
Monte Carlo Tree Search with Prior
Knowledge

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon

School of Computer Science

Spring 2021, CMU 10-403

Learning: the acquisition of knowledge or skills through experience,
study, or by being taught.

Planning: any computational process that uses a model to create or
improve a policy

Definitions

Model Policy
Planning

Given a deterministic transition function , a root state and a
simulation policy (potentially random)

Simulate episodes from current (real) state:

Evaluate action value function of the root by mean return:

Select root action:

T s
π

K

{s, a, Rk
1, Sk

1, Ak
1, Rk

2, Sk
2, Ak

2, . . . , Sk
T}K

k=1 ∼ T, π

Q(s, a) =
1
K

K

∑
k=1

Gk → qπ(s, a)

a = argmaxa∈𝒜Q(s, a)

Simplest Monte-Carlo Search

• Could we be improving our simulation policy the more simulations we
obtain?

• Yes we can! We can have two policies:

• Internal to the tree: keep track of action values Q not only for the
root but also for nodes internal to a tree we are expanding, and use
to improve the simulation policy over time

• External to the tree: we do not have Q estimates and thus we use a
random policy

In MCTS, the simulation policy improves

• Can we think anything better than ?ϵ − greedy

Can we do better?

1. Selection

• Used for nodes we have seen before

• Pick according to UCB

2. Expansion

• Used when we reach the frontier

• Add one node per playout

3. Simulation

• Used beyond the search frontier

• Don’t bother with UCB, just play randomly

4. Back-propagation

• After reaching a terminal node

• Update value and visits for states expanded in selection and expansion

Monte-Carlo Tree Search

Bandit based Monte-Carlo Planning, Kocsis and Szepesvari, 2006

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree

Search tree contains states whose all children have been tried at least once

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Use cases:

• As online planner for selecting the next move

• For state-action value estimation at training time. At test time just use
the reactive policy network, without any lookahead planning.

• In combination with policy and value networks at test time (AlphaGo)

• In combination with policy and value networks at both train and test
time (AlphaGoZero)

Monte-Carlo Tree Search

Can we do better?

Can we inject prior knowledge into state and action values instead of
initializing them uniformly?

• Value neural net to evaluate board positions to help prune the tree
depth.

• Policy neural net to select moves to help prune the tree breadth.

MCTS + Policy/ Value networks

*ƹĬãƜƈƔıƳČ͓¢ČãƀÿĬ

ÍãŇƜČ͓kČƔƴŚƀń

IŚƴ͓ƴČŇŇ͓ãŏ͓N͓ĆŚıőĥ̯

�ČĆƜÿČ͓$ČŽƔĬ͓ƴıƔĬ͓ÍãŇƜČ͓kČƔƴŚƀń

�ČĆƜÿČ͓$ČŽƔĬ͓ƴıƔĬ͓ÍãŇƜČ͓kČƔƴŚƀń

�ƀıŚƀ͓kČƔƴŚƀń

ÎĬãƔ͓ãƀČ͓ƔĬČ͓ŏŚƈƔ͓
ŇıńČŇƺ͓ãÿƔıŚőƈ̯

�ČĆƜÿČ͓�ƀČãĆƔĬ͓ƴıƔĬ͓�ŚŇıÿƺ͓kČƔƴŚƀń

�ČĆƜÿČ͓�ƀČãĆƔĬ͓ƴıƔĬ͓�ŚŇıÿƺ͓kČƔƴŚƀń

1.Train two policies, one cheap policy and one expensive by mimicking expert
moves.

2.Train a new policy with RL and self-play initialized from the policy.

3.Train a value network that predicts the winner of games played by against itself.

4.Combine the policy and value networks with MCTS at test time.

pπ pσ

pρ pρ pσ

pρ

AlphaGo

1.Train two policies, one cheap policy and one expensive by mimicking expert
moves.

2.Train a new policy with RL and self-play initialized from the policy.

3.Train a value network that predicts the winner of games played by against itself.

4.Combine the policy and value networks with MCTS at test time.

pπ pσ

pρ pρ pσ

pρ

AlphaGo

• Objective: predicting expert moves

• Input: randomly sampled state-action pairs (s, a) from expert games

• Output: a probability distribution over all legal moves a.

SL policy network: 13-layer policy network  
trained from 30 million positions. The network  
predicted expert moves on a held out test set  
with an accuracy of 57.0% using all input features,  
and 55.7% using only raw board position and  
move history as inputs, compared to the  
state-of-the-art from other research groups of  
44.4%.

Supervised learning of policy networks

pσ

1.Train two policies, one cheap policy and one expensive by mimicking expert
moves.

2.Train a new policy with RL and self-play initialized from the policy.

3.Train a value network that predicts the winner of games played by against itself.

4.Combine the policy and value networks with MCTS at test time.

pπ pσ

pρ pρ pσ

pρ

AlphaGo

• Objective: improve over SL policy

• Weight initialization from SL network

• Input: Sampled states during self-play

• Output: a probability distribution over all legal moves a.

Rewards are provided only at the end of the  
game, +1 for winning, -1 for loosing

The RL policy network won more than 80%  
of games against the SL policy network.

Δρ ∝
∂ log pρ (at |st)

∂ρ
zt

Reinforcement learning of policy networks

pρ

1.Train two policies, one cheap policy and one expensive by mimicking expert
moves.

