
Monte Carlo Tree Search

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon

School of Computer Science

Spring 2021, CMU 10-403

Part of today’s lecture is inspired by the MCTS presentation of Bryce Wiedenbeck

Learning: the acquisi7on of knowledge or skills through experience,
study, or by being taught.

Planning: any computa7onal process that uses a model to create or
improve a policy

Defini7ons

Model Policy
Planning

Unroll the model of the environment forward in time to select the right
action sequences to achieve your goal.

What is Online Planning?

Unroll the model of the environment forward in time to select the right
action sequences to achieve your goal.

What is Online Planning?

current state

goal state

Unroll the model of the environment forward in time to select the right
action sequences to achieve your goal.

What is Online Planning?

current state

goal state

Unroll the model of the environment forward in time to select the right
action sequences to achieve your goal.

What is Online Planning?

current state

goal state

Why don’t we just learn a value func7on directly for every state offline, so
that we do not waste 7me online?

• Because the environment has many many states (consider Go 10^170,
Chess 10^48, real world ….)

• Very hard to compute a good value func7on for each one of them, most
of them you will never visit at training 7me.

• Thus, condi7on on the current state you are in, try to es7mate the value
func7on of the relevant part of the state space online.

• Focus your resources on sub-MDP star7ng from now, oYen drama7cally
easier than solving the whole MDP.

Why online planning?

1. Build the full search tree with the current state of the agent at
the root

2. Select the next move to execute using heuristics

3. Execute it

4. GOTO 1

Online Planning with Search

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Forward Search

Forward search algorithms select the best action by lookahead
They build a search tree with the current state st at the root
Using a model of the MDP to look ahead

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!

No need to solve whole MDP, just sub-MDP starting from now

The sub-MDP rooted at the current state the agent is in may s7ll be
very large (too many states are reachable), despite much smaller
than the original one.

Too many ac7ons possible: large tree branching factor

Too many steps: large tree depth

I cannot exhaus7vely search the full tree

Curse of dimensionality

Goal of HEX: to make a connected line that links
two an7podal points of the grid

Curse of dimensionality

How to handle the curse of dimensionality?

The depth of the search may be reduced by posi7on evalua7on:
trunca7ng the search tree at state s and replacing the subtree below s
by an approximate value func7on that predicts the
outcome from state .

The breadth of the search may be reduced by sampling ac7ons from a
policy , that is, a probability distribu7on over plausible moves a
in posi7on , instead of trying every ac7on.

v(s) = v * (s)
s

p(a |s)
s

Intelligent instead of exhaus7ve search

We can es7mate values for states in two ways:

• Engineering them using human experts (DeepBlue)

• Learning them from self-play (TD-gammon)

Problems with human engineering:

• 7ring

• non transferrable to other domains.

Posi7on evalua7on

http://stanford.edu/~cpiech/cs221/apps/deepBlue.html

YET: that’s how Kasparov was first beaten.

What policy shall we use to draw our simula7ons?

The cheapest one is random..

Monte-Carlo posi7on evalua7on

Monte-Carlo posi7on evalua7on in Go
Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Monte-Carlo Evaluation in Go

Current position s

Simulation

 1 1 0 0 Outcomes

V(s) = 2/4 = 0.5

Averaging sampled returns..

• For ac7on selec7on, I need to be es7ma7ng not state but rather state-
ac7on values.

• But! Since we assume dynamics given, we can simply use one step look-
ahead!

Simplest Monte-Carlo Search

Given a determinis7c transi7on func7on , a root state and a
simula7on policy (poten7ally random)

Simulate episodes from current (real) state:

Evaluate ac7on value func7on of the root by mean return:

Select root ac7on:

T s
π

K

{s, a, Rk
1, Sk

1, Ak
1, Rk

2, Sk
2, Ak

2, . . . , Sk
T}K

k=1 ∼ T, π

Q(s, a) =
1
K

K

∑
k=1

Gk → qπ(s, a)

a = argmaxa∈𝒜Q(s, a)

Simplest Monte-Carlo Search

Given a determinis7c transi7on func7on , a root state and a
simula7on policy (poten7ally random)

For each ac7on

Select root ac7on:

T s
π

a ∈ 𝒜

Q(s, a) = MC-boardEval(s′), s′ = T(s, a)

a = argmaxa∈𝒜Q(s, a)

Simplest Monte-Carlo Search

• Could we be improving our simula7on policy the more simula7ons we
obtain?

