Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control

Function Approximation

Spring 2021, CMU 10-403

Katerina Fragkiadaki

Used Materials

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Russ Salakhutdinov, Rich Sutton’s class and David
Silver’s class on Reinforcement Learning.

Large-Scale Reinforcement Learning

e Reinforcement learning has been used to solve large problems, e.g.
e Backgammon: 10720 states
e Computer Go: 107170 states
e Helicopter: continuous state space

e Tabular methods that enumerate every single state clearly do not work

Value Function Approximation (VFA)

e So far we have represented value function by a lookup table
e Every state s has an entry V(s), or

e Every state-action pair (s, @) has an entry O(s, a)

e Problem with large MDPs:
e There are too many states and/or actions to store in memory
e |tis too slow to learn the value of each state individually

e Solution for large MDPs:

e Estimate value function with function approximation
V(s,w) = v_(s) or g(s,a,w) = q_(s,a)

e Generalize from seen states to unseen states

Value Function Approximation (VFA)

e Value function approximation (VFA) replaces the table with a general
parameterized form:

St ‘/}(Sta W)
W] < <[]
St)
q(S, A, w)

Ay

When we update the parameters w, the values of many states change
simultaneously!

Policy Approximation

e Policy approximation replaces the table with a general parameterized
form:

(A, | S W)

Which Function Approximation?

e There are many function approximators, e.g.
e Linear combinations of features
e Neural networks
e Decision tree
e Nearest neighbour

e Fourier / wavelet bases

Which Function Approximation?

e There are many function approximators, e.g.
e Linear combinations of features
e Neural networks
e Decision tree
e Nearest neighbour

e Fourier / wavelet bases

e differentiable function approximators

Gradient Descent

e Let J(w) be a differentiable function of parameter vector w
e Define the gradient of J(w) to be:

dJ(w)

0W1

V,J(wW) =
0J(W)

0w,

Gradient Descent

e Let J(w) be a differentiable function of parameter vector w

e Define the gradient of J(w) to be:

dJ(w)
6W1

V,J(wW) =

&
b

oJ(w)
0w,

e To find a local minimum of J(w), adjust
w in direction of the negative gradient:

1
Aw = — Ea VWJ(W)

\

Step-size

Gradient Descent

e Let J(w) be a differentiable function of parameter vector w
e Define the gradient of J(w) to be:

0J(w)

oW,
V,J(w) =
0J(w)

ow

n

e Starting from a guess w,,

e We consider the sequence Wy, W{, W,, . ..

st.:W, .| =W, — 50{ V,J(w,)

e We then have J(w,) > J(w;) > J(w,) > ...

Our objective

e Goal: find parameter vector w minimizing mean-squared error between
the true value function v_($) and its approximation V(S, w):

Jw) = E, | (1,(5) = (5, w))’|

Our objective

e Goal: find parameter vector w minimizing mean-squared error between
the true value function v_($) and its approximation V(S, w):

Jw) = E, | (1,(5) = (5, w))’|

o Let u(S) denote how much time we spend in each state s under policy
7, then:

|S]

Jw) =Y uS)[r8) =S W Y u(s) =1
n=1

sES

e Very important choice: it is OK if we cannot learn the value of states we
visit very few times, there are too many states, | should focus on the
ones that matter: the RL solution to curse of dimensionality.

Our objective

e Goal: find parameter vector w minimizing mean-squared error between
the true value function v_(5) and its approximation V(S, w):

. 2
Jw) = E. [(vﬂ(S) — (S, W)]
e Let u(S) denote how much time we spend in each state s under policy 7,

then:

|S]

Jw) =Y uS)[r8) =S W] Y u(s) =1
n=1

sES

e In contrast to:

1
5w) = 2, [1(8) = (5. W) 2

sES

On-policy state distribution

Let /1(s) be the initial state distribution, i.e, the probability that an episode
starts at state s.

Then the un-normalized on-policy state probability satisfies the following
recursions:

n(s) = h(s)+) n(3)) ma|Hp(s|5,a),Vs € 8

1(s)

, Vse d
2 1(s")

p(s) =

Our objective

e Goal: find parameter vector w minimizing mean-squared error between
the true value function v_($) and its approximation V(S, w):

Jw) = E, :(VE(S) — (S, w))2]

AW = — ?a V. J(W)

= aE,, | (v,(S) = P(S, W) V. H(S, w)|

Our objective

e Goal: find parameter vector w minimizing mean-squared error between
the true value function v_($) and its approximation V(S, w):

Jw) = E, :(VE(S) — (S, w))2]

AwW = — %a V,J(W)
= aE,, | (v,(S) = P(S, W) V. H(S, w)|

e Starting from a guess wy,

Our objective

e Goal: find parameter vector w minimizing mean-squared error between the
true value function v_(S) and its approximation v(S, w):

Jw) = E, | (4,(5) = (5, w))’|
Aw = — %a V., J(W)
= aE, | (v,(8) = (5, W) V., (5, w)|
e Starting from a guess w,,
o We consider the sequence wy, Wi, Wy, ... st.iw, =W, — 50{ V., Jw,)

e We then have J(wy) > J(wy) > J(wy) > ...

Gradient Descent

e Goal: find parameter vector w minimizing mean-squared error between
the true value function v_() and its approximation V(S, w):

Jw) = E, | (1,(5) = (5, w))’|

e Gradient descent finds a local minimum:

1
Aw = — 5(1 VWJ(W)

= aE,, | (v,(S) = P(S, W)) V. §(S, w)|

Gradient Descent

e Goal: find parameter vector w minimizing mean-squared error between
the true value function v_() and its approximation V(S, w):

Jw) = E, | (1,(5) = (5, w))’|

e Gradient descent finds a local minimum:

Aw = — %a V,J(W)
= aE,, | (v,(S) = P(S, W)) V. §(S, w)|

e Stochastic gradient descent (SGD) samples the gradient:
AW = a (v(S) — (S, w)) V, (S, w)

Least Squares Prediction

e Given value function approximation: v(s, W) =~ v_(s)

e And experience D consisting of (state, value) pairs

D = {{s1.97): (52:V7) - (S1:VF) |
e Find parameters w that give the best fitting value function v(s, w)?

e Least squares algorithms find parameter vector w minimizing sum-
squared error between v(s,, w) and target values v/":
T

LSwW) =Y (vF =9 (s, W))’

=1

— E,, [(v” _— w))2]

SGD with Experience Replay

e Given experience consisting of (state, value) pairs
D = {{s1.V): ($2:73): - (57 V7) |

e Repeat

e Sample state, value from experience
(s,v") ~ D

e Apply stochastic gradient descent update
Aw = a (v = D(s, W) V. D(s, W)

e Converges to least squares solution

Feature Vectors

e Represent state by a feature vector
X, (5)
X(§) =] :
X,(5)

e For example
e Distance of robot from landmarks
e Trends in the stock market

e Piece and pawn configurations in chess

Linear Value Function Approximation (VFA)

e Represent value function by a linear combination of features

DS, W) =x(S) W =) x(S)w,
=1

e Objective function is quadratic in parameters w

JW) = E, [(1(8) = x(5)Tw)’|

e Update rule is particularly simple

Vo (S, W) = x(S)
Aw = a (v(S) — H(S, w)) x(S)

e Update = step-size x prediction error x feature value

e Later, we will look at the neural networks as function approximators.