2.Train a new policy with RL and self-play initialized from the policy.

3.Train a value network that predicts the winner of games played by against itself.

4.Combine the policy and value networks with MCTS at test time.

pπ pσ

pρ pρ pσ

pρ

AlphaGo

• Objective: Estimating a value function that predicts the outcome
from position s of games played by using RL policy p for both players.

• Input: Sampled states during self-play, 30 million distinct positions, each
sampled from a separate game.

• Output: a scalar value

Trained by regression on state-outcome pairs (s, z) to  
minimize the mean squared error between the predicted  
value v(s), and the corresponding outcome z.

vp(s)

Reinforcement learning of value networks

1.Train two policies, one cheap policy and one expensive by mimicking expert
moves.

2.Train a new policy with RL and self-play initialized from the policy.

3.Train a value network that predicts the winner of games played by against itself.

4.Combine the policy and value networks with MCTS at test time.

pπ pσ

pρ pρ pσ

pρ

AlphaGo

Selection: selecting actions within the expanded tree

Tree policy

• - action selected at time step from state

• - average reward collected so far from MC simulations

• - prior expert probability provided by the SL policy

• - number of times we have taken action a from state s from MC

simulations

• acts as a bonus value

at t st
Q (sr, a)
P(s, a) pσ
N(s, a)

u

•

at = argmax
a

(Q (st, a) + u (st, a))

u(s, a) ∝
P(s, a)

1 + N(s, a)

MCTS + Policy/ Value networks

Expansion: when reaching a leaf, play the action with highest score from pσ

• When leaf node is reached, it has a chance to be expanded

• Processed once by SL policy network and stored as prior probs

• Pick child node with highest prior prob

(pσ)
P(s, a)

MCTS + Policy/ Value networks

MCTS + Policy/ Value networks

• From the selected leaf node, run
multiple simulations in parallel using
the rollout policy

• Evaluate the leaf node as:

• : value from the trained value
function for board position

• : Reward from fast rollout

• Played until terminal step

• - mixing parameter

V (sL) = (1 − λ)vρ (sL) + λzL

vρ
sL

zL px

λ

Simulation/Evaluation: use the rollout policy to reach to the end of the game

MCTS + Policy/ Value networks
• Backup: update visitation counts and recorded rewards for the chosen

path inside the tree

N(s, a) =
n

∑
i=1

1(s,a)∈τi

Q(s, a) =
1

N(s, a)

n

∑
i=1

1(s,a)∈τi
V (si

L)

• Extra index is to denote the i simulation, total simulations

• Update visit count and mean reward of simulations passing through

node

• Once MCTS completes, the algorithm chooses the most visited move

from the root position.

n

• So far, look-ahead search was used for online planning at test time!

• We saw in the last lecture that MCTS is also useful at training time: it in
fact reaches superior Q values that vanilla model-free RL.

• AlphaGoZero uses MCTS during training instead.

• AlphaGoZero gets rid of human supervision.

AlphaGoZero: Lookahead search during training!

• So far, look-ahead search was used for online planning at test time!

• We have seen that MCTS is useful at training time: it in fact reaches
superior Q values that vanilla model-free RL.

• AlphaGoZero uses MCTS during training instead.

• AlphaGoZero does not use any human supervision and outperforms
human players while trained only by self-play.

AlphaGoZero: Lookahead search during training!

• Given any policy, a MCTS guided by this policy for action selection (as
described earlier), will produce an improved policy for the root node
(policy improvement operator)

• Train to mimic such improved policy

AlphaGoZero: Lookahead search during training!

Tree policy

• - action selected at time step from state

• - average reward collected so far from MC simulations

• - prior expert probability provided by the policy

• - number of times we have taken action a from state s from MC

simulations

• acts as a bonus value

at t st
Q (sr, a)
P(s, a) πθ
N(s, a)

U

at = argmax
a

(Q (st, a) + U (st, a))

U(s, a) ∝
P(s, a)

1 + N(s, a)

MCTS + Policy/ Value networks

MCTS + Policy/ Value networks

• When leaf node is reached, its value is computed and the prior
probs for all its legal action-children are computed and stored.

vθ(s)
P(s, a)

MCTS + Policy/ Value networks

N(s, a) =

n

∑
i=1

1(s,a)∈τi

Q(s, a) =
1

N(s, a)

n

∑
i=1

1(s,a)∈τi
V (si

L)

• No full rollouts till game termination!

• Update visit counts, total reward and mean reward for the actions used in the

current rollout.

• : the # of MC simulations so farn

1600 MC rollouts were used to select each root action.

MCTS + Policy/ Value networks

Once MCTS completes, the algorithm chooses the most visited move from
the root position.

MCTS + Policy/ Value networks

Self-play

Z

MCTS as policy improvement operator

• Given a policy , MC rollouts
can provide for the root state an
action distribution that is better
than the initial policy .

• Train so that the policy network
mimics this improved policy

• Train so that the position
evaluation network (value
function approximator) output
matches the outcome

πθ

πθ

Z

Each of those requires 1600 MC rollouts, i.e., about 0.4 secs thinking time per move.

Architectures

• Resnets help

• Jointly training the
policy and value
function using the
same main feature
extractor helps

• Lookahead
tremendously
improves the basic
policy

