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Part of today’s lecture is inspired by the MCTS presentation of Bryce Wiedenbeck



Definitions

Learning: the acquisition of knowledge or skills through experience,
study, or by being taught.

Planning: any computational process that uses a model to create or
improve a policy

Planning |
Model > Policy




What is Online Planning?

Unroll the model of the environment forward in time to select the right
action sequences to achieve your goal.
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Why online planning?

Why don'’t we just learn a value function directly for every state offline, so
that we do not waste time online?

e Because the environment has many many states (consider Go 107170,
Chess 10748, real world ....)

e Very hard to compute a good value function for each one of them, most
of them you will never visit at training time.

e Thus, condition on the current state you are in, try to estimate the value
function of the relevant part of the state space online.

e Focus your resources on sub-MDP starting from now, often dramatically
easier than solving the whole MDP.



Online Planning with Search

1. Build the full search tree with the current state of the agent at
the root

2. Select the next move to execute using heuristics
3. Execute it

4. GOTO 1



Curse of dimensionality

The sub-MDP rooted at the current state the agent is in may still be
very large (too many states are reachable), despite much smaller
than the original one.

Too many actions possible: large tree branching factor

Too many steps: large tree depth

| cannot exhaustively search the full tree



Curse of dimensionality

Consider hex on an NxN board.

branching factor < N?

2N < depth = N?

board size max branching factor min depth tree size = depth of 10'° nodes

6Xx6 36 12 >10"7 7
8x8 64 16 >1028 6
11x11 121 22 >10% 5
4

19x19 361 38 >10%

Goal of HEX: to make a connected line that links
two antipodal points of the grid




How to handle the curse of dimensionality?



Intelligent instead of exhaustive search

The depth of the search may be reduced by position eva
truncating the search tree at state s and replacing the su

uation:
otree below s

by an approximate value function v(s) = v * (s)that predicts the

outcome from state .

The breadth of the search may be reduced by sampling a

ctions from a

policy p(a | s), that is, a probability distribution over plausible moves a

in position s, instead of trying every action.



Position evaluation

We can estimate values for states in two ways:
* Engineering them using human experts (DeepBlue)

e Learning them from self-play (TD-gammon)

Problems with human engineering:
e tiring

e non transferrable to other domains.

YET: that’s how Kasparov was first beaten.

http:/stanford.edu/~cpiech/cs221/apps/deepBlue.html



Monte-Carlo position evaluation

function MC BoardEval (state) :

wins = 0

for i=1:NUM SAMPLES

next state = state

while non terminal (next
= random legal move (next state)

state.winner == state.turn: wins-++

bsses++ #fneeds slight modification 1f draws possible

= L. .
. .
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What policy shall we use to draw our simulations?

The cheapest one is random..



Monte-Carlo position evaluation in Go

V(s)=2/4=05 | Current position s
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Simplest Monte-Carlo Search

e For action selection, | need to be estimating not state but rather state-
action values.

e But! Since we assume dynamics given, we can simply use one step look-
ahead!



Simplest Monte-Carlo Search

Given a deterministic transition function 7, a root state s and a
simulation policy 7 (potentially random)

Simulate K episodes from current (real) state:
k ck Ak pk ck Ak kK
{s,a, R ,SI,AI,RZ,Sz,AZ,...,ST}k=1 ~ T, 7

Evaluate action value function of the root by mean return:
1 K
O(s,a) =—= ) G — q,(s,a)
K ]; k T

Select root action: a = argmax . ,0(s, a)



Simplest Monte-Carlo Search

Given a deterministic transition function 7, a root state s and a
simulation policy 7 (potentially random)

For each action a € &
0(s,a) = MC-boardEval(s’), s = T(s,a)

Select root action: a = argmax . ,Q(s, a)



Can we do better?

e Could we be improving our simulation policy the more simulations we

obtain?

e Yes we can! We can have two policies:

e |nternal to the tree:

keep track of action values Q not only for the

root but also for nodes internal to a tree we are expanding, and use

to improve the simu

e External to the tree:

random policy

ation policy over time

we do not have Q estimates and thus we use a

In MCTS, the simulation policy improves

e Can we think anything better than ¢ — greedy?



Upper Confidence Bound (UCB)

A, =argmax, | Q(a) +c

e / : parent node visits

e N(a) : times the action has been tried out

e Probability of choosing an action:
e decreases with the number of visits (explore)
e increases with a node’s value (exploit)

e Always tries every option once.

e A better exploration-exploitation than € — greedy

log t
N{a)