Incremental Prediction Algorithms

e We have assumed the true value function v_(s) is given by a supervisor

e But in RL there is no supervisor, only rewards

e In practice, we substitute a target for v_(s)

e For MC, the target is the return G,
Aw =a (G—=9 (S, w)) VD (S, w)

W

e For TD(0), the target is the TD target: R, | + yV (Sr+1» W)
AW = a (Royy + 70 (S, W) =D (S, W) Vb (S, w)

Monte Carlo with VFA

e Return G, is an unbiased, noisy sample of true value v_(S$,)

e Can therefore apply supervised learning to “training data”:

(81,G1), (5. Gy), ... (Sr, Gr)

e For example, using linear Monte-Carlo policy evaluation:

AW =« (Gt — (St, w)) V,V (St, W)

e Monte-Carlo evaluation converges to a local optimum

Monte Carlo with VFA

Gradient Monte Carlo Algorithm for Approximating v ~ v,

Input: the policy 7 to be evaluated
Input: a differentiable function v : 8 x R" — R

Initialize value-function weights 6 as appropriate (e.g., 8 = 0)
Repeat forever:
Generate an episode Sy, Ag, R1, 51, A1,..., Ry, ST using w
Fort=0,1,...,T —1:
0+ 0+ Oé[Gt — @(St,H)] V@(St,e)

TD Learning with VFA

e The TD-target R, | + yV (SHI, W) is a biased sample of true value
v (S)

e Can still apply supervised learning to “training data”:

(SLR + 7D (S5, W)), (S0, Ry + 7P (S5, W))y oy (S_1, Ry)

e For example, using linear TD(0):
Aw = a (R+ yD (S, w) — (S, W) V. 5(S, w)

We ignore the dependence of the target on w!

We call it semi-gradient methods

TD Learning with VFA

Semi-gradient TD(0) for estimating v ~ v,

Input: the policy m to be evaluated
Input: a differentiable function ¢ : 8 x R™ — R such that ¢(terminal,-) = 0

Initialize value-function weights @ arbitrarily (e.g., 8 = 0)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A ~ 7(-|.5)
Take action A, observe R, S’
0 <+ 0+« R+~5(5,0) —0(5,0)|Vi(S,0)
S 5

until S’ is terminal

Control with VFA

e Policy evaluation Approximate policy evaluation: g(-, - ,W) = g,

e Policy improvement €-greedy policy improvement

Action-Value Function Approximation

* Approximate the action-value function
q(S,A,w) =~ q,(5,A)

 Minimize mean-squared error between the true action-value function
q.(S, A) and the approximate action-value function:

. 2
Jow) = E, [(4,05, 4) — 465, 4, W)’
o Use stochastic gradient descent to find a local minimum
1 . "
= V(W) = (:(5,A) = (5, A, W) V3 4(S, A, W)

AW = a (S, A) — §(S, A, W)) V,4(S, A, W)

Linear Action-Value Function Approximation

* Represent state and action by a feature vector

X;($,A)
X(S,A) = :
X, (S,A)

* Represent action-value function by linear combination of features

qg(S,A,w) = x(S, A)TW = i Xj(SaA)Wj
j=1
o Stochastic gradient descent update
V,q(S,A,w) =x(S,A)
AW = a (q,(S,A) — 4(S, A, w)) x(S, A)

Incremental Control Algorithms

e Like prediction, we must substitute a target for ¢ (S, A)

« For MC, the target is the return G,
Aw =a (G—q(S,A.W))Vuq(S,A.w)

o For TD(0), the target is the TD target: R, | + yQ (Sr+1» Ar+1)

AW = a (Rt-l—l + 79 (St+19At-|—19 W)‘ﬁ (St’ A, W)) Va4 (SP Ap, W)

Incremental Control Algorithms

Episodic Semi-gradient Sarsa for Estimating ¢ =~ g,

Input: a differentiable function ¢ : 6 x A x R® -+ R

Initialize value-function weights 8 € R™ arbitrarily (e.g., 8 = 0)
Repeat (for each episode):
S, A <+ initial state and action of episode (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
If S” is terminal:
0+« 0+aR-q(S,A,0)|Vi(s, A, o)
Go to next episode
Choose A’ as a function of ¢(5’,-,0) (e.g., e-greedy)
0+ 0+alR+~4(S", A, 0)—q(S,A,0)]Vi(S, A,)
S+ S
A A

Incremental Control Algorithms

e Like prediction, we must substitute a target for ¢ (S, A)

« For MC, the target is the return G,
Aw =a (G—q(S,A.W))Vuq(S,A.w)

o For TD(0), the target is the TD target: R, | + yQ (Sr+1» Ar+1)
Aw =a (Rt+1 + 79 (St+19At+19 W)_Q (St’ A, W)) Va4 (Sr» Ap, W)

e Can we guess the deep Q learning update rule?