• Yes we can! We can have two policies:

• Internal to the tree: keep track of ac7on values Q not only for the
root but also for nodes internal to a tree we are expanding, and use
to improve the simula7on policy over 7me

• External to the tree: we do not have Q es7mates and thus we use a
random policy

In MCTS, the simula6on policy improves

• Can we think anything beger than ?ϵ − greedy

Can we do beger?

•

•

• Probability of choosing an ac7on:

• decreases with the number of visits (explore)

• increases with a node’s value (exploit)

• Always tries every op7on once.

• A beger explora7on-exploita7on than

At = argmaxa Qt(a) + c
log t
Nt(a)

t : parent node visits

Nt(a) : 7mes the ac7on has been tried out

ϵ − greedy

Finite-time Analysis of the Multiarmed Bandit Problem, Auer, Cesa-Bianchi, Fischer, 2002

Upper Confidence Bound (UCB)

1. Selec6on

• Used for nodes we have seen before

• Pick ac7ons according to UCB

2. Expansion

• Used when we reach the fron7er

• Add one node per rollout

3. Simula6on

• Used beyond the search fron7er

• Don’t bother with UCB, just pick ac7ons randomly

4. Back-propaga6on

• AYer reaching a terminal node

• Update value and visits for states expanded in selec7on and expansion

Monte-Carlo Tree Search

Bandit based Monte-Carlo Planning, Kocsis and Szepesvari, 2006

Monte-Carlo Tree Search

Monte-Carlo Tree Search

For every state within the search tree we bookkeep # of visits and # of wins

Monte-Carlo Tree Search (helper func7ons)

Vn+1 = Vn +
1
n

(outcome − Vn)

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree

Search tree contains states whose children have been tried at least once

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

• Es7mates ac7on-state values by look-ahead planning.

• Ques7ons:

• Which one, MCTS or DQN, discovers beger ac7ons, that is, Q
es7mates that if we act greedily with respect to them, we achieve
higher returns on expecta7on?

• Why don’t we simply use MCTS to select ac7ons during playing of
Atari games (no prior knowledge)?

• How can we use the es7mates discovered with MCTS but at the
same 7me play fast at test 7me?

Q(s, a)

Monte-Carlo Tree Search planner

Idea: Use MCTS for Q value es7ma7on and ac7on selec7on at training 7me
instead of the Q learning update rule.

At test 7me just use the reac7ve policy network, without any look-ahead
planning. In other words, imitate the MCTS planner.

• The MCTS agent plays against itself and generates tuples.
Use this data to train:

• UCTtoRegression: A regression network, that given 4 frames
regresses to for all ac7ons. Select ac7ons using argmax Q.

• UCTtoClassifica6on: A classifica7on network, that given 4 frames
predicts the best ac7on.

• Q: Could we use the learned policies to play the game?

(s, a, Q(s, a))

Q(s, a, w)

Learning to play from offline MCTS

• The state distribu7on visited using ac7ons of the MCTS planner will not
match the state distribu7on obtained from the learned policy.

• UCTtoClassifica6on-Interleaved: Interleave UCTtoClassifica7on with
data collec7on:

1.Start from 200 runs with MCTS.

2.Train the policy UCTtoClassifica6on.

3.Deploy the policy for 200 runs allowing 5% of the 7me a random
ac7on to be sampled.

4.Use MCTS to decide best ac7on for those states,

5.GOTO 2

• At test 7me, just deploy the learnt policy.

Learning from offline MCTS

Results

Results

MCTS planning discovers beger ac7ons than deep Q learning. It takes though "a few days on a
recent mul7core computer to play for each game”.

Results

Classifica7on is doing much beger than regression! Indeed, we are training for exactly what we
care about.

Results

Interleaving is important to prevent mismatch between the training data and the data that the
trained policy will see at test 7me.

Results

Results improve further if you allow MCTS planner to have more simula7ons and build more
reliable Q es7mates.

Problem

We do not learn to save the divers. Saving 6 divers brings very high reward, but exceeds the
depth of our MCTS planner, thus it is ignored.

Interleaving of Q updates with real world experience collection: the experience we collect it takes long time
till they are reflected to our Q values.

Image to Q value mapping through a nearest neighbor
look-up

Q(s, a)

Image to Q value mapping through a nearest neighbor
look-up

Q(s, a)

Nearest neighbors Lookup

If iden7cal key h present:

Else add row to the memory(h, QN(s, a))

Wri7ng in the memory

N-step Q targets:

