
Monte Carlo Tree Search with Prior 
Knowledge

Deep Reinforcement Learning and Control

Katerina Fragkiadaki


Carnegie Mellon

School of Computer Science

Spring 2021, CMU 10-403



Learning: the acquisition of knowledge or skills through experience, 
study, or by being taught.


Planning: any computational process that uses a model to create or 
improve a policy 


Definitions

Model Policy
Planning



Given a deterministic transition function , a root state  and a 
simulation policy  (potentially random)


Simulate  episodes from current (real) state:





Evaluate action value function of the root by mean return:


                                  


Select root action: 
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Simplest Monte-Carlo Search



• Could we be improving our simulation policy the more simulations we 
obtain?


• Yes we can! We can have two policies:


• Internal to the tree: keep track of action values Q not only for the 
root but also for nodes internal to a tree we are expanding, and use  
to improve the simulation policy over time


• External to the tree: we do not have Q estimates and thus we use a 
random policy


In MCTS, the simulation policy improves


• Can we think anything better than ?ϵ − greedy

Can we do better?



1. Selection


• Used for nodes we have seen before


• Pick according to UCB


2. Expansion


• Used when we reach the frontier


• Add one node per playout


3. Simulation


• Used beyond the search frontier


• Don’t bother with UCB, just play randomly


4. Back-propagation


• After reaching a terminal node


• Update value and visits for states expanded in selection and expansion

Monte-Carlo Tree Search

Bandit based Monte-Carlo Planning, Kocsis and Szepesvari, 2006



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree

Search tree contains states whose all children have been tried at least once
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Monte-Carlo Tree Search



Use cases:


• As online planner for selecting the next move


• For state-action value estimation at training time. At test time just use 
the reactive policy network, without any lookahead planning.


• In combination with policy and value networks at test time (AlphaGo)


• In combination with policy and value networks at both train and test 
time (AlphaGoZero)

Monte-Carlo Tree Search



Can we do better?

Can we inject prior knowledge into state and action values instead of 
initializing them uniformly?



• Value neural net to evaluate board positions to help prune the tree 
depth.


• Policy neural net to select moves to help prune the tree breadth.

MCTS + Policy/ Value networks
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1.Train two policies, one cheap policy  and one expensive  by mimicking expert 
moves.


2.Train a new policy  with RL and self-play  initialized from the  policy.


3.Train a value network that predicts the winner of games played by   against itself.


4.Combine the policy and value networks with MCTS at test time.

pπ pσ

pρ pρ pσ

pρ

AlphaGo
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• Objective: predicting expert moves


• Input: randomly sampled state-action pairs (s, a) from expert games


• Output: a probability distribution over all legal moves a.


SL policy network: 13-layer policy network  
trained from 30 million positions. The network  
predicted expert moves on a held out test set  
with an accuracy of 57.0% using all input features,  
and 55.7% using only raw board position and  
move history as inputs, compared to the  
state-of-the-art from other research groups of  
44.4%.

Supervised learning of policy networks

pσ
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• Objective: improve over SL policy


• Weight initialization from SL network


• Input: Sampled states during self-play


• Output: a probability distribution over all legal moves a.


Rewards are provided only at the end of the  
game, +1 for winning, -1 for loosing





The RL policy network won more than 80%  
of games against the SL policy network.

Δρ ∝
∂ log pρ (at |st)

∂ρ
zt

Reinforcement learning of policy networks

pρ
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• Objective: Estimating a value function  that predicts the outcome 
from position s of games played by using RL policy p for both players.


• Input: Sampled states during self-play, 30 million distinct positions, each 
sampled from a separate game. 