Aw = a(R, | +ymaxq(S,, , A . W)—q(S,, A, W) V,q(S,, A,, W)

+1

Deep Q-Networks (DQNSs)
* Represent action-state value function by Q-network with weights w
O(s,a,w) ~ Q*(s, a)

When would this be preferred?

Q(s,a,w)

1

Q-Learning with FA

 Minimize MSE loss by stochastic gradient descent

a

2
I = (r + ymax Q (s, a’, w)—0(s, a, W)>

e Converges to Q= using table lookup representation

o But diverges using neural networks due to:
e Correlations between samples

 Non-stationary targets

Q-Learning

 Minimize MSE loss by stochastic gradient descent

I={r+ymaxQ(s,a ,w)—0(s,a, w)

a

e Converges to Q= using table lookup representation

o But diverges using neural networks due to:
e Correlations between samples

 Non-stationary targets

. . Playing Atari with Deep Reinforcement Learning
Solutions to both problems in:

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves loannis Antonoglou
Daan Wierstra Martin Riedmiller

DeepMind Technologies

DQN

e To remove correlations, build data-set from agent’s own experience

51,41, 12,52
/
52,d2, 13,53 — S5,a,r,s

53, d3, 4, 54

5t7 ata rt—|-17 St—l—l

 Sample experiences from data-set and apply update

2
[= <r +ymax Q (s’,a’, w)—0(s, a, W)>

a

DQN

e To remove correlations, build data-set from agent’s own experience

51,41, 12,52
/
52,d2, 13,53 — S5,a,r,s

S3,d3, 4, 54

St7 at7 rt+17 St+1

 Sample experiences from data-set and apply update

2
[= (r +ymax Q (s’,a’, w—)—0(s, a, W))

a

 To deal with non-stationarity, target parameters w- are held fixed

Experience Replay

e Given experience consisting of (state, value), or <state, action/value>
pairs

D= {(51,9])s (52 V])s s (ST VF) }

e Repeat

 Sample state, value from experience

(s, V") ~ D

* Apply stochastic gradient descent update

Aw =« (v” — (s, W)) V., V(s, W)

DQNs: Experience Replay

« DQN uses experience replay and fixed Q-targets

» Store transition (s,, a,, ;.. 1, S,;1) in replay memory D
e Sample random mini-batch of transitions (s, a, r, s") from D

e Compute Q-learning targets w.r.t. old, fixed parameters w-

e Optimize MSE between Q-network and Q-learning targets

2
7, (1) = Eugyms | (7 rmax @ staing) = @ ssaim))

a

- J L /
Y Y

Q-learning target Q-network

e Use stochastic gradient descent

DQNs in Atari

DQNs in Atari

e End-to-end learning of values O(s, a) from pixels
* |nput observation is stack of raw pixels from last 4 frames
e Outputis Q(s, a) for 18 joystick/button positions

 Reward is change in score for that step

32 4x4 filters 256 hidden units Fully-connected linear
output layer

| 6 8x8 filters

4x84x84 Fﬂ
—~ %
Stack of 4 previous Fully-connected layer

frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

 Network architecture and hyperparameters fixed across all games

Mnih et.al., Nature, 2014

DQNs in Atari

e End-to-end learning of values O(s, a) from pixels

* |nput observation is stack of raw pixels from last 4 frames

e Outputis Q(s, a)for 18 joystick/button positions

 Reward is change in score for that step

32 4x4 filters 256 hidden units Fully-connec ted linear

output layer

(

_

DQN source code: sites.google.com/a/deepmind.com/
dgn/

\

/

 Network architecture and hyperparameters fixed across all games

Mnih et.al., Nature, 2014

Extensions

 Double Q-learning for fighting maximization bias
e Prioritized experience replay

e Dueling Q networks

e Multistep returns

e Value distribution

e Stochastic nets for explorations instead of \epsilon-greedy

Maximization Bias

e We often need to maximize over our value estimates. The estimated
maxima suffer from maximization bias

 Consider a state for which all ground-truth g:(s, a) = 0. Our estimates
(s, a) are uncertain, some are positive and some negative.