Monte-Carlo Tree Search

1. Selection
e Used for nodes we have seen before
e Pick actions according to UCB
2. Expansion
e Used when we reach the frontier
e Add one node per rollout
3. Simulation
e Used beyond the search frontier
e Don't bother with UCB, just pick actions randomly
4. Back-propagation
e After reaching a terminal node

e Update value and visits for states expanded in selection and expansion



Monte-Carlo Tree Search

function UCB sample (node) :
weights = []
for child of node:
w = child.value
w += C*sgrt(ln(node.visits) / child.visits)
add w to weights
distribution = normalize weights to sum to 1

return child sampled according to distribution



Monte-Carlo Tree Search

function MCTS sample (node)
if all children expanded:#selection
next = UCB sample (node)
outcome = MCTS sample (next)
else:#expansion
next = random unexpanded child
create node for next, add to tree
#simulation
outcome = random playout (next.state)
#tbackpropagation

update value (node, outcome)

For every state within the search tree we bookkeep # of visits and # of wins



Monte-Carlo Tree Search (helper functions)

function random playout (state):
while state 1s not terminal:

state = make a random move from state

return outcome

v

n

1
=V, + ;(outcome - V)

function update value (node, outcome):
#fcombine the new outcome with the average value
node.value *= node.visits
node.vislits++
node.value += outcome

node.value /= node.visits



function MCTS sample (node)
if all children expanded:#selection
next = UCB sample (node)
outcome = MCTS sample (next)

else: #expansion

next = random unexpanded child
Search Tree

create node for next, add to tree
#simulation

outcome = random playout (next.state)
#backpropagation

update value (node, outcome) Explored Tree

Search tree contains states whose children have been tried at least once



function MCTS sample (node)

if all children expanded:#selection
next = UCB sample (node)
outcome = MCTS sample (next)

else: #expansion
next = random unexpanded child
create node for next, add to tree
#simulation
outcome = random playout (next.state)

#backpropagation

update value (node, outcome)

Search Tree

v

/Explored Tree
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function MCTS sample (node)
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Monte-Carlo Tree Search

Repeat while time remains

L» Selection =g EXPanNsion = Simulation =—— Backup

A

Tree Rollout
Policy Policy



Monte-Carlo Tree Search planner

e Estimates action-state values Q(s, a) by look-ahead planning.

e Questions:

e \Which one, MCTS or DQN, discovers better actions, that is, Q
estimates that if we act greedily with respect to them, we achieve
higher returns on expectation?

e Why don’t we simply use MCTS to select actions during playing of
Atari games (no prior knowledge)?

¢ How can we use the estimates discovered with MCTS but at the
same time play fast at test time?



Deep Learning for Real-Time Atari Game Play
Using Offline Monte-Carlo Tree Search Planning

Xiaoxiao Guo Satinder Singh
Computer Science and Eng. Computer Science and Eng.
University of Michigan University of Michigan
guoxiaofumich.edu bave ja@umich.edu

Honglak Lee Richard Lewis Xiaoshi Wang
Computer Science and Eng. Department of Psychology Computer Science and Eng.
University of Michigan University of Michigan University of Michigan

honglak@umich.edu rickl@umich.edu Xiaoshiw@umich.edu

Idea: Use MCTS for Q value estimation and action selection at training time
instead of the Q learning update rule.

At test time just use the reactive policy network, without any look-ahead
planning. In other words, imitate the MCTS planner.



Learning to play from offline MCTS

e The MCTS agent plays against itself and generates (s, a, O(s, a)) tuples.
Use this data to train:

e UCTtoRegression: A regression network, that given 4 frames
regresses to Q(s, a, w) for all actions. Select actions using argmax Q.

e UCTtoClassification: A classification network, that given 4 frames
predicts the best action.

e Q: Could we use the learned policies to play the game?



Learning from offline MCTS

e The state distribution visited using actions of the MCTS planner will not
match the state distribution obtained from the learned policy.

e UCTtoClassification-Interleaved: Interleave UCTtoClassification with
data collection:

1.Start from 200 runs with MCTS.
2.Train the policy UCTtoClassification.

3.Deploy the policy for 200 runs allowing 5% of the time a random
action to be sampled.

4. Use MCTS to decide best action for those states,

5.GOTO 2

e At test time, just deploy the learnt policy.



Results

Agent B.Rider Breakout  Enduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20)  175(5.63) 558(14) 19(0.3) 11574(44) 2273(23) 672(5.3)
-best 10514 351 942 21 29725 5100 1200
-greedy 5676 269 692 21 19890 2760 680
UCC-1 5388(4.6) 215(6.69) 60I1(11) 19(0.14)  13189(35.3) 2701(6.09)  670(4.24)
-best 10732 413 1026 21 29900 6100 910
-greedy 5702 380 741 21 20025 2995 692
UCR 2405(12)  143(6.7) 566(10.2)  19(0.3) 12755(40.7) 1024 (13.8) 441(8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent  B.Rider Breakout Enduro Pong Q%*bert Seaquest S.Invaders
UCT 7233 406 788 21 18850 3257 2354