• Output: a scalar value


Trained by regression on state-outcome pairs (s, z) to  
minimize the mean squared error between the predicted  
value v(s), and the corresponding outcome z. 

vp(s)

Reinforcement learning of value networks
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Selection: selecting actions within the expanded tree

Tree policy

•  - action selected at time step  from state 

• - average reward collected so far from MC simulations

•  - prior expert probability provided by the SL policy 

•  - number of times we have taken action a from state s from MC 

simulations

•  acts as a bonus value 

at t st
Q (sr, a)
P(s, a) pσ
N(s, a)

u

•

at = argmax
a

(Q (st, a) + u (st, a))

u(s, a) ∝
P(s, a)

1 + N(s, a)

MCTS + Policy/ Value networks



Expansion: when reaching a leaf, play the action with highest score from pσ

• When leaf node is reached, it has a chance to be expanded

• Processed once by SL policy network  and stored as prior probs



• Pick child node with highest prior prob

(pσ)
P(s, a)

MCTS + Policy/ Value networks



MCTS + Policy/ Value networks

• From the selected leaf node, run 
multiple simulations in parallel using 
the rollout policy


• Evaluate the leaf node as:





•  : value from the trained value 
function for board position 


•  : Reward from fast rollout 

• Played until terminal step 


•  - mixing parameter 


V (sL) = (1 − λ)vρ (sL) + λzL

vρ
sL

zL px

λ

Simulation/Evaluation: use the rollout policy to reach to the end of the game



MCTS + Policy/ Value networks
• Backup: update visitation counts and recorded rewards for the chosen 

path inside the tree


N(s, a) =
n

∑
i=1

1(s,a)∈τi

Q(s, a) =
1

N(s, a)

n

∑
i=1

1(s,a)∈τi
V (si

L)

• Extra index is to denote the i simulation,  total simulations 

• Update visit count and mean reward of simulations passing through 

node 

• Once MCTS completes, the algorithm chooses the most visited move 

from the root position. 

n



• So far, look-ahead search was used for online planning at test time!


• We saw in the last lecture that MCTS is also useful at training time: it in 
fact reaches superior Q values that vanilla model-free RL.


• AlphaGoZero uses MCTS during training instead.


• AlphaGoZero gets rid of human supervision.

AlphaGoZero: Lookahead search during training!



• So far, look-ahead search was used for online planning at test time!


• We have seen that MCTS is useful at training time: it in fact reaches 
superior Q values that vanilla model-free RL.


• AlphaGoZero uses MCTS during training instead.


• AlphaGoZero does not use any human supervision and outperforms 
human players while trained only by self-play.

AlphaGoZero: Lookahead search during training!



• Given any policy, a MCTS guided by this policy for action selection (as 
described earlier), will produce an improved policy for the root node 
(policy improvement operator)


• Train to mimic such improved policy

AlphaGoZero: Lookahead search during training!



Tree policy

•  - action selected at time step  from state 

• - average reward collected so far from MC simulations

•  - prior expert probability provided by the policy 

•  - number of times we have taken action a from state s from MC 

simulations 

•  acts as a bonus value 

at t st
Q (sr, a)
P(s, a) πθ
N(s, a)

U

at = argmax
a

(Q (st, a) + U (st, a))

U(s, a) ∝
P(s, a)

1 + N(s, a)

MCTS + Policy/ Value networks



MCTS + Policy/ Value networks

• When leaf node is reached, its value is computed  and the prior 
probs  for all its legal action-children are computed and stored.

vθ(s)
P(s, a)



MCTS + Policy/ Value networks

N(s, a) =

n

∑
i=1

1(s,a)∈τi

Q(s, a) =
1

N(s, a)

n

∑
i=1

1(s,a)∈τi
V (si

L)

• No full rollouts till game termination!

• Update visit counts, total reward and mean reward for the actions used in the 

current rollout.

• : the # of MC simulations so farn



1600 MC rollouts were used to select each root action.

MCTS + Policy/ Value networks



Once MCTS completes, the algorithm chooses the most visited move from 
the root position. 

MCTS + Policy/ Value networks



Self-play

Z



MCTS as policy improvement operator

• Given a policy , MC rollouts 
can provide for the root state an 
action distribution that is better 
than the initial policy .


• Train so that the policy network 
mimics this improved policy


• Train so that the position 
evaluation network (value 
function approximator) output 
matches the outcome

πθ

πθ

Z

Each of those requires 1600 MC rollouts, i.e., about 0.4 secs thinking time per move.



Architectures

• Resnets help


• Jointly training the 
policy and value 
function using the 
same main feature 
extractor helps

• Lookahead 
tremendously 
improves the basic 
policy