_ QO(s,argmax O(s, a)) > 0 while g.(s, argmax g«(s, a)) = 0.

a a

e This is because we use the same estimate Q both to choose the
argmax and to evaluate it.

100%;

» N(-0.1,1)
B e)—=(A)——O
75%! | N\ ; left right
% left |
actions 50%| .
from A ~Q-learning
- Double '
25% Q-learning
5700»————————————4——————————'————’———'————'—optimal
1 100 200 300

Episodes

Double Tabular Q-Learning

Initialize Q1(s,a) and Q2(s,a),Vs € 8,a € A(s), arbitrarily
Initialize Q1 (terminal-state,-) = Q2(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from)1 and Q)2 (e.g., e-greedy in Q1 + Q)2)
Take action A, observe R, S’
With 0.5 probabilility:

Ql(sv A) — Ql(Sa A) + &(R =+ ’YQQ (Sla argmax, Ql(sla a)) o Ql(S7 A))
else:

QQ(Sa A) A Q2(S7 A) =+ Oé(R + ’le (Sla argimnax , QQ(Sla CL)) o QZ(Sv A))
S« 5

until S is terminal

Hado van Hasselt 2010

Double Deep Q-Learning

e Current Q-network w is used to select actions

e Older Q-network w- is used to evaluate actions

Action evaluation: w—

A
4 A

2
[= (r + vQ (s’, argmaxQ (s’,a’, w), W_> —0(s, a, w))

a

- J
Y

Action selection: w

van Hasselt, Guez, Silver, 2015

Prioritized Replay

Weight experience according to “surprise” (or error)

Store experience in priority queue according to DQN error

r+ymaxQ(s,a,w)— 0(s,a,w)

a

.

J

~\

p; Is proportional to

Stochastic Prioritization / DQN error

pi

2., Pt

P(i) =

o determines how much prioritization is used, with a = 0

corresponding to the uniform case.

Schaul, Quan, Antonoglou, Silver, ICLR 2016

Multistep Returns

n—1
k
 Truncated n-step return from a state s_t: Rt(n) — Z 7’,,«()Rr+k+1
k=0

o Multistep Q-learning update rule:

2
[= (Rt(”) + yt(”)maxa,Q(St @S W) — 0(s, a, W))
* Single step Q-learning update rule:

2
| = (r+ Y max Q(s',a',w) — Q(s, a, w))

n-step TD Returns/Targets

» Monte Carlo: Gy = Riy1 +vRito + vV Rpss + -+~ Ry

n-step TD Returns/Targets

e Monte Carlo: G; = Rt_|_1 + ’)/Rt_|_2 + ’72Rt_|_3 + -+ ’YT_t_lRT
« TD: Gﬁl) = Rip1 +yVi(Se41)

e Use Vt to estimate remaining return

n-step TD Returns/Targets

» Monte Carlo: Gy = Riy1 +vRiy2 + vV Rizz+ -+~ IRy
e TD: GV = Ryt + 4Vi(Sis1)

e Use Vt to estimate remaining return
e n-step TD:

o 2 step return: Gf) = Ryt +vRiyo + nyVt(SHg)

n-step TD Returns/Targets

» Monte Carlo: Gy = Riy1 +vRiy2 + vV Rizz+ -+~ IRy
» TD: GV = Ryt +Vi(Sit1)

e Use Vt to estimate remaining return
e n-step TD:

e 2 step return: Gf) = Rit1 + YRita + v Vi(Sti2)

e n-step return: fo”) = Rip1 +YRis2 +7° 4+ -+ " ' Ripn + " Vi(Sian)

