KL:

$$
\mathrm{D}_{\mathrm{KL}}\left(\pi_{\theta_{\text {old }}} \mid \pi_{\theta}\right) \approx \frac{1}{2}\left(\theta-\theta_{\text {old }}\right)^{\top} \mathbf{F}\left(\theta_{\text {old }}\right)\left(\theta-\theta_{\text {old }}\right)=\frac{1}{2}\left(\alpha g_{N}\right)^{\top} \mathbf{F}\left(\alpha g_{N}\right)
$$

I want the KL between old and new policies to be at most ϵ.

Let's solve for the stepzise along the natural gradient direction:

$$
\begin{aligned}
& \frac{1}{2}\left(\alpha g_{N}\right)^{\top} \mathbf{F}\left(\alpha g_{N}\right)=\epsilon \\
& \alpha=\sqrt{\frac{2 \epsilon}{\left(g_{N}^{\top} \mathbf{F}^{-1} g_{N}\right)}}
\end{aligned}
$$

Algorithm 1 Natural Policy Gradient

Input: initial policy parameters θ_{0}
for $k=0,1,2, \ldots$ do
Collect set of trajectories \mathcal{D}_{k} on policy $\pi_{k}=\pi\left(\theta_{k}\right)$
Estimate advantages $\hat{A}_{t}^{\pi_{k}}$ using any advantage estimation algorithm
Form sample estimates for

- policy gradient \hat{g}_{k} (using advantage estimates)
- and KL-divergence Hessian / Fisher Information Matrix \hat{F}_{k}^{-1}

Compute Natural Policy Gradient update:

$$
\theta_{k+1}=\theta_{k}+\sqrt{\frac{2 \epsilon}{\hat{g}_{k}^{T} \hat{F}_{k}^{-1} \hat{g}_{k}}} \hat{F}_{k}^{-1} \hat{g}_{k}
$$

end for

$$
N P G: \quad \theta_{k+1}=\theta_{k}+\sqrt{\frac{2 \epsilon}{\hat{g}_{k}^{T} \hat{F}_{k}^{-1} \hat{g}_{k}}} \hat{F}_{k}^{-1} \hat{g}_{k}
$$

Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters θ_{0}
for $k=0,1,2, \ldots$ do
Collect set of trajectories \mathcal{D}_{k} on policy $\pi_{k}=\pi\left(\theta_{k}\right)$
Estimate advantages $\hat{A}_{t}^{\pi_{k}}$ using any advantage estimation algorithm
Form sample estimates for

- policy gradient \hat{g}_{k} (using advantage estimates)
- and KL-divergence Hessian-vector product function $f(v)=\hat{H}_{k} v$

Use CG with $n_{c g}$ iterations to obtain $x_{k} \approx \hat{H}_{k}^{-1} \hat{g}_{k}$
Estimate proposed step $\Delta_{k} \approx \sqrt{\frac{2 e}{x_{k}^{T} \hat{H}_{k} x_{k}}} x_{k}$
Perform backtracking line search with exponential decay to obtain final update

$$
\theta_{k+1}=\theta_{k}+\alpha^{j} \Delta_{k}
$$

Trust Region Policy Optimization

Due to the quadratic approximation, the KL constraint may be violated! What if we just do a line search to find the best stepsize, making sure:

- I am improving my objective $\overline{\mathrm{A}}_{\pi_{\text {old }}}(\pi)$
- The KL constraint is not violated.

Algorithm 2 Line Search for TRPO

Compute proposed policy step $\Delta_{k}=\sqrt{\overline{\hat{\mathrm{s}}_{k}^{T}} \hat{H}_{k}^{-1} \overline{\overline{\hat{g}_{k}}}} \hat{H}_{k}^{-1} \hat{g}_{k}$
for $j=0,1,2, \ldots, L$ do
Compute proposed update $\theta=\theta_{k}+\alpha^{j} \Delta_{k}$ if $\overline{\mathbb{A}}_{\pi_{o l d}}(\pi) \geq 0$ and $\bar{D}_{K L}\left(\theta \| \theta_{k}\right) \leq \delta$ then
accept the update and set $\theta_{k+1}=\theta_{k}+\alpha^{j} \Delta_{k}$
break
end if
end for

Proximal Policy Optimization

Can I achieve similar performance without second order information (no Fisher matrix!)

Proximal Policy Optimization

Can I achieve similar performance without second order information (no Fisher matrix!)

- Adaptive KL Penalty
- Policy update solves unconstrained optimization problem

$$
\theta_{k+1}=\arg \max _{\theta} \overline{\mathbb{A}}_{\theta_{k}}(\theta)-\beta_{k} \bar{D}_{K L}\left(\theta \| \theta_{k}\right)
$$

- Penalty coefficient β_{k} changes between iterations to approximately enforce KL-divergence constraint

Proximal Policy Optimization

Can I achieve similar performance without second order information (no Fisher matrix!)

- Adaptive KL Penalty
- Policy update solves unconstrained optimization problem

$$
\theta_{k+1}=\arg \max _{\theta} \overline{\mathbb{A}}_{\theta_{k}}(\theta)-\beta_{k} \bar{D}_{K L}\left(\theta \| \theta_{k}\right)
$$

- Penalty coefficient β_{k} changes between iterations to approximately enforce KL-divergence constraint
- Clipped Objective
- New objective function: let $r_{t}(\theta)=\pi_{\theta}\left(a_{t} \mid s_{t}\right) / \pi_{\theta_{k}}\left(a_{t} \mid s_{t}\right)$. Then

$$
\mathcal{L}_{\theta_{k}}^{C L I P}(\theta)=\underset{\tau \sim \pi_{k}}{\mathrm{E}}\left[\sum_{t=0}^{T}\left[\min \left(r_{t}(\theta) \hat{A}_{t}^{\pi_{k}}, \operatorname{clip}\left(r_{t}(\theta), 1-\epsilon, 1+\epsilon\right) \hat{A}_{t}^{\pi_{k}}\right)\right]\right]
$$

where ϵ is a hyperparameter (maybe $\epsilon=0.2$)

- Policy update is $\theta_{k+1}=\arg \max _{\theta} \mathcal{L}_{\theta_{k}}^{C L I P}(\theta)$

PPO: Adaptive KL Penalty

- Using several epochs of minibatch SGD, optimize the KL-penalized objective

$$
L^{K L P E N}(\theta)=\hat{\mathbb{E}}_{t}\left[\frac{\pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\pi_{\theta_{\text {old }}}\left(a_{t} \mid s_{t}\right)} \hat{A}_{t}-\beta \mathrm{KL}\left[\pi_{\theta_{\text {old }}}\left(\cdot \mid s_{t}\right), \pi_{\theta}\left(\cdot \mid s_{t}\right)\right]\right]
$$

- Compute $d=\hat{\mathbb{E}}_{t}\left[\operatorname{KL}\left[\pi_{\theta_{\text {old }}}\left(\cdot \mid s_{t}\right), \pi_{\theta}\left(\cdot \mid s_{t}\right)\right]\right]$
- If $d<d_{\operatorname{targ}} / 1.5, \beta \leftarrow \beta / 2$
- If $d>d_{\operatorname{targ}} \times 1.5, \beta \leftarrow \beta \times 2$

PPO: Clipped Objective

- Recall the surrogate objective:

$$
\overline{\mathrm{A}}(\pi)=\hat{\mathbb{E}}_{t}\left[\frac{\pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\pi_{\theta_{\text {old }}}\left(a_{t} \mid s_{t}\right)} \hat{A}_{t}\right]=\hat{\mathbb{E}}_{t}\left[r_{t}(\theta) \hat{A}_{t}\right]
$$

- Form a lower bound via clipped importance ratio:
PRIPAR

PPO: Clipped Objective

Input: initial policy parameters θ_{0}, clipping threshold ϵ
for $k=0,1,2, \ldots$ do
Collect set of partial trajectories \mathcal{D}_{k} on policy $\pi_{k}=\pi\left(\theta_{k}\right)$
Estimate advantages $\hat{A}_{t}^{\pi_{k}}$ using any advantage estimation algorithm
Compute policy update

$$
\theta_{k+1}=\arg \max _{\theta} \mathcal{L}_{\theta_{k}}^{C L I P}(\theta)
$$

by taking K steps of minibatch SGD (via Adam), where

$$
\mathcal{L}_{\theta_{k}}^{C L I P}(\theta)=\underset{\tau \sim \pi_{k}}{\mathrm{E}}\left[\sum_{t=0}^{T}\left[\min \left(r_{t}(\theta) \hat{A}_{t}^{\pi_{k}}, \operatorname{clip}\left(r_{t}(\theta), 1-\epsilon, 1+\epsilon\right) \hat{A}_{t}^{\pi_{k}}\right)\right]\right]
$$

end for

- Clipping prevents policy from having incentive to go far away from θ_{k+1}
- Clipping seems to work at least as well as PPO with KL penalty, but is simpler to implement

PPO: Clipped Objective

Figure: Performance comparison between PPO with clipped objective and various other deep RL methods on a slate of MuJoCo tasks. ${ }^{10}$