Results

Agent B.Rider Breakout  Enduro Pong Q*bert Seaquest S.Invaders
DOQN 4092 168 470 20 1952 1705 581
-best 5184 223 661 21 4500 1740 1075
UCC 5342 (20)  175(5.63) 558(14) 19(0.3) 11574(44) 2273(23) 672(5.3)
-best 10514 351 942 21 29725 5100 1200
-greedy 5676 269 692 21 19890 2760 680
UCC-1 5388(4.6) 215(6.69) 601(11) 19(0.14)  13189(35.3) 2701(6.09)  670(4.24)
-best 10732 413 1026 21 29900 6100 910
-greedy 5702 380 741 21 20025 2995 692
UCR 2405(12)  143(6.7) 566(10.2)  19(0.3) 12755(40.7) 1024 (13.8) 441(8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent  B.Rider Breakout Enduro Pong Q%*bert Seaquest S.Invaders
UCT 7233 406 788 21 18850 3257 2354

MCTS planning discovers better actions than deep Q learning. It takes though "a few days on a
recent multicore computer to play for each game”.
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Classification is doing much better than regression! Indeed, we are training for exactly what we
care about.
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S.Invaders

2354

Breakout  Enduro

Agent
UCT

B.Rider Pong
7233 406 788 21

Q*bert
18850

Seaquest

3257

Interleaving is important to prevent mismatch between the training data and the data that the
trained policy will see at test time.
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Results improve further if you allow MCTS planner to have more simulations and build more
reliable Q estimates.




Problem

Step 69: FIRE Step 70: DOWN+FIRE Step 74 DOWN<FIRE Step 75:RIGHI+FIRE  Step 76:RIGHT+FIRE Step 78: RIGHT-FIRE  Step 79:.DOWN+FIRE

We do not learn to save the divers. Saving 6 divers brings very high reward, but exceeds the
depth of our MCTS planner, thus it is ignored.




Neural Episodic Control

Alexander Pritzel APRITZEL @ GOOGLE.COM
Benigno Uria BURIA @GOOGLE.COM
Sriram Srinivasan SRSRINIVASAN @GOOGLE.COM
Adria Puigdomeénech ADRIAP @GOOGLE.COM
Oriol Vinyals VINYALS @ GOOGLE.COM
Demis Hassabis DEMISHASSABIS @ GOOGLE.COM
Daan Wierstra WIERSTRA @ GOOGLE.COM
Charles Blundell CBLUNDELL@GOOGLE.COM

DeepMind, London UK

Interleaving of Q updates with real world experience collection: the experience we collect it takes long time
till they are reflected to our Q values.



Image to Q value mapping through a nearest neighbor
look-up

(s, a)

k(h,h;) — ).
w; = Zj k(h hy) Q(S, a) Z w; Q;




Image to Q value mapping through a nearest neighbor
look-up

Nearest neighbors Lookup

hi Qi

(s, a)




Writing in the memory

N-1
N-step Q targets:  @W(sy,a) = Y vIr; + 7~ max Q(s4n,a’)
a/
=0

If identical key h present: @Q; + Q; + a(Q(N)(S, a) — Q;)

Writing

Else add row(h, O"V(s, @)) to the memory



Algorithm 1 Neural Episodic Control

D: replay memory.
M., : a DND for each action a.
N': horizon for N-step () estimate.
for each episode do
fort=1,2,...,T do
Receive observation s; from environment with em-
bedding h.
Estimate (s, a) for each action a via (1) from M,
a; < e-greedy policy based on Q(s;, a)
Take action a;, receive reward 74+ 1
Append (h, Q™) (s4,a¢)) to M,, .
Append (s, a;, Q(N)(st, a;)) to D.
Train on a random minibatch from D.
end for
end for




Frames Nature DQN Q*(\) Retrace(\) Prioritised Replay A3C  NEC  MFEC
IM -0.7% -0.8% -0.4% -2.4% 04% 16.7% 12.8%
2M 0.0% 0.1% 0.2% 0.0% 09% 278% 16.7%
4M 2.4% 1.8%  3.3% 2.7% 1.9% 36.0% 26.6%
10M 15.7% 13.0% 17.3% 22.4% 3.6% 54.6% 45.4%
20M 26.8% 26.9% 30.4% 38.6% 79%  720% 55.9%
40M 52.7% 59.6% 60.5% 89.0 % 184% 833% 61.9%

Table 1. Median across games of human-normalised scores for several algorithms at different points in training

Frames Nature DQN Q*()\) Retrace()\) Prioritised Replay A3C NEC MFEC
IM -10.5% -11.7%  -10.5% -14.4% 5.2% 45.6%  28.4%
2M -5.8% -7.5% -5.4% -5.4% 8.0% 583%  39.4%
4M 8.8% 6.2% 6.2% 10.2% 11.8% 733%  53.4%
10M 51.3% 46.3%  52.7% 71.5% 223%  99.8%  85.0%
20M 94.5% 1354%  273.7% 165.2% 59.7%  121.5% 113.6%
40M 151.2% 4409% 386.5% 332.3% 255.4% 144.8% 142.2%
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