with G = G, ift+n>T

n-step TD Prediction

1-step TD

and TD(0O) 2-stepTD 3-step TD

7 e
:
5o
:
O

Idea: Look farther into the
future when you do TD —

backup (1,2, 3, ..., n steps) L

O

;
O

O~—s-

O-—s-

n-step TD

O
¢
Y

O

Y
®

v
O

y
®

oo-step TD
and Monte Carlo

O

Y
®
v
O

O-—s-

O-—s-

Q-

n-step 1D

e Recall the n-step return:
G™ = Ry 1 +7Rppo+ 47" Rin+7"Visn_1(Sesn), n>1,0<t < T—n

e Of course, this is not available until time t + n

* The natural algorithm is thus to wait until then:

‘/t—l—n(St) = ‘/t—l—n—l(st) + « [ng) — ‘/;f—l—n—l(st)] ; 0<t<T,

e This is called n-step TD

n-step TD for estimating V ~ v,

Parameters: step size

Initialize and store

T + o

Fort=0,1,2,...:
If t <T, then:

Observe and

If > 0:

1=7+1

|

|

|

|

| 7+ t—n+1
|

|

| fr+n<T,
|

Until7 =T -1

Initialize V' (s) arbitrarily, s € 8

All store and access operations (for Sy and R;) can take their index mod n

Repeat (for each episode):

Take an action according to 7(+|.Sy)

If S¢yq is terminal, then T «— ¢ + 1

G — Zmin(7+”»T) ’Yi_T_lRi

V(ST) A V<S7') +a [G o V(ST)]

a € (0,1], a positive integer n

So # terminal

store the next reward as R;y; and the next state as Sy41

(7 is the time whose state’s estimate is being updated)

then: G < G+ "V (S:4n) (ng))

So =81 =8>8 ->58->58 =8 =5 >8> 8 =S50~ 5; > 5. ..
So =81 =285 =828, 585 >85> 8>3 =50~ 5 =S5 ..
So =81 =8 =852 8-> 58 =8>8 =555 5= 5. ..

So =81 =5, =58 =8 =385 =8 =5 =8 =580~ 5 =5 ..

No value update

n-step TD for estimating V ~ v,

Parameters: step size

Initialize and store

T + o

Fort=0,1,2,...:
If t <T, then:

Observe and

If > 0:

1=7+1

|

|

|

|

| 7+ t—n+1
|

|

| fr+n<T,
|

Until7 =T -1

Initialize V' (s) arbitrarily, s € 8

All store and access operations (for Sy and R;) can take their index mod n

Repeat (for each episode):

Take an action according to 7(+|.Sy)

If S¢yq is terminal, then T «— ¢ + 1

G — Zmin(7+”»T) ’Yi_T_lRi

V(ST) A V<S7'> +a [G o V(ST)]

a € (0,1], a positive integer n

So # terminal

store the next reward as R;y; and the next state as Sy41

(7 is the time whose state’s estimate is being updated)

then: G ¢+ G + 7"V (Sy1n) (G™)

So =81 =8>8 >85> 58— 5 >85> S50~ 5; > 5.
So =81 =285 =828, 58 =8 =5 =8>3 =50~ 5 =S ..
So =81 =85 =828 8- 8>8-S =5 = 50—~ 5. ..

So =81 =5, =8 =8 =85 =8 =5 =8 = S = 85 = 5.

No value update

n-step TD for estimating V ~ v,

Parameters: step size

Initialize and store

T + o

Fort=0,1,2,...:
If t <T, then:

Observe and

If > 0:

1=7+1

|

|

|

|

| 7+ t—n+1
|

|

| fr+n<T,
|

Until7 =T -1

Initialize V' (s) arbitrarily, s € 8

All store and access operations (for Sy and R;) can take their index mod n

Repeat (for each episode):

Take an action according to 7(+|.Sy)

If S¢yq is terminal, then T «— ¢ + 1

G — Zmin(7+”»T) ’Yi_T_lRi

V(ST) A V<S7') +a [G o V(ST)]

a € (0,1], a positive integer n

So # terminal

store the next reward as R;y; and the next state as Sy41

(7 is the time whose state’s estimate is being updated)

then: G < G+ "V (S:4n) (ng))

So= 81 =8 =8 =8-8558 >8>S =55 =5 ..
So =81 =285 =828, 58 =8 =5 =8>3 =50~ 5 =S ..
So =81 =85 =828 8- 8>8-S =5 = 50—~ 5. ..
So =81 =5, =8 =8 =85 =8 =5 =8 = S = 85 = 5.
So =81 =8>8 =528 =85 >85> 50> 5 =5, ..

So =81 =8 =8-8558 -5 5 =505~ 5. ..

No value update

N-step TD

n-step TD for estimating V ~ v,

Parameters: step size

Initialize and store

T + o

Fort=0,1,2,...:
If t <T, then:

Observe and

If > 0:

1=7+1

|

|

|

|

| 7+ t—n+1
|

|

| fr+n<T,
|

Until7 =T -1

Initialize V' (s) arbitrarily, s € 8

All store and access operations (for Sy and R;) can take their index mod n

Repeat (for each episode):

Take an action according to 7(+|.Sy)

If S¢yq is terminal, then T «— ¢ + 1

G — Zmin(7+”»T) ’Yi_T_lRi

V(ST) A V<S7') +a [G o V(ST)]

a € (0,1], a positive integer n

So # terminal

store the next reward as R;y; and the next state as Sy41

(7 is the time whose state’s estimate is being updated)

then: G < G+ "V (S:4n) (ng))

So= 81 =8 =8 =8-8558 >8>S =55 =5 ..
So =81 =285 =828, 58 =8 =5 =8>3 =50~ 5 =S ..
So =81 =85 =828 8- 8>8-S =5 = 50—~ 5. ..
So =81 =5, =8 =8 =85 =8 =5 =8 = S = 85 = 5.
So = 812828 =5, 8 =8 =5 >8> 8 =50~ > 5.

So =81 =8 =888 -85 >S5 5 =508~ 5. ..

No value update

N-step TD

n-step TD for estimating V ~ v,

Parameters: step size

Initialize and store

T + o

Fort=0,1,2,...:
If t <T, then:

Observe and

If > 0:

1=7+1

|

|

|

|

| 7+ t—n+1
|

|

| fr+n<T,
|

Until7 =T -1

Initialize V' (s) arbitrarily, s € 8

All store and access operations (for Sy and R;) can take their index mod n

Repeat (for each episode):

Take an action according to 7(+|.Sy)

If S¢yq is terminal, then T «— ¢ + 1

G — Zmin(T‘i‘”’T) ’Yi_T_lRi

V(ST) A V<S7') + [G o V(ST)]

a € (0,1], a positive integer n

So # terminal

store the next reward as R;y; and the next state as Sy41

(7 is the time whose state’s estimate is being updated)

then: G < G+ "V (S:4n) (ng))

So =81 =8>8 >85> 58— 5 >85> S50~ 5; > 5.
So =81 =285 =828, 58 =8 =5 =8>3 =50~ 5 =S ..
So =81 =85 =828 8- 8>8-S =5 = 50—~ 5. ..

So =81 =5, =8 =8 =85 =8 =5 =8 = S = 85 = 5.

So = 812828 =5, 8 =8 =5 >8> 8 =50~ > 5.
So =81 =8>8 >85> 85 >85> S50—=> 5> 5,...
So =81 =8>8 =8-8558 =5 >8> S8 =S50~ 5~ 5,...

So =81 =8>8 =8-8558 =550~ 5 =5 ..

St

St

St

St

No value update

N-step TD

MC

n-step TD for estimating V ~ v,

Parameters: step size

Initialize and store

T + o

Fort=0,1,2,...:
If t <T, then:

Observe and

If > 0:

1=7+1

|

|

|

|

| 7+ t—n+1
|

|

| fr+n<T,
|

Until7 =T -1

Initialize V' (s) arbitrarily, s € 8

All store and access operations (for Sy and R;) can take their index mod n

Repeat (for each episode):

Take an action according to 7(+|.Sy)

If S¢yq is terminal, then T «— ¢ + 1

G — Zmin(T‘i‘”’T) ’Yi_T_lRi

V(ST) A V<S7') + [G o V(ST)]

a € (0,1], a positive integer n

So # terminal

store the next reward as R;y; and the next state as Sy41

(7 is the time whose state’s estimate is being updated)

then: G < G+ "V (S:4n) (ng))

So =81 =8>8 >85> 58— 5 >85> S50~ 5; > 5.
So =81 =285 =828, 58 =8 =5 =8>3 =50~ 5 =S ..
So =81 =85 =828 8- 8>8-S =5 = 50—~ 5. ..

So =81 =5, =8 =8 =85 =8 =5 =8 = S = 85 = 5.

So = 812828 =5, 8 =8 =5 >8> 8 =50~ > 5.
So =81 =8>8 >85> 85 >85> S50—=> 5> 5,...
So =81 =8>8 > 58,->58 =8 =5 =8>8 =50~ 5~ 5,...

So= 81285858258 =85 >85> 50> 5> 5. ..

St

St

St

St

Random Walk Examples

- 0 OA 0 . 0 . 0 . 0 OE 1 .

start

A Larger Example - 19-state Random Walk

0.55 ¢
05 F
Average 0.45 |- n-step TD
over 19 states 04+
and first 10
episodes %°°f
03
0.25 |, .
0 0.2 04 0.6 0.8 1
8%

e An intermediate a is best

e An intermediate n is best

It's much the same for action values

1-step Sarsa co-step Sarsa n-step
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa aka Monte Carlo Expected Sarsa

A O S S O

O O

o—(
(-

o—-

o—(

7

Q(S,,A) < Q(S,,A)+a|R,, +yQ(S,,, A,)-Q(S, A)]

o
-—Q

(O~

°
Q>O«4 oo 0—)+—o+—
®

Q(St: At) < Q(St, Ai) + & Repr + VEIQ(Ser, Ars) | Sea] — Q(Sh, Av)]
 Q(St, Ar) + 0| Rest +7 Y 7(@lSi41)Q(Sk41,) — Q(Sh, Ar)

On-policy n-step Action-value Methods

e Action-value form of n-step return

ng) = Rt—i-l +7Rt+2+') ""fyn_lRH—n +7th+n—1(St+na At—|—n)

e n-step Sarsa:
Qun(Sts Ar) = Qin-1(St, A+ |G = Qi1 (S, Ay)|

e n-step Expected Sarsa is the same update with a slightly different n-
step return:

ng) = Rip1+ 49" Repn+9" Z m(a|St4n)Qi+n—1(St4n,)

Off-policy n-step Methods by Importance Sampling

o Recall the importance-sampling ratio:

min(t+n—1,7—1
() Ayl Sk)

t+n -
P g ((Ag|Sk)

 We get off-policy methods by weighting updates by this ratio

o Off-policy n-step TD:
Vion(S0) = Vin 1(50) + g™ [G) — Vi (0]

e Off-policy n-step Sarsa:
Qein(Sts At) = Qe (St Ad)+apl [} |G = Qen1(Si, A

o Off-policy n-step Expected Sarsa:
Qun(St; Ar) = Quin—1(Si, A) + apf 1= |G = Quin1(Si, A1)

Conclusions Regarding n-step Methods

 Generalize Temporal-Difference and Monte Carlo learning methods,
sliding from one to the other as n increases

e n = 1isTD as in Chapter 6
e n = o0 is MC as in Chapter 5

e an intermediate 7 is often much better than either extreme

e applicable to both continuing and episodic problems

 There is some cost in computation
e need to remember the last n states

e learning is delayed by n steps

e per-step computation is small and uniform, like TD

